
Distributed Unmanned Ground Vehicle Navigation in Coordinate-Free and
Localization-Free Wireless Sensor and Actuator Networks

Guyu Zhang, Christian A. Duncan, Jinko Kanno and Rastko R. Selmic*

Abstract—We present a distributed algorithm for the naviga-
tion of an Unmanned Ground Vehicle (UGV) towards a set of
identified target nodes in coordinate-free and localization-free
wireless sensor and actuator networks. The navigation algorithm
proceeds in two phases: first, a node level is determined based
on a hop distance from the target nodes, which is accomplished
by the network nodes without the need for any UGV action; and
second, the UGV uses potential fields created by the network ac-
tuators to move towards the target nodes, requiring cooperation
between certain actuator nodes and the UGV. The hop distance
to the target nodes is used to control the main moving direction
while the potential field, which can be measured by listeners
on the UGV, is used to determine the UGV’s movement. The
major contribution of this paper is that the algorithm is fully
distributed compared to the existing results in the field, which is
suitable for real-time implementation. Meanwhile, the presenting
algorithm uses three actuators to generate a potential field, which
makes the algorithm more robust and flexible. A study on the
communication complexity of the algorithm is presented as well
as simulation examples that verify the presented algorithm.

I. INTRODUCTION

A Wireless Sensor and Actuator Network (WSAN) is a
distributed, self-organized system that consists of sensors and
actuators that are connected over wireless communication
links. Typical WSANs can be used in applications such as
home automation, intelligent traffic control, and cyber-physical
systems, which may have different quality of service (QoS)
requirements. Usually, these requirements are specified as
connection reliability, time varying delay and packet loss. Ap-
plications where a fully covered sensing domain is preferred,
such as in habitat monitoring and military surveillance, also
measure QoS based on the area coverage of the WSAN.

Unmanned Ground Vehicles (UGVs) are autonomous mo-
bile robotic platforms that can be employed in a remote and
inaccessible environment. Navigation of UGVs is a challeng-
ing problem, especially when expensive and energy consuming
localization modules such as GPS are not available. Predefined
maps or landmarks are usually used in UGV navigation. How-
ever, this information is not always available since WSANs
are usually deployed in remote and coordinate-free areas.
Moreover, these kinds of offline navigation methods use prior
data, making the UGV unable to adapt readily to the dynamic
changes of the environment.

In this paper, we explore the problem of distributed,
coordinate-free, and localization-free UGV navigation in the
WSAN covered area. To make our approach applicable to as
many areas as possible, we are not focusing on any specific

*Authors are with Louisiana Tech University, Ruston, Louisiana 71272,
USA.

Contact info: rselmic@latech.edu

sensing application, but instead study WSANs using equivalent
communication graphs. The underlying principle of interaction
between the UGV and WSAN is that the WSAN serves as
a medium to guide the UGV. As in [1], for simplicity, we
treat the network as an unweighted, undirected communication
graph, where two nodes in the network are connected by
an edge if and only if they can communicate directly. Hole
boundary nodes are located on the boundary of the coverage
hole. Buchart and Yao et al. [2], [3] propose centralized and
distributed algorithms to identify the coverage hole boundary
nodes, respectively. We consider the problem of a UGV
navigation to the hole boundary nodes, which is triggered after
the detection and identification of hole boundary nodes [2],
[1] and which occurs before the patching of the coverage
holes [3]. Since we treat the hole boundary nodes simply as
target destinations for the purpose of UGV navigation, this
problem can be generalized to any navigation of a UGV to a
pre-determined set of target nodes within a WSAN.

II. RELATED WORK

Batalin et al. [4] propose a localization-free navigation
method that proceeds in two phases. In the first phase, each
node calculates transition probabilities to determine the opti-
mal navigation direction. In the second phase, a more reliable
and accurate signal strength based method is employed to
drive the robot. As do we, Li et al. [5] use a hop-distance
metric based on the minimum number of hops as a measure
of a node’s distance from a given target. In [6], Chen et al.
propose a localized Delaunay triangulation based, distributed
guiding navigation protocol that allows for multiple paths and
multiple events in the network. Fu et al. [7] use a wireless
sensor network for indoor robot navigation, employing prior
knowledge of sensor positions to localize a robot’s position
and orientation by acquiring the information of pre-set radio
emission sensors. Chen et al. [8] propose a set of distributed
algorithms for in-network planning where sensor nodes whose
coordinates are known serve as landmarks for the navigation.
The algorithms ensure that each source node has at least
one safe route to the destination, which can be dynamically
changed.

