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Abstract—Almost all industrial processes exhibit nonlinear 

dynamics, however most model predictive control (MPC) 

applications are based on linear models. Linear models do not 

always give a sufficiently adequate representation of the system 

and therefore Nonlinear Model Predictive Control (NMPC) 

techniques have to be used. In this article, two techniques of 

NMPC, namely successive linearization nonlinear model 

predictive control (SLNMPC) and wiener nonlinear model 

predictive control (WNMPC) are applied to nonlinear process 

systems. The major advantage of the two methods being that 

the NMPC problem is reduced to a linear model predictive 

control (LMPC) problem at each time step which thereafter 

allows the optimization problem to be solved using quadratic 

programming (QP) techniques. Another advantage of these 

methods is the reduced computational time in calculating the 

control effort which makes them suitable for online 

implementation. 

Both simulation and experimental results show the 

superiority of the SLNMPC over WNMPC in handling process 

nonlinearity. The work also shows the favourable performance 

of the NMPC over LMPC, as expected. 

I. INTRODUCTION 

ODEL Predictive Control (MPC) refers to a class of 

computer control algorithms in which a dynamic 

model of process is used to predict and optimize its 

performance.  At each sample time a predictive controller 

takes measurement of the system output (or state if 

available), uses the internal model to predict the behaviour 

of the system over a prediction horizon and then computes a 

finite horizon control sequence that optimizes some open-

loop performance objective while making sure that no 

constraints are violated.  This control sequence is 

implemented until the next measurement becomes available. 

Then the optimisation problem is solved again. 

Linear model predictive control (LMPC) is well established 

industry standard for controlling constrained multivariable 

processes Garcia et al. [1989]. In LMPC, the plant behaviour 

is described by linear dynamic models however most 

chemical processes are highly nonlinear  hence the  
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inadequacy of using linear models to represent them. This 

limitation of LMPC has brought about the development of 

NMPC in which a more accurate nonlinear model is used for 

prediction and optimization. This however does not come 

without its own problems. While in LMPC a convex 

optimisation problem is solved at each sample time, in 

NMPC the problem becomes non-convex in which an 

optimal solution cannot be guaranteed.  In addition to this, 

NMPC optimisation problem tends to become too large to be 

solved online. To reduce the computational complexity, it 

has been proposed that the problem can be reduced to either 

linear program or quadratic problem. 

Inspite of the above, there are systems where nonlinear 

effects are significant enough to justify the use of nonlinear 

model predictive control (NMPC). These include at least two 

broad categories of applications: 

1. Regulatory control problems, where the 

process is highly nonlinear and subject to large 

frequent disturbances. 

2. Servo control problems, where the operating 

points change frequently and span a 

sufficiently wide range of nonlinear process 

dynamics 

To address this problem, quite a number of methods have 

been proposed by researchers for representing the internal 

model used in NMPC for predictive controller design, some 

mechanistic and some empirical. (Henson[1998], 

Kouvaritakis and Cannon [2001], Rossiter [2003], and 

Allgower et al. [2009]). Among these are Hammerstein, 

Wiener, Volterra, artificial neural network and successively 

linearized models. Camacho and Bordons [2004] give a 

review of these methods.  In this work, NMPC by successive 

linearization and by the use of Wiener model are explored 

for controlling nonlinear process systems. Both techniques 

have been known to be computational less expensive 

because of the problem of having to solve a quadratic 

program at each sampling period. 

In SLNMPC, the model used for output prediction is 

obtained by relinearizing the nonlinear model at every 

sampling instant and at the current operating point while the 

original nonlinear model can be used to compute the effect 

of past input moves. This reduces optimization problem to 

be solved at every sampling instant to a quadratic program. 

