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Abstract— The problem of input–output finite-time stabiliza-
tion of linear time-varying systems via dynamic output feedback
is tackled in this paper. Sufficient conditions are provided
in terms of Differential Linear Matrix Inequalities feasibility
problems, which can be solved numerically in an efficient way
by using off-the-shelf optimization tools, as illustrated by the
proposed examples.
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I. INTRODUCTION

The concept of input-output finite time stability (IO–FTS)

has been introduced in [2]; roughly speaking, a system is

defined to be IO–FTS if, given a class of norm bounded

input signals defined over a specified time interval T , the

outputs of the system do not exceed an assigned threshold

during T .

In order to correctly frame the definition of IO-FTS in

the current literature, we recall that a system is said to be

IO Lp-stable if for any input of class Lp, the system exhibits

a corresponding output which belongs to the same class [10,

Ch. 5]. The main differences between classic IO stability

and IO–FTS are that the latter involves signals defined over

a finite time interval, does not necessarily require the inputs

and outputs to belong to the same class, and that quantitative

bounds on both inputs and outputs must be specified. There-

fore, IO stability and IO–FTS are independent concepts.

Indeed, while IO stability deals with the behavior of a

system within a sufficiently long (in principle infinite) time

interval, IO–FTS is a more practical concept, useful to study

the behavior of the system within a finite (possibly short)

interval. Furthermore, it should be mentioned that sufficient

conditions for IO-FTS in the context of impulsive dynamical

systems has been recently provided in [3].

It is important to remark that the definition of IO-FTS

given in [2] is fully consistent with the definition of (state)

FTS given in [6], where the state of a zero-input system,

rather than the intput and the output, is involved.

For the sake of completeness, it should be mentioned that,

with respect to the one given in [2], a different concept

of IO–FTS for nonlinear systems has been given in [9]

extending the definition of finite-time stability given in [4]
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Via Claudio 21, 80125 Napoli, Italy.

to nonautonomous systems. In the latter works, the authors

focus on the Lyapunov stability analysis of nonlinear systems

whose trajectories converge to an equilibrium point in finite

time and on the characterization of the associated settling-

time. According to this definition of FTS, in [9] a different

concept of finite-time input-output stability is introduced. In

particular, the authors consider the case of nonautonomous

system with a norm bounded input signal over the interval

[0 +∞] and an initial condition x(0) = x0. The finite time

input-output stability is related to the property of a system

to have a norm bounded output whose bound, after a finite

time interval T , does not depend anymore on the initial

state. Hence, we can conclude that the concept of IO-FTS

introduced in [2] and the one in [9] are different.

In [2] sufficient conditions have been provided to check

if a given linear time-varying (LTV) system is IO-FTS.

Furthermore these conditions have been exploited to solve

the problem of input-output finite-time stabilization by means

of state feedback. In this paper we extend the work done [2]

by providing sufficient conditions for the input-output finite-

time stabilization of LTV systems via dynamic output feed-

back.

The results provided in this paper are stated in terms

of Differential Linear Matrix Inequalities (DLMIs, [11])

feasibility problem, which can easily casted in the Linear

Matrix Inequalities (LMIs, [5]) framework.

Our work is organized as follows. The next section intro-

duces the definition of IO–FTS and the problem of input-

output finite-time stabilization via dynamic output feedback.

The results provided in [2] are recalled in Section III. The

main contribution of this paper are given in Section IV, while

the effectiveness of the proposed approach is illustrated by

means of numerical examples in Section V. Eventually some

conclusive remarks are given.

II. PROBLEM STATEMENT

In this section we introduce the concept of IO-FTS and we

state the problem of IO finite-time stabilization via dynamic

output feedback.

The following notation is adopted in this paper.

Given a vector v ∈ R
m we will denote with |v|q its q-norm.

Given the set Ω = [t0, t0 + T ], with t0 ∈ R and T > 0, the

symbol Lp,q(Ω) denotes the space of vector-valued signals

for which

v ∈ Lp,q(Ω) =⇒

∫

Ω

|v(t)|pqdt < +∞ ,
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moreover Lp(Ω) = Lp,2(Ω).
Given a symmetric positive definite matrix-valued func-

tion R(·), bounded on Ω, and a signal s(·) ∈ Lp(Ω), the

weighted signal norm

(∫

Ω

[
s(τ)TR(τ)s(τ)

] p

2 dτ

) 1

p

,

will be denoted by ‖s(·)‖p ,R. If p = ∞ it is

‖s(·)‖∞ ,R = ess sup
t∈Ω

[
sT (t)R(t)s(t)

] 1

2 .