While all the cited works use one sensor/actuator node as
the navigation beacon, the presenting algorithm uses three
actuators to generate a potential field to guide the navigation.

III. PROBLEM FORMULATION

To model our system, we make certain simplifying assump-
tions on the capabilities of the WSAN and the UGV:

2011 50th IEEE Conference on Decision and Control and
European Control Conference (CDC-ECC)
Orlando, FL, USA, December 12-15, 2011

978-1-61284-799-3/11/$26.00 ©2011 IEEE 7262

1. Nodes in the network are identical with regard to both
communication and actuation capabilities. Each node is
capable of producing an actuating signal with an amplitude
a at up to three distinct frequencies fk for k ∈ {1, 2, 3};

2. The WSAN is arbitrarily deployed in an obstacle-free
environment and sensor nodes are stationary after the
deployment;

3. Communication between nodes is symmetric, uniform and
constant where two nodes can always communicate if and
only if they are within distance rc;

4. The actuating model is omni-directional with actuation
range ra ≥ 2rc;

5. The UGV has sufficient control to move in a given direc-
tion, i.e., the UGV is a point mass as in [4] without any
kinematic dynamics.

6. The UGV can communicate with sensor nodes within
distance rc and is equipped with a set L of listener devices
capable of detecting actuator signals at frequencies fk
within distance ra;

7. The target node(s) are identified before the start of the
navigation algorithm at time t0.

At any instant in our algorithm, a subset of the nodes
in the network can be transmitting an actuation signal at a
given frequency. For time t, let Stk, for k ∈ {1, 2, 3}, be the
set of nodes currently transmitting at frequency fk. and let
St = ∪Stk be the set of all nodes currently actuating. From
our assumptions, each node i ∈ Stk can generate a radially
symmetric potential field Uik at frequency fk. For each node
i ∈ Stk, the potential field at each listener j ∈ L on the UGV,
is given by

U tijk = a · eij , (1)

where eij is the signal strength that listener j gets from node
i. Signal strength eij is inversely proportional to the path loss
(dij)

m [9], where dij is the distance from node i to listener
j and m is the path loss coefficient, usually m ≥ 1. For
simplicity, we assume eij = (dij)

−m. The combined potential
field at listener j for frequency fk is given by

U tjk =
∑
i∈St

k

U tijk = a
∑
i∈St

k

(dij)
−m (2)

From this real potential field, the UGV constructs an artificial
potential field at each listener, which it uses to navigate the
network, given by U tj =

∑
k 1/U tjk. In our current algorithm,

we ensure that at most one node is transmitting at a specific
frequency at any given time. Thus, U tj simplifies to

U tj =
∑
k

1

U tjk
=

1

a

∑
i∈St

(dij)
m. (3)

We place the listener devices on the UGV such that all (but
one) listeners j ∈ L are equally spaced at angles θj on
a circle centered around the remaining listener 0, as shown
in Fig. 1. We designate θ0 specially to indicate the center
of the circle. (For Cricket [10] systems, the precision of
distance measurement between nodes is 1-3 cm.) The number
of listeners and the radius ρ can be adjusted based on the

accuracy requirement for the control of the UGV. At time t,
the UGV determines its new relative moving direction θt by
finding the local minimum value among the potential fields
given by

θt = θj ,where U tj = min
j∈L

U tj (4)

If θt = θ0, then the UGV is assumed to have reached a local
minimum position.

0 ρ 0 ρ 0 ρ

Fig. 1. Arrays of listeners on the UGV.

The UGV moves step by step with predefined step size.
The step size is a tradeoff between accuracy and energy
consumption. In our simulation tests, we use the step size
that equals to ρ. For larger step size, the accuracy will be
lower, and the UGV will oscillate around the local minimum
of the potential field. However, in a sparse network where
sensor’s communication radius is much larger than ρ, it is not
energy efficient to make the small step size. Algorithms with
adjustable step size will be topics of future work.

IV. NAVIGATION ALGORITHMS

There are two sub-algorithms: a level assignment algorithm
and a UGV control algorithm.