In WNMPC, since wiener model allows a nonlinear plant to 

be represented by a linear dynamic part and nonlinear static 

part, the problem is transformed to a linear one by 

employing the linear dynamic model for predictive 

controller design and using the inverse of the nonlinear part 

to compensate for the nonlinear effect. 
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II. SUCCESSIVE LINEARIZATION NONLINEAR 

MODEL PREDICTIVE CONTROL (SLNMPC)  

Model for a nonlinear process 
It is a common practice to model a nonlinear system using 

(Richer and Lee [1995]): 

𝒙 = 𝑓 𝑥, 𝑢, 𝑑 + 𝑤𝑥                (1) 

𝒅 = 𝑤𝑑                     (2) 

𝑦 = 𝑔 𝑥, 𝑢, 𝑑 + 𝑣                (3) 

Where 𝑥 is the state vector, 𝑦 is the output vector, 𝑢 is the 

vector of manipulated variables, and 𝑤𝑥 , 𝑤𝑑 , and  𝑣 are 

zero-mean, white noise with specified covariances. The 𝑤𝑥  

vector represents short-term disturbances having zero mean; 

𝑑 represents sustained disturbances – integrated white noise.  

 

Estimation of state 

By linearization and discretization of equations (1) – (3) for 

a sampling period of 𝑡𝑠 time units, an optimal estimate 

predictions of state and output can be made using the 

Kalman Filter. Accordingly, let 𝑥𝑘−1|𝑘−1, 𝑦𝑘−1|𝑘−1, and  

𝑑𝑘−1|𝑘−1 represents the estimates of the state, the output and 

the disturbance at time 𝑘 − 1 given information up to 𝑘 − 1, 

then 

 
𝑥𝑘|𝑘

𝑑𝑘|𝑘
 =  

𝐴𝑥𝑘−1|𝑘−1 + 𝐵𝑢𝑘−1|𝑘−1

𝑑𝑘−1|𝑘−1
 + 𝐿𝑘(𝑦𝑘 − 𝑦 𝑘|𝑘−1)  (4) 

𝑦 𝑘|𝑘−1 = 𝐶𝑥𝑘|𝑘−1 

Where 𝑦𝑘  is the measured output, 𝑦 𝑘|𝑘−1 is estimated output, 

and 𝐿𝑘  is Kalman Filter gain matrix. It is assumed to be 

linear time-invariant in this work as this does not introduce 

serious error in state estimation. 

 

Linearization for prediction/control 

With the availability of the estimates of  𝑥𝑘|𝑘  and 𝑑𝑘|𝑘  at 

time 𝑡𝑘  from equation (4) and the current inputs being 𝑢𝑘−1, 

the problem is to compute 𝑢𝑘 , which will be sent to the plant 

(to be implemented from 𝑡𝑘  to 𝑡𝑘+1. Also, with the 

expectations that 𝑤𝑥  will be zero and that 𝑑 will be constant: 

𝑑𝑘+𝑗 |𝑘 = 𝑑𝑘|𝑘 , 𝑗 ≥ 1               (5) 

Equations (1) and (2) can be linearized with respect to 𝑥 and 

𝑢 to obtain: 

𝑥 ≈ 𝑓 𝑥𝑘|𝑘 , 𝑢𝑘−1, 𝑑𝑘|𝑘 + 𝐴𝑘 𝑥 − 𝑥𝑘|𝑘 + 𝐵𝑘(𝑢 − 𝑢𝑘−1) (6) 

𝑦 ≈ 𝑔 𝑥𝑘|𝑘 , 𝑢𝑘−1, 𝑑𝑘|𝑘 + 𝐶𝑘 𝑥 − 𝑥𝑘|𝑘 + 𝐷𝑘 (𝑢 − 𝑢𝑘−1) (7) 

where 

𝐴𝑘 =  𝜕𝑓

𝜕𝑥
 
𝑥𝑘|𝑘 ,𝑢𝑘−1 ,𝑑𝑘|𝑘

, 𝐵𝑘 =  𝜕𝑓

𝜕𝑢
 
𝑥𝑘|𝑘 ,𝑢𝑘−1 ,𝑑𝑘|𝑘

 

𝐶𝑘 =  𝜕𝑔

𝜕𝑥
 
𝑥𝑘|𝑘 ,𝑢𝑘−1 ,𝑑𝑘|𝑘

               (8) 

are matrices of appropriate sizes. 

