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Abstract— This paper investigates the state estimation prob-
lem for stochastic nonlinear differential systems with multi-
plicative noise. Our purpose is to combine the noise filtering
properties of the Extended Kalman Filter with the global
convergence properties of high-gain observers. We propose
an observer-based algorithm and provide conditions under
which a bound on the estimation error can be guaranteed.
Simulations show that this algorithm reveals to be more efficient
than the Extended Kalman Bucy filter for systems with large
measurement errors.

I. INTRODUCTION

This work considers the filtering problem for nonlinear
stochastic differential systems described by the Itô equations:

dxt = φ
(
xt
)
dt+ g(xt)(utdt+ FdW 1

t ), x0 = x̄,

dyt = h(xt)dt+GdW 2
t , y0 = 0, a.s.,

(1)

defined on a probability space (Ω,F ,P), where xt ∈ IRn is
the state vector, yt ∈ IRq is the measured output, ut ∈ IRs
is a known deterministic input, dW 1

t ∈ IRs and dW 2
t ∈

IRq are independent standard Wiener processes with respect
to a family of increasing σ-algebras

{
Ft, t ≥ 0

}
(i.e.,

the components of vectors dW 1
t and dW 2

t are a set of
independent standard Wiener processes). φ : IRn 7→ IRn, g :
IRn 7→ IRn×s and h : IRn 7→ IRq are smooth nonlinear maps.
The initial state x̄ is an F0-measurable random variable,
independent of both dW 1

t and dW 2
t . In order to avoid

singular filtering problems, see [6], the standard assumption
of nonsingular output-noise covariance is made here, i.e.
rank(GGT ) = q.

It is well known that the minimum variance state estimate
requires the knowledge of the conditional probability density,
whose computation, in the general nonlinear case, is a
difficult infinite-dimensional problem (see, e.g., [7], [27]).
Only in few cases the optimal filter has a finite dimension,
[26]. For this reason a great deal of work has been made to
devise suboptimal implementable filtering algorithms (see,
e.g., [11], [15], [16], [19], [20], [21]).

Another approach consists in considering the time dis-
cretization of the original system and then to apply sub-
optimal filtering procedures like the well-known Extended
Kalman Filter (EKF), the most widely used algorithm in

F. Cacace is with Università Campus Bio-Medico di Roma, Via Álvaro
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nonlinear filtering problems (see, e.g., [2], [12], [17], [23]),
or more recent techniques like particle filters (see [25]), the
Unscented Kalman Filter (UKF) (see [24]), Gaussian sum
approximations (see [22]), or polynomial filters (see [9], [10],
[18]).

In this paper an observer-based algorithm is proposed
for the state estimation problem of system (1). High gain
observers based upon such idea were proposed in [1], [3],
[8]. The common denominator is that the correction gain is
computed offline. More recently, an adaptive gain observer
has been proposed in [5]. We extend these approaches to
the case of multiplicative state noise by means of a fixed
high-gain Luenberger-like observer. The main contribution
of this paper is a result on the boundedness of the estimation
error, that illustrates sufficient conditions required by a
high-gain observer to be effective in this context. To our
knowledge, this is the first result of this kind for stochastic
nonlinear systems with multiplicative state noise. In this note,
theoretical results concern the case of scalar outputs, that is
yt ∈ IR. The extension to the comprehensive case of multi-
output (q > 1) is a work in progress by the same authors.

Numerical simulations show the effectiveness of the pro-
posed methodology and the improvements with respect to
the standard Kalman-Bucy Filter applied to the linear ap-
proximation of the stochastic nonlinear system, in terms of
the reduction of the mean square estimation error.

II. PRELIMINARY RESULTS

The proposed observer is inspired by the one developed
in [13] and [14]. Therefore, according to the same notation,
we define Q(x) the Jacobian of the observability map Θ(x):

Q(x) =
dΘ

dx
, Θ(x) =


h(x)
Lφh(x)

...
Ln−1
φ h(x)

 (2)

with Lkφh(x) denoting the Lie derivative of order k ≥ 0 of the
scalar function h(x) along the vector field φ(x), recursively
defined as:

L0
φh(x) = h(x), Lkφh(x) =

dLk−1
φ h

dx
φ(x). (3)

For what follows it is useful to introduce the following
definition.
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Definition 1. System (1) is said to have a strong k relative
degree property if:(

d

dx
Liφh(x)

)
g(ξ) = 0, ∀x, ξ,∈ IRn, 0 ≤ i ≤ k − 2

(4)
and(

d

dx
Lk−1
φ h(x)

)
g(ξ) 6= 0, for some x, ξ,∈ IRn (5)

•
Remark 2. Notice that Definition 1 is a stronger property

than the usual k relative degree property, which requires
conditions (4-5) hold true for x = ξ. Nevertheless, there
are many significant cases that satisfy it, such as the case of
g(x) ≡ ḡ, ∀x, a constant function.