A. Level Assignment Algorithm

The control algorithm requires that each node has a graph
theoretic notion of its distance to the target node(s), called the
hop distance. A hop is simply a communication link from one
node to another. Thus, the hop distance between two nodes is
equivalent to the smallest number of edges in all paths in the
communication graph between them.

We determine this value incrementally. For each node,
let the level assignment l represent the known shortest hop
distance from the node to any target node. Initially, l is 0
for all target nodes and infinite for all other nodes. As the
algorithm proceeds, a node adjusts its level assignment when-
ever it receives a message indicating a shorter hop distance,
subsequently transmitting its revised level assignment to all of
its neighbors. This process is similar to a distributed shortest
path problem from target nodes to all other nodes, where in
this case the weight of each edge equals one. Many distributed
shortest-path finding methods already exist [11], [12], [13], but
they focus more on providing algorithms to handle changes
in network topology. In this paper we do not consider link
or node failures since we assume that faulty nodes are the
reason for possible holes in the network coverage and they
have already been detected and identified. In the following
section, we will discuss that the assumption has little influence

7263

on UGV navigation. Thus, proposed algorithm is simpler than
the listed complex distributed shortest path algorithms. First,
we avoid loops in finding the minimum weights by using unit
weight for every edge; second, the message transmitted in the
algorithm is very simple, only the local level number itself;
third, we do not employ any techniques to detect changes in
the network, which is helpful for the time and energy savings
in the WSAN. Since the application domain considered here
is to navigate a UGV towards a single target hole consisting
of possibly many target nodes, we consider the entire set of
target nodes as a single target set. Algorithm 1 presents the
pseudo-code of the level assignment algorithm for the single-
target navigation problem.

Algorithm 1 Level Number Assignment Algorithm for Single-
Target WSAN
1: if node is target node then
2: l← 0; broadcast l
3: else
4: l←∞
5: end if{Initialization phase}
6: while time remaining do
7: lr ← the received level number from a neighbor
8: if l > lr + 1 then
9: l← lr + 1; broadcast l

10: end if
11: end while{Level number assignment}

The algorithm is straightforward and every node will eventu-
ally receive the correct level number under the assumption that
there are no topological changes in the communication graph.
What is essential and addressed in different manners in other
schemes is when to terminate the process. In our case, we are
more concerned with communication cost over performance
time. Therefore, we assume that we have an estimated bound
on the time it takes a single message to propagate from a
target node to every other node. In particular, we assume that
the time taken is O(D) where D is the distance to the farthest
node from the target in the graph. Clearly, D < n but it could
be significantly less in practice. We therefore have each node
run the level assignment process for some factor of D units of
time. In practice, this update can simply be a part of the regular
message retrieval system whereby the nodes can update their
level numbers as new information arrives.

We define the communication complexity as the maximum
number of messages transmitted during the execution as
in [11], [13], [14]. In this scenario, a message broadcast to
multiple neighbors counts as one underlying cost. Since Al-
gorithm 1 is event driven, messages are generated exclusively
when a level number changes. Therefore, the communication
complexity is asymptotically bounded by the maximum num-
ber of times that a level number changes. In [12], [13], the
authors discuss communication complexity for synchronous
communication models. In our distributed model, we look at
asynchronous communication resulting in the inevitability of
redundant messages because of potential transmission delays,
as can be found for example in [15, Chapter 5].

Suppose there are n nodes in the network, with k target

nodes. During the initialization phase of Algorithm 1, only
target nodes send a message, yielding a communication com-
plexity of O(1) for each target node and O(k) for all target
nodes. In the level number assignment phase of Algorithm 1,
the if-condition is always false for target nodes. For every non-
target node, the first new level value received must necessarily
be no more than n−k. Since each broadcast by a node occurs
exclusively when the level number decreases until reaching a
minimum of at least one, each node can therefore broadcast at
most n−k times. Thus, the total number of messages generated
is O(k+ (n−k) · (n−k)) or O(n2) where k is a constant. In
practice, particularly in coverage related problems, we expect
the graph to be sparse.

B. UGV Control Algorithm

The control algorithm we present here uses similar concepts
as in [16], which generates potential fields by a series of three
actuator nodes. In the centralized algorithms of [3], [16], the
sequence of the active actuator triplets is predetermined off-
line. We propose a distributed, on-line navigation algorithm
that proceeds in a series of steps. In each step, there are two
phases: a communication phase where the specific potential
field is determined for an intermediate target area, and a
step movement phase where the UGV moves through the
field towards this intermediate target area. The specific active
potential field is determined in the communication phase. In
the step movement phase, the UGV first calculates the next
moving direction based on Equation 4 and then moves by the
predefined step size in that direction, after which the UGV
calculates a new direction. When the UGV reaches a local
minimum of the potential field, the current step is completed
and the communication phase of the next step starts.