The next step is to discretize the linearized model. However, 

a complication arises in that the reference point for 

linearization is the current state, i.e. an unsteady-state. A 

convenient way of dealing with this is to include the initial 

condition 

 𝑓𝑜𝑘 = 𝑓(𝑥𝑘|𝑘 , 𝑢𝑘−1, 𝑑𝑘|𝑘) 

as a column of the 𝐵 matrix corresponding to a constant 

input. We can then write equation (6) as 

𝑥 = 𝐴𝑘 𝑥 − 𝑥𝑘|𝑘 +  𝐵𝑘     𝑓𝑜𝑘   
𝑢 − 𝑢𝑘−1

1
       (9a) 

or 𝒙 ∗ = 𝐴𝑘𝑥∗ +  𝐵𝑘    𝑓𝑜𝑘   
𝑢∗

1
           (9b) 

where 𝑥∗ = 𝑥 − 𝑥𝑘|𝑘 ,  𝑢∗ = 𝑢 − 𝑢𝑘|𝑘  are deviation variables 

We then discretize equations (9b) and (7) to give: 

𝑥𝑘+𝑗 +1
∗ = Ф𝑘𝑥𝑘+𝑗

∗ + Г𝑘𝑢𝑘+𝑗
∗ + Г𝑜𝑘          (10) 

𝑦𝑘+𝑗
∗ = 𝐶𝑘𝑥𝑘+𝑗

∗                 (11) 

where for 𝑗 ≥ 0 : 

𝑥𝑘+𝑗
∗ = 𝑥𝑘+𝑗 |𝑘 − 𝑥𝑘|𝑘 ,  

𝑦𝑘+𝑗
∗ = 𝑦𝑘+𝑗 |𝑘 − 𝑔(𝑥𝑘|𝑘 , 𝑢𝑘−1, 𝑑𝑘|𝑘) 

𝑢𝑘+𝑗
∗ = 𝑢𝑘+𝑗 |𝑘 − 𝑢𝑘−1 

Where Ф𝑘  and Г𝑘  are discrete state space matrices obtained 

from 𝐴𝑘 , 𝐵𝑘  and the sampling time, 𝑡𝑠. 

Linear prediction of future outputs 

The above equations are used to develop a linear prediction 

of future outputs for onward computation of control actions 

as is found in the usual MPC formulations (Richer and Lee 

[1995]). 

For a ‘prediction horizon’ of 𝑃 sampling periods   𝑃 ≥ 1  

we obtain: 

𝑌𝑘+1|𝑘 = 𝑌𝑘+1|𝑘
𝑜 + 𝑆𝑘

𝑢∆𝑈𝑘             (12) 

where 

𝑌𝑘+1|𝑘 =  

𝑦𝑘+1|𝑘

𝑦𝑘+1|𝑘

⋮
𝑦𝑘+𝑃|𝑘

 ,  ∆𝑈 =  

∆𝑢𝑘 = 𝑢𝑘 − 𝑢𝑘−1

∆𝑢𝑘+1 = 𝑢𝑘+1|𝑘 − 𝑢𝑘|𝑘

⋮
∆𝑢𝑘+𝑃+1

   (13) 

𝑌𝑘+1|𝑘
𝑜 =

 
 
 
 
 

𝐶𝑘Г𝑜𝑘 + 𝑔(𝑥𝑘|𝑘 , 𝑢𝑘−1, 𝑑𝑘|𝑘)

𝐶𝑘(Ф𝑘 + 𝐼)Г𝑜𝑘 + 𝑔(𝑥𝑘|𝑘 , 𝑢𝑘−1, 𝑑𝑘|𝑘)

⋮

𝐶𝑘  Ф𝑘
𝑃−𝑖Г

𝑜𝑘
+ 𝑔(𝑥𝑘|𝑘 , 𝑢𝑘−1, 𝑑𝑘|𝑘)𝑃

𝑖=1  
 
 
 
 

   (14) 

𝑆𝑘
𝑢 is the matrix of step response coefficients used only to 

represent the effect of future manipulated variables, and it 

can be obtained from 

𝑆𝑘
𝑢 =  𝐶𝑘Ф𝑘

𝑃−𝑖Г
𝑘

𝑃
𝑖=1               (15) 

𝑆𝑘
𝑢  is of dimension 𝑛𝑜 × 𝑛𝑖 , where 𝑛𝑜  is the number of 

outputs and 𝑛𝑖  is the number of inputs 

 

Calculation of control action 

The control signal is calculated by solving the quadratic 

program problem: 

min∆𝑈    𝑅𝑘+1|𝑘 − 𝑌𝑘+1|𝑘  
⋀𝑦

2
+  ∆𝑈 ⋀𝑢

2       (16) 