•
Lemma 1. Assume that system (1) has a full (k = n)

strong relative degree property, and define zt = Θ(xt)
according to the observability map defined in (2). Then, the
differential dzt can be written as:

dzt =
(
Abzt +BbL

n
φh(xt)

)
dt+BbLgL

n−1
φ h(xt)(utdt+

FdW 1
t ) +

1

2
Bb

s∑
i=1

FTi g
T (xt)Hφh(xt)g(xt)Fidt

(6)
where Fi is the i-th column of matrix F , Ab and Bb are
Brunowski matrices of size n

Ab =

[
0(n−1)×1 In−1

0 01×(n−1)

]
, Bb =

[
0(n−1)×1

1

]
(7)

and Hφh(xt) is the Hessian of Ln−1
φ h(xt), that is:

[Hφh(x)](i,j) =
∂2

∂xi ∂xj
Ln−1
φ h(x), i, j = 1, . . . , n. (8)

Proof. By applying the Itô formula, according to the
Kronecker formalism (cfr. [19]), it is:

dzt =

(
(∇x ⊗Θ)

∣∣∣
xt

(
φ(xt) + g(xt)ut

)
+

1

2

(
∇[2]
x ⊗Θ

)∣∣∣
xt
g̃2(xt)

)
dt+(∇x ⊗Θ)

∣∣∣
xt
g(xt)FdW

1
t

(9)
with:

g̃2(xt) =

s∑
i=1

(
g(xt)Fi

)[2]
= g[2](xt)F0, F0 =

s∑
i=1

F
[2]
i ,

(10)
and the differential operator ∇[i]

x ⊗ applied to a generic
function f : IRn 7→ IRp is defined as follows:

∇[0]
x ⊗f = f, ∇[i+1]

x ⊗f = ∇x⊗
(
∇[i]
x ⊗f

)
, i ≥ 1, (11)

with ∇x = [∂/∂x1 · · · ∂/∂xn] and ∇x⊗ f the Jacobian of
the vector function f (see [19] for more details).

Note that, by suitably exploiting the observability map
definition (2), it is:(

∇x ⊗Θ
)∣∣∣
xt
φ(xt) = Abzt +BbL

n
φh(xt), (12)

and, accordingly, by suitably exploiting the full relative
degree hypotheses, it is:(

∇x ⊗Θ
)∣∣∣
xt
g(xt) = BbLgL

n−1
φ h(xt), (13)

where, given a scalar function χ : IRn 7→ IR, it is:

Lgχ(x) =
dχ

dx

[
g1 · · · gs

]
=
[
Lg1

χ(x) · · · Lgsχ(x)
]
,

(14)
with gi the i-th column of g. It has to be stressed that
equation (13) is achieved without using the strong full
relative degree property, but just the standard one. The strong
full relative degree property will be required in the following.
Indeed, rewrite the second order derivative term in (9) as
follows:(
∇[2]
x ⊗Θ

)∣∣∣
xt
· g[2](xt)

=
(
∇x ⊗ (∇x ⊗Θ)

)∣∣∣
xt
·
(
g(xt)⊗ g(xt)

)
=

[(
∇x ⊗

(
∇x ⊗Θ(x)

))
·
(
g(ξ)⊗ g(ξ)

)]
x=xt
ξ=xt

(15)
This way, by formally applying the following Kronecker
product property (A⊗B) · (C ⊗D) = (A ·C)⊗ (B ·D) to
eq.(15), it is:(

∇[2]
x ⊗Θ

)∣∣∣
xt
· g[2](xt)

=

[(
∇x · g(ξ)

)
⊗
((
∇x ⊗Θ(x)

)
· g(ξ)

)]
x=xt
ξ=xt

(16)
with

(
∇x · g(ξ)

)
⊗ the differential operator (shortly denoted

by ∇gx⊗ in the following), which applied to a function η(x) :
IRn 7→ IRn×s is such that:

∇gx ⊗ η =
[
∇g1
x ⊗ η · · · ∇gsx ⊗ η

]
(17)

with:

∇gix ⊗ η =

n∑
j=1

gji
∂η

∂xj
. (18)

Then, according to the strong full relative degree property,
it is:(

∇x ⊗Θ(x)
)
· g(ξ) = Bb

(
d

dx
Ln−1
φ h(x)

)
g(ξ) (19)

so that, by taking into account that ∇gx⊗ does not differen-
tiate g(ξ), it is:[
∇gix ⊗

((
∇x ⊗Θ(x)

)
· g(ξ)

)]
x=xt
ξ=xt

= Bb

n∑
j=1

gji(xt)

[
∂

∂xj

d

dx
Ln−1
φ h(x)

]
x=xt

g(xt)

= Bbg
T
i (xt)Hφh(xt)g(xt)

(20)
By exploiting the following property involving the stack of
suitably sized matrices

st(A ·B · C) =
(
CT ⊗A

)
· st(B) (21)
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it is:(
∇[2]
x ⊗Θ

)∣∣∣
xt
g̃2(xt)

= Bb
[
gT1 Hφhg · · · gTs Hφhg

]
F0

= Bb

st

 gT1 Hφhg1 · · · gTs Hφhg1
...