For control purposes, it is more flexible and robust to use
three actuator nodes at any given moment as opposed to a
single node. For example, in a real-time implementation we
can control the movement of the UGV in order to avoid
certain coverage areas by adjusting the amplitude of a in
Equation 1 independently for each actuator node. We use
three actuators since the fourth or more actuators are not
guaranteed can be found since we do not have any assumptions
on network topology. Meanwhile, there becomes a tradeoff
between the performance and the energy consumption and
frequency interference when using more actuators.

At the initial step and whenever the UGV reaches a local
minimum, the algorithm transits to the communication phase,
where it will assign a triplet of actuator nodes, labeled node
A, node B, and node C. To determine node B, the UGV
communicates with its neighbors to pick the one with the
lowest level number, for example node 2 in Fig. 2. When
there is more than one neighbor with the same lowest level
number, the UGV arbitrarily picks one of them. Once node B
is chosen, node B communicates with its own neighbors and
picks two neighbors to be nodes A and C. It is possible that
in the initial step the first node chosen for node B has only
one neighbor. However, as we show in the following section,
this condition is trivial.

7264

UGV
node 5, l = 8

node 4, l = 7

node 7, l = 9

node 6, l = 10

node 3, l = 6 (node C)

node 2, l = 7 (node B)

node 1, l = 7 (node A)

node 8, l = 8

Fig. 2. UGV navigation in a WSAN, where each node’s ID, level number
and connections are shown. At this step in the example, we have the potential
field generated by the triplet of actuator nodes A, B, and C, shown as circles,
which are assigned to nodes 1, 2, and 3 respectively.

From Algorithm 1, we know that node B, unless it is a
target node, has at least one neighbor that is at a level lower
than node B. In the UGV control algorithm, node B assigns
the role of node C to one of its lower leveled neighbors
and then arbitrarily picks one other neighbor as node A. The
triplet of actuator nodes A, B and C generates the current
active potential field for the following movement phase. For
simplicity, in the rest of the paper, we assume communication
between the UGV and the triplet of actuator nodes is done
primarily through node B. We now prove that when the UGV
arrives at the local minimum of the potential field, it is always
within distance rc of all three active actuators.

Lemma 1: Any local minimum point p of the potential field
is located in the area within distance rc of all three active
actuator nodes A, B and C.

Proof: Define dip to be the distance from node i to a
local minimum point p. Without loss of generality, we can set
a = 1 in Equation 3 making the combined potential field at
point p to be Up = (dAp)

m + (dBp)
m + (dCp)

m. Assume for
the sake of contradiction that our lemma is false and that p
lies outside the stated area. Then at least one of the distances
is larger than rc. First, let us assume that B is furthest from
p. Let q be a point infinitesimally closer to B on the ray
extending from p to B. That is, q = p + ε(B − p) for some
ε < 0. Observe that dqB < dpB . Now examine the triangle
formed by B, A and p. Since the edge from B to A has
length dBA ≤ rc and since the edge from B to p has length
dBp > rc, the angle at p must have value less than 90◦ as
edge BA cannot be the longest side. But this means that q lies
inside the circle centered at A of radius dAp, for sufficiently
small ε. Therefore, dAq < dAp. Similarly, we can show that
dCq < dCp. This implies then that Uq = (dAq)

m + (dBq)
m +

(dCq)
m < (dAp)

m+(dBp)
m+(dCp)

m = Up. This contradicts
the fact that p is a local minimum.