Subject to 

𝑢𝑘+𝑗
𝑙𝑜𝑤 ≤ 𝑢𝑘+𝑗 ≤ 𝑢𝑘+𝑗

𝑕𝑖𝑔𝑕
    𝑗 = 0, 𝑚 –  1        (17) 

−∆𝑢𝑘+𝑗
𝑚𝑎𝑥 ≤ ∆𝑢𝑘+𝑗 ≤ ∆𝑢𝑘+𝑗

𝑚𝑎𝑥     𝑗 = 0, 𝑚 –  1     (18) 

𝑦𝑘+𝑗 |𝑘
𝑙𝑜𝑤 ≤ 𝑦𝑘+𝑗 |𝑘 ≤ 𝑦𝑘+𝑗 |𝑘

𝑕𝑖𝑔𝑕
    𝑗 = 1, 𝑃        (19) 

Where 𝑅𝑘+1|𝑘  is the vector of future set-points 

(corresponding to the predicted output 𝑌𝑘+1|𝑘 ), and ⋀𝑦  and 

⋀𝑢  are tuning parameters. 

III.  WIENER MODEL BASED NONLINEAR MODEL 

PREDICTIVE CONTROL (WNMPC) 

A. Wiener Model Structure  

For the purposes of control system design, any nonlinear 

system as represented using equations (1) – (3), can be 

approximated using Wiener model. A Wiener model consists 
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of a dynamic linear element (LDE) in cascade with a static 

nonlinear part (NL), as shown in fig. 1.  

 

 

 

 

For the linear element, a state space description is used as 

follows: 

𝑥 𝑘 + 1 = 𝐴𝑥 𝑘 + 𝐵𝑢(𝑘) 

𝑧 𝑘 = 𝐶𝑥 𝑘 + 𝐷𝑢(𝑘)             (20) 

For the static nonlinear element, the polynomial function can 

be used 

𝑦(𝑘) = 𝑕 𝑧 𝑘  =  𝛼𝑗 𝑧
𝑗 (𝑘)𝑁

𝑗 =0           (21) 

It will be assumed here that the function 𝑕 has an inverse 

and thus can be approximated too using a polynomial 

function. 

 

B. Wiener based nonlinear model predictive control 

Algorithm 

In LMPC, the general optimization problem to be solved at 

every sampling instant is posed as equations (16) – (19). If 

the state vector at the present time and the future behaviour 

of the variables are assumed to be known, they can be 

written in a matrix form: 

𝑧 𝑘 = [𝑧𝑇  𝑘 + 1 … 𝑧𝑇  𝑘 + 𝑃 ]𝑇  

∆𝑈 𝑘 = [∆𝑢𝑇  𝑘 + 1 … ∆𝑢𝑇  𝑘 + 𝑀 ]𝑇  

𝑦 𝑘 = [𝑦𝑇  𝑘 + 1 … 𝑦𝑇  𝑘 + 𝑃 ]𝑇  

𝑟 𝑘 = [𝑟𝑇  𝑘 + 1 … 𝑟𝑇  𝑘 + 𝑃 ]𝑇  

Then, the predicted output for the linear model is  

𝑧  𝑘 = 𝛽∆𝑈 + 𝜉𝑥 𝑘 + 𝑑(𝑘)           (22) 

Where 

𝛽 =

 
 
 
 
 

𝐶𝑇𝐵 𝐷 0 0 0
𝐶𝑇𝐴𝐵 𝐶𝑇𝐵 𝐷 0 0
𝐶𝑇𝐴2𝐵 𝐶𝑇𝐴𝐵 𝐶𝑇𝐵 𝐷 0

⋮ ⋮ ⋮ ⋮ ⋮
𝐶𝑇𝐴𝑃−1𝐵 𝐶𝑇𝐴𝑃−2𝐵 𝐶𝑇𝐴𝑃−3𝐵 … 𝐶𝑇𝐴𝑃−𝑀𝐵 

 
 
 
 

, 

𝜉 =

 
 
 
 
 

𝐶𝑇𝐴
𝐶𝑇𝐴2

𝐶𝑇𝐴3

⋮
𝐶𝑇𝐴𝑃−1 

 
 