Let us consider a linear time-varying (LTV) system in the

form

ẋ(t) = A(t)x(t) +G(t)w(t) , x(t0) = 0 (1a)

y(t) = C(t)x(t) (1b)

where A(·) : R
+
0 7→ R

n×n, G(·) : R
+
0 7→ R

n×r, and

C(·) : R
+
0 7→ R

m×n, are piecewise continuous matrix-

valued functions.

Definition 1 (IO-FTS of Linear Systems): Given a posi-

tive scalar T , a class of input signals W defined

over Ω = [t0 , t0 + T ], a positive definite matrix-valued

function Γ(·) defined in Ω, system (1) is said to be IO-FTS

with respect to
(
W ,Γ(·) ,Ω

)
if

w(·) ∈ W ⇒ yT (t)Γ(t)y(t) < 1 , t ∈ ]t0 , t0 + T ] .

N

In particular, in this paper we consider two different

classes of input signals, which will require different analysis

and synthesis techniques, as it will be shown in Section IV.

Hence, let consider the following two cases:

i) the set W coincides with the set of norm bounded
square integrable signals over Ω = [t0 , t0+T ], defined
as

W2

(

Ω , R(·)
)

:=
{

w(·) ∈ L2(Ω) : ‖w‖2,R ≤ 1
}

.

ii) The set W coincides with the set of the uniformly
bounded signals over Ω = [t0 , t0 + T ], defined as

W∞

(

Ω , R(·)
)

:=
{

w(·) ∈ L∞(Ω) : wT (t)R(t)w(t) ≤ 1

t ∈ Ω
}

.

where R(·) denotes a positive definite symmetric matrix-

valued function.

Although the definitions of W2

(
Ω , R(·)

)

and W∞

(
Ω , R(·)

)
depend on the choice of Ω and R(·), in

the rest of the paper we will drop this dependency so as to

simplify the notation.

In Section IV we provide sufficient conditions to prove IO-

FTS for both the classes of input signals W2 and W∞. These

conditions will be then exploited to provide a solution to

the following design problem, namely the problem of input-

output finite-time stabilization via dynamic output feedback.

Problem 1: Consider the LTV system

ẋ(t) = A(t)x(t) +B(t)u(t) +G(t)w(t) , x(t0) = 0 (2a)

y(t) = C(t)x(t) (2b)

where u(·) is the control input and w(·) is the exogenous

input. Given a class of disturbances W defined over Ω, and a

positive definite matrix-valued function Γ(·) defined over Ω,

find a dynamic output feedback controller in the form

ẋc(t) = AK(t)xc(t) +BK(t)y(t) , (3a)

u(t) = CK(t)xc(t) +DK(t)y(t) (3b)

where xc(t) has the same dimension of x(t), such that the
closed loop system obtained by the connection of (2) and (3)
is IO-FTS with respect to

(
W ,Γ(·) ,Ω

)
. In particular, the

closed loop system is in the form
(

ẋ(t)
ẋc(t)

)

=

(

A+BDKC BCK

BKC AK

)(

x(t)
xc(t)

)

+

(

G
0

)

w(t)

=: ACL(t)xCL(t) +GCL(t)w(t) (4a)

y(t) =
(

C 0
)

xCL(t) =: CCL(t)xCL(t) (4b)

where all the considered matrices depends on time, even

when not explicitly written. N

III. PRELIMINARY RESULTS

The sufficient conditions for the IO-FTS of system (1)

originally presented in [2] are recalled in this section. These

conditions are then exploited in Section IV to solve Prob-

lem 1. As for the proofs of the following two theorems, the

reader can refer to [2].

Theorem 1 (IO-FTS of LTV systems for W2 inputs): If
there exists a continuously differentiable positive definite
solution P (·) such that

Ṗ (t) +A(t)TP (t) + P (t)A(t) + P (t)G(t)R−1(t)G(t)TP (t) < 0
(5a)

P (t) ≥ C(t)TΓ(t)C(t) (5b)

are satisfied in the time interval Ω, then the LTV system (1)

is IO-FTS with respect to
(
W2 ,Γ(·) ,Ω

)
. �

Theorem 2 (IO-FTS of LTV systems for W∞ inputs):

Let Γ̃(t) = tΓ(t). If there exists a continuously differentiable

positive definite solution P (·) such that (5a) and

P (t) ≥ C(t)T Γ̃(t)C(t) , ∀ t ∈ Ω (6)

are satisfied in the time interval Ω, then LTV system (1) is

IO-FTS with respect to
(
W∞ ,Γ(·) ,Ω

)
. �

It is worth to notice that the sufficient conditions stated

in theorems 1 and 2 can be readily casted in the DLMI

framework by applying Schur complements to (5a), as it is

shown in [2].