Now, let us assume that A is furthest from p, the case for
C being symmetric. Again let q = p + ε(A − p) be a point
infinitesimally closer to A. Using the property of the triangle

formed by A, B and p as before, we can show that dBq <
dBp. However, the case for node C is a bit trickier. If dAC ≤
rc, then we can again use the triangle argument to show that
dCq < dCp yielding the contradiction that Uq < Up. However,
it is possible that dAC > rc. We now look at the change in
the sum of the two distance terms associated with A and C
as we move from p towards A. That is, we consider ∆ =
(dAq)

m+(dCq)
m−(dAp)

m−(dCp)
m. Observe from our choice

of q, that dAq = dAp−x for some x infinitesimally close to 0
and that dCq ≤ dCp+x. Thus, let ∆ ≤ f(x) = (dAp−x)m+
(dCp+x)m−(dAp)

m−(dCp)
m. Clearly, f(0) = 0. If we look

at the first derivative of this function at 0, we see that f ′(x) =
m((dCp + x)m−1 − (dAp − x)m−1). Consequently, f ′(0) =
m((dCp)

m−1 − (dAp)
m−1) ≤ 0 since from our assumption

dAp ≥ dCp and m ≥ 1. This means that f(x) ≤ 0 for x
infinitesimally close to 0. So, we have Uq − Up = (dAq)

m +
(dBq)

m+(dCq)
m− (dAp)

m− (dBp)
m− (dCp)

m = (dBq)
m−

(dBp)
m + ∆. Since ∆ ≤ f(x) ≤ 0 and dBq < dBp, we have

that Uq − Up < 0 which again contradicts the fact that p was
a local minimum.

Lemma 1 guarantees that the UGV can always connect to
a lower level node after reaching the local minimal point.
That is, the next communication phase is guaranteed to pick
a new node B whose level number is at least as low as the
old node C for the next potential field. In general, when the
UGV ultimately reaches a target node, there exists a series of
nodes from high level nodes to the final level-0 node along the
UGV’s path that all acted as node B during certain step of the
UGV control. The fact that the UGV can always communicate
with node B also implies that it can detect the actuator signals
from all three active actuator nodes as the distance from the
UGV to the farthest of these three nodes is at most 2rc ≤ ra.

Based on Algorithm 1, every node except the level-0 node
identifies its own level number by adding 1 to the smallest
level number of its neighbors. For a degree-one node i, there
is no higher level neighbor existing. As the UGV always
travels from higher level nodes to lower level nodes, even if
the UGV detects node i in its vicinity during its navigation,
it always can pick another suitable node B with degree at
least two. Thus, the UGV is only forced to assign node i as
node B if the UGV is in the initial position of the navigation.
However, there are many ways to avoid this situation. For
example, for our original purpose of UGV navigation, the
UGV can deploy one node at the current position to act as
the third node needed to construct a potential field. Another
advantage of Lemma 1 is that the UGV can send a single
command to nodes A, B and C to turn the actuators off when
the current step is completed, which helps to conserve energy
in the network nodes. The pseudo-code of the UGV control
algorithm is shown in Algorithm 2. In the pseudo-code, we do
not include the process to choose nodes A, B and C, which
has been discussed earlier.

The communication complexity of the control algorithm
is fairly straightforward. At each phase, at most a constant
number of messages is transmitted from the UGV to establish
and turn on and off a triplet of actuator nodes at the current

7265

Algorithm 2 UGV control algorithm
1: {Code for the UGV}
2: repeat
3: broadcastMSG(“UGV request”); wait for response from all neighbors
4: select node B, the neighbor with the smallest level number
5: send message “UGV nB on” to B
6: receive node ids of A and C from B
7: repeat
8: listen for actuator signals from nodes A, B and C
9: calculate potential field at each listener

10: move towards the minimum in the potential field
11: until at a local minimum
12: send message “UGV off” to nodes A, B and C
13: until node B is a target node
14:
15: {Code for all network nodes}
16: turn off actuator
17: loop
18: m→ recvMSG()
19: if m == “UGV request” then
20: send message with level l to the UGV
21: else if m == “UGV nB on” then
22: broadcastMSG(“NB N” + l); wait for response from neighbors
23: select nodes A and C based on lowest level numbers received
24: send message “NB” to nodes A and C
25: send ids of A and C to the UGV; turn on actuator
26: else if m == “UGV off” then
27: turn off actuator
28: else if m == “NB” then
29: turn on actuator
30: else if m == “NB N” + B.l then
31: {B.l is the level number from sender}
32: if l < B.l then
33: send level number l to B
34: end if
35: end if
36: end loop

UGV location and each actuator node responds at most once to
this call. This means that there are O(D) messages transmitted
by the UGV and each node in the network transmits at most
O(1) messages, though in practice far fewer nodes will be
involved. Thus, the communication complexity is O(n).