 
 

, And 𝑑 𝑘 = [𝑑(𝑘 + 1|𝑘) … 𝑑(𝑘 + 𝑃|𝑘)] 

Then, the predicted output for the complete model is  

𝑦  𝑘 =

 
 
 
 
 
 
𝑕 𝑧  𝑘 + 1  

𝑕 𝑧  𝑘 + 2  

𝑕 𝑧  𝑘 + 3  

⋮
𝑕 𝑧  𝑘 + 𝑃   

 
 
 
 
 

= 𝑕(𝑧 (𝑘))         (23) 

We now define some points related to the MPC structure: 

(1) Since the polynomial function h was assumed to be 

invertible, it is possible to write the desired signal referred to 

the output of linear model as transformation of the set point 

𝑟(𝑘) as, 

𝑟∗ 𝑘 = 𝑕−1(𝑟 𝑘 )               (24) 

(2) If  𝑦𝑘+𝑗 |𝑘
𝑕𝑖𝑔𝑕

 and  𝑦𝑘+𝑗 |𝑘
𝑙𝑜𝑤   are the upper and lower bounds for 

the output variables   𝑦𝑘+𝑗 |𝑘  , then these magnitudes can be 

translated to the linear model as 

 

𝑧𝑘+𝑗 |𝑘
𝑕𝑖𝑔𝑕

= 𝑕−1 𝑦𝑘+𝑗 |𝑘
𝑕𝑖𝑔𝑕

      

𝑧𝑘+𝑗 |𝑘
𝑙𝑜𝑤 = 𝑕−1 𝑦𝑘+𝑗 |𝑘

𝑙𝑜𝑤                (25) 

 

(3) Disturbances are typically handled by assuming that a 

step signal has entered at the output and that it will remain 

constant for all future time (𝑑 𝑘 = 𝑑 𝑘 + 𝑗 , 𝑗 = 1, … , 𝑃). 

In this case the step disturbance is computed: 

𝑑 𝑘 = 𝑕−1 𝑦𝑚 (𝑘)) − 𝑧 (𝑘)            (26) 

where 𝑧 (𝑘) is the current predicted output for the linear 

model and 𝑦𝑚 (𝑘) is the current measured output for the 

process. It is straightforward that introducing this bias in the 

error, as a perturbation, allows to remove any model errors 

offset in steady-state. 

 

Finally, the WNMPC can be posed as quadratic optimization 

problem (QP), 

min∆𝑈   𝑧  𝑘 − 𝑟∗(𝑘)  ⋀𝑦
2 +  ∆𝑈 ⋀𝑢

2        (27) 

subject to equation(22) and constraints (17), (18) and (28) 

𝑧𝑘+𝑗 |𝑘
𝑙𝑜𝑤 ≤ 𝑧𝑘+𝑗 |𝑘 ≤ 𝑧𝑘+𝑗 |𝑘

𝑕𝑖𝑔𝑕
    𝑗 = 1, 𝑃        (28) 

 

IV. EXAMPLES 

A. STIRRED-TANK REACTOR (CSTR) 

Process Description and modeling 

The process under consideration here is the constant volume 

continuous stirred-tank reactor in which an irreversible, 

exothermic reaction 𝐴 → 𝐵 occurs that is cooled by single 

coolant stream (see fig.2).  Interested reader should consult 

Cervantes et al. (2003), and Prakash and Srinivasan (2009) 

for more information about this process.  

 

 

 

 

 

 

 

 

 

 

 

 

The process is modeled by the following equations: 
𝑑𝐶𝐴 (𝑡)

𝑑𝑡
=

𝑞(𝑡)

𝑉
 𝐶𝐴𝑂 𝑡 − 𝐶𝐴(𝑡) − 𝑘𝑂𝐶𝐴(𝑡)𝑒𝑥𝑝  

−𝐸

𝑅𝑇(𝑡)
  (29) 

𝑑𝑇(𝑡)