. . .
...

gT1 Hφhgs · · · gTs Hφhg1

T

F0

= Bb

(
st
(
gTHφhg

))T
F0 = BbF

T
0 st
(
gTHφhg

)
= Bb

s∑
i=1

(
FTi ⊗ FTi

)(
gT ⊗ gT

)
st(Hφh)

= Bb

s∑
i=1

(
FTi g

T (xt)
)[2]

st(Hφh(xt))

(22)
Finally, by exploiting again (21), it is:(
∇[2]
x ⊗Θ

)∣∣∣
xt
g̃2(xt) = Bb

s∑
i=1

st
(
FTi g

THφhgFi)

= Bb

s∑
i=1

FTi g
THφhgFi

(23)

which completes the proof.
•

III. THE OBSERVER-BASED STATE ESTIMATOR

The state estimator, x̂t, proposed for system (1) obeys the
following differential equations:

dx̂t = φ(x̂t)dt+ g(x̂t)utdt

+
1

2
Q−1

(
x̂t
)
Bb

s∑
i=1

FTi g
T (x̂t)Hφh(x̂t)g(x̂t)Fidt

+Q−1
(
x̂t
)
K
(
dyt − h(x̂t)dt

)
(24)

with Q the Jacobian of the observability map Θ, defined in
(2). The main result is the proof that there exists a bound to
the state estimate error, in the mean square sense.

Theorem. Assume the following hypotheses are satisfied:
H1 the observability map zt = Θ(xt) defined in (2) is a

global diffeomorphism, with the inverse map Θ−1(·)
globally Lipschitz, with Lipschitz coefficient γθ;

H2 system (1) has a strong full (i.e. equal to n) relative
degree;

H3 functions LgiL
n−1
φ h(x) are bounded in the mean square

sense, that is: there exists a positive constant γ1 such
that

max
i=1,...,s

sup
x
IE
[
‖LgiLn−1

φ h(x)‖2
]
≤ γ1 (25)

H4 functions Lnφh(x), LgLn−1
φ h(x) and gT (x)Hφh(x)g(x)

are globally Lipschitz, with Lipschitz coefficients γ2, γ3

and γ4, respectively;
H5 ut is uniformly bounded, that is: there exists a positive

constant UM such that

sup
t≥0
‖ut‖2 ≤ UM . (26)

Then, there exists a gain vector K ∈ IRn×1 such that the
observer defined by (24) has a bounded error (in the mean
square sense), that is: there exists a positive constant L such
that

IE
[
‖xt − x̂t‖2

]
≤ L. (27)

Proof. Define the following observer of zt as:

dẑt =
(
Abẑt +BbL

n
φh
(
Θ−1(ẑt)

)
+BbLgL

n−1
φ h

(
Θ−1(ẑt)

)
ut

)
dt

+
1

2
Bb

s∑
i=1

FTi g
T
(
Θ−1(ẑt)

)
·Hφh

(
Θ−1(ẑt)

)
g
(
Θ−1(ẑt)

)
Fidt

+K(dyt − Cbẑtdt),

(28)

where Cb = [1 0 · · · 0] ∈ IR1×n. According to hypothesis
H2, Lemma 1 holds true and allows to write the differential
equation for the error εt = zt − ẑt as:

dεt=
(
Ab −KCb

)
εtdt+Bb∆ε(zt, ẑt, ut)dt

+BbLgL
n−1
φ h

(
Θ−1(zt)

)
FdW 1

t −KGdW 2
t ,

(29)

where the following notation has been adopted for the sake
of simplicity:

∆ε(zt, ẑt, ut) = Lnφh
(
Θ−1(zt)

)
+ LgL

n−1
φ h

(
Θ−1(zt)

)
ut

+
1

2

s∑
i=1

FTi g
T
(
Θ−1(zt)

)
Hφh

(
Θ−1(zt)

)
g
(
Θ−1(zt)

)
Fi

−
(
Lnφh

(
Θ−1(ẑt)

)
+ LgL

n−1
φ h

(
Θ−1(ẑt)

)
ut

+
1

2

s∑
i=1

FTi g
T
(
Θ−1(ẑt)

)
Hφh

(
Θ−1(ẑt)

)
g
(
Θ−1(ẑt)

)
Fi

)
.