Contrary to our initial assumptions, if the network topology
of the WSAN changes, it is possible for the UGV to be
jammed somewhere in the middle of navigation because a
lower level node cannot be found. Though we do not formally
cover this situation in this paper, it is possible to solve
this problem once some corrective algorithms (including the
algorithms we present in [3]) are triggered to start over again.
We leave this as future work.

V. SIMULATION RESULTS

A simulation testbed is built in Java, where the distributed
algorithms are implemented using multi-threads: each indi-
vidual node is designated a thread. The node is active only
when the corresponding thread is running. Although we do
not consider any communication delay models in this paper,
the test-bed simulates asynchronous working patterns based
on the properties of multi-threading. Messages might not be
received in proper sequence since we do not enforce the
running sequence of the threads, which inherently simulates
the communication delays to some extent. In the simulations,
we arbitrarily set one node as the destination node, arbitrarily

set the UGV somewhere on the outer boundary of the WSAN
and assume the navigation is complete once the UGV chooses
the destination node as node B. All the evaluation results are
plotted using MATLAB.

For illustrative purposes, in Fig. 3 we deploy a network
having a simple topology and highlight the path taken during
the UGV navigation in the WSAN. We designate the desti-
nation node with a star and the start and end positions of
the UGV with two black boxes. The dots and edges represent
network nodes, whose level numbers are also shown, and the
communication connections between them, respectively.

Fig. 3. Path taken by the UGV in the navigation.

We represent the overall network connections by network
density, where the density of the WSAN is calculated by
σ =

n×πr2c
Area [17] with n being the number of nodes and Area

being the area of the sensor field. In all of our simulations,
we use a fixed sensing area of size 800 × 600 and deploy
400 nodes. We alter the density by varying the value of
rc. To illustrate, consider a network in which the underlying
communication graph G is a plane graph such that every region
bounded by the edges of G, except the infinite region in the
plane, is an equilateral triangle with edge length rc. (The shape
of G is similar to the graph shown in Fig. 3.) Setting rc = 35

yields a network density of σ = 400(352)π
800·600 ≈ 3.2. We first

analyze the average number of messages sent by each node for
Algorithm 1 using different network densities; see Fig. 4. From
the results, we can see that even when the network density
is relatively high, the total number of messages sent is still
far less than n2, which indicates that Algorithm 1 should be
practical for coverage related applications.

To evaluate the UGV control algorithm, we first measure
the ratio R = d

d∗ as in [18], where d is the UGV’s actual
moving distance and d∗ is the length of the shortest path from
the starting point of the UGV through each of these minimum
points in succession. A value of R closer to 1 indicates better
accuracy. As we can see from the lower part of Fig. 5, the
accuracy is improved with more listeners. Meanwhile, values
of R do not change much with changes in network density.
To see the influence of network density on the UGV control
algorithm, with the same number of listeners on the UGV and

7266

0 5 10 15 20 25 30 35 0

20

40

600

5

10

15

20

25

30

35

40

45

50

aver
age

numb
er o

f ne
ighb

ors

network density

a
v
e
r
a
g
e

n
u
m
b
e
r

o
f

m
e
s
s
a
g
e

mean
75 percentile
25 percentile

Fig. 4. Average number of messages sent by each node in the level
assignment algorithm.

within the same network topology, we fix the start position of
the UGV while varying the network density in each simulation
trial. We calculate pi = di/

∑10
1 dj , where the numerator is

the total distances travelled in the network with density i;
denominator is the summation of all the travelled distances.
We carried 100 trials in each network topology and the value of
pi is shown in the upper part of Fig. 5. Given that the straight
line distance is almost the same since the start position and
destination are fixed in each trial, pi shows the percentage
of travelled distances in each network density. In general, the
UGV might travel longer distances in low density networks.
This is because the maximum level number might be larger
in lower density networks, which requires the UGV to adjust
more frequently in order to find the right moving direction.

6 7 8 9 10 11 12 13 14
1

1.1

1.2

1.3

1.4

1.5

1.6

1.7

1.8

R

network density

6 7 8 9 10 11 12 13 14
8.5

9

9.5

10

10.5

11

11.5

p
e
r
c
e
n
t

percent of sum(9 Listeners)
mean (6 listeners)
75/25 percentile(6 listeners)
mean (9 listeners)
75/25 percentile(9 listeners)

Fig. 5. Evaluation of the UGV moving algorithm.