𝑑𝑡
=

𝑞 𝑡 

𝑉
 𝑇𝑂 𝑡 − 𝑇 𝑡  −

 −∆𝐻 𝑘𝑂𝐶𝐴  𝑡 

𝜌𝑐𝑝
𝑒𝑥𝑝  

−𝐸

𝑅𝑇 𝑡 
 +

𝜌𝑐𝑐𝑝𝑐

𝜌𝑐𝑝 𝑉
𝑞𝑐(𝑡)  1 − 𝑒𝑥𝑝  

−𝑕𝐴

𝑞𝑐 𝑡 𝜌𝑐𝑝
   𝑇𝑐𝑜  𝑡 − 𝑇(𝑡)  ̀    (30) 

The measured concentration has a time delay 𝑡𝑑 = 0.5 𝑚𝑖𝑛 

modelled by  

𝐶𝐴𝑚𝑒𝑎𝑠
(𝑡) = 𝐶𝐴(𝑡 − 𝑡𝑑)             (31) 

The objective of the control system is to control the 

measured concentration of A, 𝐶𝐴  by manipulating the 

coolant flow rate  𝑞𝑐 . Process nominal operating data is 

displayed in Table 1. 

Fig.2:  Continuous stirred tank reactor  

 

qc, Tco 

CA 

T 

q,  CAo, To 

q,  CA, T 

Qremoved 

 

 

Fig.1:  Block representation of Wiener model 
 

            LDE 

 
         NL 

𝑢(𝑘) 𝑦(𝑘) 𝑧(𝑘) 
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Table 1: CSTR process data 

Product concentration CA 0.1 mol/l 
Reactor temperature T 438.54 K 

Coolant flow rate qc 103.41 l/min 

Process flow rate q 100 l/min 
Feed concentration CAo 1 mol/l 

Feed temperature To 350 K 

Inlet coolant temperature Tco 350 K 
CSTR volume V 100 l 

Heat transfer term HA 7 x 105cal/min K 

Reaction rate constant Ko 7.2 x 1010 l/min 
Activation energy term E/R 1 x 104 K 

Heat of reaction ∆H - 2 x 105cal/mol 

Liquid densities 𝜌 , 𝜌𝑐  1 x 105 g/l 

Specific heats 𝑐𝑝 ,𝑐𝑝𝑐  1 cal/g K 

 

Identification of the process 

The results of the identification experiment performed gives 

the linear dynamic element (LDE) of the wiener model as: 

 

𝑑𝐶𝐴

𝑑𝑡
𝑑𝑇

𝑑𝑡

 =  
−9.9839 −0.0467
1796.8 7.3112

  
𝐶𝐴

𝑇
 +  

0
−0.8772

 𝑞𝑐   (32) 

𝑧 =  1 0  
𝐶𝐴

𝑇
                 (33) 

The nonlinear static element and its inverse are plotted in 

fig.3 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Nonlinear predictive control system design 

The two techniques (SLNMPC and WNMPC) for designing 

nonlinear model predictive control system discussed in 

sections 2 and 3 respectively are employed to design 

predictive controllers for the CSTR. For the purpose of 

making comparison, linear model predictive controller is 

also designed for the same system. The designed controllers 

are implemented on a simulation model of the CSTR 

developed in MATLAB/SIMULINK. The MPC tuning 

parameters are shown in table 2. 

The simulation results as depicted in fig.4 show that 

SLNMPC has the best performance with fastest settling time 

both for the positive and negative set-point changes. 

WNMPC is the next in performance by exhibiting faster 

response than LMPC for a negative set-point change. 

However, LMPC response for a positive set-point change is 

better than that of a WNMPC. This is due to the fact that the 

system is being driven to higher gain region. 

The performance indices computed for each of the 

techniques as displayed in table 3 also indicates the 

superiority of SLNMPC over WNMPC and LMPC, having 

the least error.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
 

 

 

 

Table 2: MPC tuning parameters [ CSTR] 

⋀𝑦  – ⋀𝑢  5I – 0 

𝑃 – 𝑚 200 – 10 

𝑦𝑘+𝑗 |𝑘
𝑙𝑜𝑤  – 𝑦𝑘+𝑗 |𝑘

𝑕𝑖𝑔𝑕
 0 – 0.2 

𝑢𝑘+𝑗
𝑙𝑜𝑤  – 𝑢𝑘+𝑗

𝑕𝑖𝑔𝑕
 60 – 120 

 

Table 3: Performance indices [CSTR] 

 SLNMPC WNMPC LMPC 

IAE 1.3 2.4 3.4 

ITAE 263.4 500.7 749.0 

ITSE 9.8 17.3 25.4 

ISE 0.050 0.084 0.12 

. 