IV. MAIN RESULTS

In this section, we state the principal contribution of this

paper, i.e., two sufficient conditions for the IO finite-time

stabilization via dynamic output feedback of LTV systems,

when the two input classes W2 and W∞ are considered.

Theorem 3: Given the exogenous input w(t) ∈ W2,

Problem 1 is solvable if there exist two continuously dif-

ferentiable symmetric matrix-valued functions Q(·), S(·), a

nonsingular matrix-valued function N(·) and matrix-valued

functions ÂK(·), B̂K(·), ĈK(·) and DK(·) such that the
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following DLMIs are satisfied (the time argument is omitted

for brevity)


Θ11 Θ12 0
ΘT

12 Θ22 SG
0 GTS −R


 < 0 , t ∈ Ω (7a)



Ψ11 Ψ12 0
ΨT

12 Q QCT

0 CQ Γ−1


 ≥ 0 , t ∈ Ω (7b)

where

Θ11 = −Q̇+AQ+QAT +BĈK + ĈT
KBT +GR−1GT

Θ12 = A+ ÂT
K +BDKC +GR−1GTS

Θ22 = Ṡ + SA+ATS + B̂KC + CT B̂T
K

Ψ11 = S − CTΓC

Ψ12 = I − CTΓCQ

Proof. From Theorem 1 it readily follows that system (4)

is IO-FTS wrt (W ,Γ(·) ,Ω) if there exists a continuously

differentiable symmetric matrix-valued function P (·) such

that

Ṗ (t) +ACL(t)
TP (t) + P (t)ACL(t)

+ P (t)GCL(t)R
−1GCL(t)

TP (t) < 0 , t ∈ Ω (8a)

P (t) ≥ C(t)TΓ(t)C(t) , t ∈ Ω (8b)

Now let us define, according to [7],

P (t) =

(
S(t) M(t)

MT (t) U(t)

)
, P−1(t) =

(
Q(t) N(t)
NT (t) ⋆

)
,

Π1(t) =

(
Q(t) I
NT (t) 0

)
Π2(t) =

(
I S(t)
0 MT (t)

)
.

Note that, by definition, it is

S(t)Q(t) +M(t)NT (t) = I (9a)

Q(t)Ṡ(t)Q(t) +N(t)ṀT (t)Q(t)

+Q(t)Ṁ(t)NT (t) +N(t)U̇(t)NT (t) = −Q̇(t) (9b)

P (t)Π1(t) = Π2(t) (9c)

where equality (9b) can be easily derived by noticing that

Ṗ−1(t) = −P−1(t)Ṗ (t)P−1(t) .

We now prove that, with the given choice of P (t), condi-

tions (8) are equivalent to (7). Indeed, by pre- and post-

multiplying (8a)–(8b) by ΠT
1 (t) and Π1(t) respectively,

taking into account (9) and [1, Lemma 5.1], the proof follows

once we let1(
Q I
I S

)
> 0 (10a)

B̂K = MBK + SBDK (10b)

ĈK = CKNT +DKCQ (10c)

ÂK = ṠQ+ ṀNT +MAKNT + SBCKNT

+MBKCQ+ S
(
A+BDKC

)
Q . (10d)

1Time argument is omitted for brevity.

Note that (10a) does not need to be explicitly imposed since

it is implied by (7b). Furthermore, in order to invert (10) to

get the feedback system matrices, we need to preliminary

choose the value of N(t). The only constraint for N(t) to

be a non singular matrix. �

Remark 1 (Controller design): Assuming that the hy-

potheses of Theorem 3 are satisfied; in order to design the

controller, the following steps have to be followed:

i) Find Q(·), S(·), ÂK(·), B̂K(·), ĈK(·) and DK(·) such

that (7) are satisfied.

ii) Let M(t) = (I − S(t)Q(t))N−T (t).
iii) Obtain AK(·), BK(·) and CK(·) by inverting (10).

N

Note that Theorem 3 cannot be used for optimal designs.

Indeed, as far as IO finite–time stability and stabilization are

concerned, the Γ(·) matrix is an input of the problem.

Since the sufficient conditions for the IO-FTS of LTV

systems in Theorem 2 readily follow from that of Theorem 1,

mutatis mutandis, by letting Γ̃(t) = tΓ(t), the following

result can be easily derived.