VI. CONCLUSION AND FUTURE WORK

We presented a theoretical analysis and simulation verifica-
tion of a distributed UGV navigation algorithm in a coordinate-

free wireless sensor and actuator network environment. We
described algorithms for network hop-distance identification
as well as UGV control including comunication complexity
analysis. Future work will include multi-destination and multi-
UGV navigation problems. A node energy model will also be
formulated for consideration in the navigation path optimiza-
tion.

ACKNOWLEDGMENT

This work was partially funded by Louisiana Board of
Regents through PKSFI grant LEQSF(2007-12)-ENH-PKSFI-
PRS-03.

REFERENCES

[1] J. Kanno, J. Buchart, R. Selmic, and V. Phoha, “Detecting coverage
holes in wireless sensor networks,” in 17th Mediterranean conference
on Control and Automation, June 2009, pp. 452–457.

[2] J. G. Buchart, “Detecting coverage holes in wireless sensor networks,”
Master’s thesis, Louisiana Tech University, May 2008.

[3] J. Yao, G. Zhang, J. Kanno, and R. R. Selmic, “Decentralized detection
and patching of coverage holes in wireless sensor networks,” in Proc.
SPIE Defense and Security, vol. 7352, Orlando, FL, April 2009.

[4] M. A. Batalin, G. S. Sukhatme, and M. Hatting, “Mobile robot naviga-
tion using a sensor network,” in Proc. IEEE International Conference
on Robotics and Automation, vol. 1, 2003, pp. 636–641.

[5] Q. Li, M. DeRosa, and D. Rus, “Distributed algorithms for guiding nav-
igation across a sensor network,” in Proc. the 9th Annual International
Conference on Mobile Computing and Networking, 2003, pp. 313–325.

[6] P. Chen, W. Chen, and Y. Shen, “A distributed area-based guiding
navigation protocol for wireless sensor networks,” in Proc. IEEE In-
ternational Conference on Parallel and Distributed Systems, December
2008, pp. 647–654.

[7] S. Fu, Z. Hou, and G. Yang, “An indoor navigation system for au-
tonomous mobile robot using wireless sensor network,” in Proc. IEEE
International Conference on Networking, Sensing and Control, May
2009, pp. 227–232.

[8] D. Chen, B. Kumar, C. Mohan, K. Mehrotra, and P. Varshney, “In-
network path planning for distributed sensor network navigation in
dynamic environments,” in Proc. IEEE International Conference on
Mobile Ad Hoc and Sensor Systems, Octobor 2008, pp. 511–513.

[9] T. Rappaport, Wireless Communications: Principles & Practice. New
Jersey: Prentice-Hall, Inc, 1996.

[10] The cricket indoor location system. [Online]. Available:
http://cricket.csail.mit.edu/

[11] P. A. Humblet, “An adaptive distributed dijkstra shortest path algorithm,”
Massachusetts Institute of Technology, Laboratory for Information and
Decision Systems, Tech. Rep., 1988.

[12] P. Merlin, “Design and analysis of distributed routing algorithms,”
Master’s thesis, University of California, Santa Cruz, 1994.

[13] J. Spinelli, “Broadcasting topology and routing information in computer
networks,” Master’s thesis, Massachusetts Institute of Technology, May
1985.

[14] J. Tsitsiklis and G. Stamoulis, “On the average communication com-
plexity of asynchronous distributed algorithms,” Journal of the ACM,
vol. 42, no. 2, 1995.

[15] D. Bertsekas and R. Gallager, Data networks. Prentice-Hall, Inc, 1987,
ch. 5.2.4.

[16] J. Schiff, A. Kulkarni, D. Bazo, V. Duindam, R. Alterovitz, D. Song,
and K. Goldberg, “Actuator networks for navigating an unmonitored
mobile robot,” in Proc. of IEEE Conference on Automation Science and
Engineering, Washington DC, August 2008.

[17] H. Zhang and J. C. Hou, “Maximizing α-lifetime for wireless sensor
networks,” in Proc. of Third Int’l Workshop on Measurement, Modelling
and Performance Analysis of Wireless Sensor Networks, July 2005.

[18] G. Zhang, C. Duncan, J. Kanno, and R. R. Selmic, “Unmanned ground
vehicle navigation in coordinate-free and localization-free wireless sen-
sor and actuator networks,” in Proc. 2010 IEEE Multi-conference on
Systems and Control, Yokohama, Japan, September 2010.

7267