B. THREE-TANK-SYSTEM 

Process description and modeling 

The principal structure of the three tank plant considered 

here for study is shown in fig. 5 below (See Amira (2002) 

for detailed description). The controlled variables are the 

levels, 𝑕1 and 𝑕2 inside tanks 1 and 2. The level 𝑕3, in tank 

3, though not being controlled is to be maintained not to 

overflow or run dry. The maximum level of each tank is 62 

cm(+/- 1cm). Inflow, 𝑞1 of tank 1 and inflow 𝑞2 of tank 2 

are considered as the manipulated variables. 

 

 

 

 

 

 

 

 

 

 

 

 

The transient balance equations for all the tanks are:  

𝑆
𝑑𝑕1

𝑑𝑡
= 𝑞1 − 𝑞13                (34) 

Fig.4:  Process output and control effort for a set-point change 
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Fig.3:  Polynomial approximation for the CSTR 
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Fig.5:  Laboratory three- tank-system 
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𝑆
𝑑𝑕3

𝑑𝑡
= 𝑞13 − 𝑞32               (35) 

𝑆
𝑑𝑕2

𝑑𝑡
= 𝑞2 + 𝑞32 − 𝑞20             (36) 

where 𝑞𝑖𝑗 = 𝜇𝑖 . 𝑆𝑝 . 𝑠𝑖𝑔𝑛 𝑕𝑖 − 𝑕𝑗  .  2𝑔 𝑕𝑖 − 𝑕𝑗    (37) 

𝑞20 = 𝜇2. 𝑆𝑝 .  2𝑔𝑕2             (38) 

The state space model of the three tank system around the 

operating point shown in table 8 is: 

𝑥 = 𝐴𝑥 + 𝐵𝑢,   𝑦 = 𝐶𝑥            (39)        

where 

𝐴 =  
𝑎11 0 𝑎13

0 𝑎22 𝑎23

𝑎31 𝑎32 𝑎33

 ,𝐵 =  

1
𝑆 0

0 1
𝑆 

0 0

 ,  𝐶 =  
1 0 0
0 1 0

 , 

𝑎11 =
 −1

𝑆  .𝜇1 .𝑆𝑝 . 2𝑔.𝑠𝑖𝑔𝑛  𝑕1𝑜−𝑕3𝑜  

2  𝑕1𝑜−𝑕3𝑜  
, 

𝑎13 =
 1

𝑆  .𝜇1 .𝑆𝑝 . 2𝑔.𝑠𝑖𝑔𝑛  𝑕1𝑜−𝑕3𝑜  

2  𝑕1𝑜−𝑕3𝑜  
 

𝑎22 =
 − 1

𝑆  . 𝜇3. 𝑆𝑝 .  2𝑔. 𝑠𝑖𝑔𝑛 𝑕3𝑜 − 𝑕2𝑜 

2  𝑕3𝑜 − 𝑕2𝑜  

−
 1

𝑆  . 𝜇2 . 𝑆𝑝 .  2𝑔. 𝑠𝑖𝑔𝑛 𝑕2𝑜 

2  𝑕2𝑜  
 

𝑎23 =
 1

𝑆  . 𝜇3. 𝑆𝑝 .  2𝑔. 𝑠𝑖𝑔𝑛 𝑕3𝑜 − 𝑕2𝑜 

2  𝑕3𝑜 − 𝑕2𝑜  
 

 𝑎31 =
 1

𝑆  .𝜇1 .𝑆𝑝 . 2𝑔.𝑠𝑖𝑔𝑛  𝑕1𝑜−𝑕3𝑜  

2  𝑕1𝑜−𝑕3𝑜  
, 

𝑎32 =
 1

𝑆  .𝜇3 .𝑆𝑝 . 2𝑔.𝑠𝑖𝑔𝑛  𝑕3𝑜−𝑕2𝑜  

2  𝑕3𝑜−𝑕2𝑜  
 

𝑎33 =
 − 1

𝑆  . 𝜇1. 𝑆𝑝 .  2𝑔. 𝑠𝑖𝑔𝑛 𝑕1𝑜 − 𝑕3𝑜 

2  𝑕1𝑜 − 𝑕3𝑜  

−
 1

𝑆  . 𝜇3 . 𝑆𝑝 .  2𝑔. 𝑠𝑖𝑔𝑛 𝑕3𝑜 − 𝑕2𝑜 

2  𝑕3𝑜 − 𝑕2𝑜  
 

Table 4: Steady state operation table 

𝑕1𝑜 , 𝑕3𝑜 , 𝑕2𝑜  in cm 41.5, 26.5, 11.5 

Outflow coefficients, 𝜇1,  𝜇2,    𝜇3 (0 – 1) 