Theorem 4: Given the exogenous input w(t) ∈ W∞,

Problem 1 is solvable if there exist two continuously dif-

ferentiable symmetric matrix-valued functions Q(·), S(·), a

nonsingular matrix-valued function N(·) and matrix-valued

functions ÂK(·), B̂K(·), ĈK(·) and DK(·) such that the

following DLMIs are satisfied


Θ11 Θ12 0
ΘT

12 Θ22 SG
0 GTS −R


 < 0 , t ∈ Ω (11a)



Ψ11 Ψ12 0
ΨT

12 Q QCT

0 CQ Γ̃−1


 ≥ 0 , t ∈ Ω (11b)

where the variable Θij have the same expression as in

Theorem 3 and

Ψ11 = S − CT Γ̃C ,

Ψ12 = I − CT Γ̃CQ .

�

V. NUMERICAL EXAMPLES

Two numerical examples are presented in this section in

order to show the effectiveness of the proposed approach. IO

finite-time stabilization via output feedback of LTV system

with respect to the W∞ and W2 input classes is tackled.

In both cases we consider the second order unstable LTV

system defined by

A =

(
0.5 + t 0.1
0.4 −0.3 + t

)
, B =

(
1
1

)
,

G =

(
1
1

)
, C =

(
1 1

)
. (12)
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Fig. 1. Weighted output for the uncontrolled LTV system (12) with
parameters in (13).
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Fig. 2. Weighted output for the controlled LTV system (12) with parameters
in (13).

Example 1: Let us first present the case of W∞ input

class, with the following list of parameters

R = 1 , Γ = 1 , Ω =
[
0 , 1

]
. (13)

Given the considered unstable LTV system, by means of

simulation among the all the possible real impulses in the

considered time interval, it turned out that the worst inputs

in the class W∞ are given by w(t) = ±1 for all t ∈ Ω.

Furthermore, given the parameters specified in (13), it turns

out that system (12) is IO finite-time unstable. The weighted

output for the uncontrolled system is shown in Fig. 1 when

w(t) = 1 for all t ∈ Ω is considered.

In order to recast the DLMI condition provided in Theo-

rem 4 in terms of LMIs, the matrix-valued functions Q(·) and
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1

Exogenous input of class W
2

Time [s]

w(t)

Fig. 3. Worst case exogenous input of class W2 for system (12) with
parameters in (14).
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Fig. 4. Weighted output for the uncontrolled LTV system (12) with
parameters in (14).
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Fig. 5. Weighted output for the controlled LTV system (12) with parameters
in (14).

S(·) have been assumed piecewise linear. In particular, the

time interval Ω is divided in n = T/Ts subintervals, hence

the time derivatives of Q(t) and S(t) have been considered

constant in each subinterval. It is straightforward to recognize

that such a piecewise linear functions can approximate a

generic continuous matrix-valued functions with adequate

accuracy, provided that the length of Ts is sufficiently small.

Exploiting standard optimization tools such as the Matlab

LMI Toolbox R© ([8]) or TOMLAB R© ([12]), it is possible

to find the matrix functions Ak(·) , Bk(·) , Ck(·) , Dk(·) that

verify the conditions of Theorem 4 and make the closed loop

system (4) IO–FTS wrt
(
W∞ , 1 , [0 , 1]

)
. Fig. 2 shows the

weighted output of the controlled system.

Example 2: Let us consider again system (12) and the

following IO-FTS parameters:

R = 1 , Γ = 0.1 , Ω =
[
0 , 1.5

]
. (14)

Furthermore, the input signal w(·) reported in Fig. 3, is the

one that in simulation turned out to be the worst W2 input

signal2.

Fig. 4 shows that the uncontrolled system is not IO-FTS.

Exploiting Theorem 3 and making the same assumptions

on the matrix-valued functions Q(·) and S(·) as in Exam-

ple 1, it is possible to IO finite-time stabilize system (12)

2As in Example 1, exploiting system linearity, there are two worst inputs

signals, since the signal w̃(t) = −w(t) gives the same weighted output
as w(t).
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wrt
(
W2 , 0.1 , [0 , 1.5]

)
via dynamic output feedback. The

correspondent weighted output is shown in Fig. 5.

CONCLUSIONS

In this paper sufficient conditions for IO finite-time stabi-

lization of LTV systems via dynamic output feedback have

been provided. The proposed results are stated in terms of

DLMI feasibility problems; such conditions can be efficiently

solved by using off–the–shelf optimization tools, as it has

been illustrated by means of numerical examples.
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