Area of tank (S1 to S3) in cm
2
 149 

Area of connecting pipes in cm
2
, SP 0.5 

 

Identification of the process 

The results of the identification experiment performed gives 

the linear dynamic element (LDE) of the wiener model as: 

 

𝑑𝑕1

𝑑𝑡
𝑑𝑕2

𝑑𝑡

 =  
−0.0112 0 0.0112

0 −0.0404 0.0112
0.0112 0.0112 −0.0224

  

𝑕1

𝑕2

𝑕3

 +  
0.0067 0

0 0.0067
0 0

  
𝑞1

𝑞2
    

 
𝑧1

𝑧2
 =  

1 0 0
0 1 0

  

𝑕1

𝑕2

𝑕3

               (40) 

The nonlinear element and its inverse are plotted in fig. 6. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Simulation and Experimental Results 

Again, predictive controllers were designed for the three-

tank plant by the three techniques, SLNMPC, WNMPC and 

LMPC, and implemented both on a simulated model of the 

three-tank and on an experimental set-up of the tank housed 

in our Process System Engineering Laboratory. The tuning 

parameters are displayed in Table 5. Figs.7-10 show the 

response of the process when the second output set-points 

have changed, while the first output is set to the nominal 

value 41.5cm. SLNMPC and WNMPC show similar and 

better performance than LMPC with shorter settling time. In 

addition to this, H1 reaction to set-point change in H2 is least 

for SLNMPC followed by WMPC. Performances indices are 

summarized in Tables 6 and 7. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig.6:  polynomial approximation for 𝒉𝟏 and  𝒉𝟐  
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Table 5: MPC tuning parameters [ three-tank-system] 

⋀𝑦  – ⋀𝑢  10I – 0.01 

𝑃 – 𝑚 8 – 1 

𝑦𝑘+𝑗 |𝑘
𝑙𝑜𝑤  – 𝑦𝑘+𝑗 |𝑘

𝑕𝑖𝑔𝑕
 0 – 63 

𝑢𝑘+𝑗
𝑙𝑜𝑤  – 𝑢𝑘+𝑗

𝑕𝑖𝑔𝑕
 0 – 100 

 

Table 7: Performance indices, three-tank, for the experimental results 

 SLNMPC WNMPC LMPC 

IAE 213.3 213.3 217.0 

ITAE 6.9e4 6.9e4 7.0e4 

ITSE 2.5e5 2.5e5 2.6e5 

ISE 760.4 760.4 797.5 

 

Table 6: Performance indices, three-tank, for the simulation results 

 SLNMPC WNMPC LMPC 

IAE 188.6 218.1 383.1 

ITAE 5.8e4 7.1e4 1.7e5 

ITSE 2.4e5 2.8e5 5.4e5 

ISE 772.4 898.7 1309 
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V. CONCLUSION 

In this paper two techniques of NMPC have been applied to 

control nonlinear processes and compared with that of 

LMPC. These two methods enjoy the advantage of having to 

solve a quadratic programming problem at each sampling 

instant compared to the original formulation of NMPC 

which results to non-convex nonlinear programming. Both 

the simulation results and results of real time 

implementation carried out on our experimental three-tank 

system show that there could be improvement in the 

performance of a process plant by appropriately applying 

NMPC. In all of the cases studied, NMPC outperforms the 

LMPC without excessive control actions. 
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Fig.7: Simulation result for set-point change in 𝒉𝟐 
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Fig.9:  Experimental result for set-point change in 𝒉𝟐 
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Fig.8:  Experimental result for set-point change in 𝒉𝟐 
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Fig.10:  Experimental result for set-point change in 𝒉𝟐 
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