(30)
According to the Brunowski matrices definition, Ab and Bb
constitute an observable pair, so that matrix K can be set
in order to choose negative real and distinct eigenvalues for
Ab −KCb. Denote such a spectrum as {λi, i = 1, . . . , n},
and define ε̃t = V (λ)εt, where V (λ) is the Vandermonde
matrix

V (λ) =

λn−1
1 · · · λ1 1
...

. . .
...

...
λn−1
n · · · λn 1

 (31)

By definition, V (λ) is a coordinate transformation ma-
trix, which diagonalize Ab − KCb, that is Λ =
diag{λ1, . . . , λn} = V (λ)(Ab − KCb)V

−1(λ) so that,
according to (29) the ε̃t dynamics is given by:

dε̃t = Λε̃tdt+ 1∆ε(zt, ẑt, ut)dt

+1LgL
n−1
φ h

(
Θ−1(zt)

)
FdW 1

t − V (λ)KGdW 2
t ,
(32)
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where 1 = [1 1 · · · 1]T is the n-dimensional column vector
of ones. Then, the integral equation associated to (32) is:

ε̃t = eΛtε̃0 +

∫ t

0

eΛ(t−τ)1∆ε(zτ , ẑτ , uτ )dτ

+

s∑
i=1

∫ t

0

eΛ(t−τ)1LgiL
n−1
φ h

(
Θ−1(zτ )

)
FdW 1

τ,i

−
∫ t

0

eΛ(t−τ)V (λ)KGdW 2
τ

(33)
where W 1

t,i, i = 1, . . . , s, is the i-th component of vector
W 1
t . Since dW 1

t and dW 2
t are uncorrelated, the expected

value of the square norm of ε̃t can be written as

IE
[
‖ε̃t‖2

]
= IE

[
ε̃Tt ε̃t

]
≤ IE

[∥∥eΛtε̃0
∥∥2
]

+2IE

[∥∥eΛtε̃0
∥∥ · ∫ t

0

∥∥eΛ(t−τ)1∆ε(zτ , ẑτ , uτ )
∥∥dτ]

+IE

[ ∫ t

0

∫ t

0

∥∥eΛ(t−τ)1∆ε(zτ , ẑτ , uτ )
∥∥

·
∥∥eΛ(t−θ)1∆ε(zθ, ẑθ, uθ)

∥∥dτdθ]
+IE

[
s∑
i=1

∫ t

0

∥∥eΛ(t−τ)1LgiL
n−1
φ h

(
Θ−1(zτ )

)
F
∥∥2
dτ

]

+

∫ t

0

∥∥eΛ(t−τ) V (λ)KG
∥∥2
dτ.

(34)
Let us take into account the terms in the right hand side of
(34). As for the first term, it is:

IE
[∥∥eΛtε̃0

∥∥2
]
≤ e2λM tIE

[
‖ε̃0‖2

]
, (35)

where λM denotes the largest eigenvalue of Λ.
As for the second term in the right hand side

of eq.(34), note that hypotheses H1 and H4
imply that Lnφh

(
Θ−1(z)

)
, LgL

n−1
φ h

(
Θ−1(z)

)
and

gT
(
Θ−1(z)

)
Hφh

(
Θ−1(z)

)
g
(
Θ−1(z)

)
are Lipschitz with

Lipschitz constants γ2γθ, γ3γθ and γ4γθ, respectively.
Indeed:∣∣Lnφ(Θ−1(z1)

)
− Lnφ

(
Θ−1(z2)

)∣∣ ≤ γ2γθ‖z1 − z2‖ (36)

and analogously for the other two functions. Then, according
also to hypothesis H5, it is

‖∆ε(zt, ẑt, ut)‖ ≤ γ∆‖εt‖2 (37)

with

γ∆ = γθ

(
γ2 + γ3UM +

γ4

2

s∑
i=1

‖Fi‖2
)
. (38)

Then:

2IE

[∥∥eΛtε̃0
∥∥ · ∫ t

0

∥∥∥eΛ(t−τ)1∆ε(zτ , ẑτ , uτ )
∥∥∥ dτ]

≤ 2IE

[
eλM t‖ε̃0‖

∫ t

0

eλM (t−τ)
√
nγ∆‖V −1(λ)‖·‖ε̃τ‖dτ

]
≤
√
nγ∆‖V −1(λ)‖eλM t

∫ t

0

eλM (t−τ)

·
(
IE
[
‖ε̃0‖2

]
+ IE

[
‖ε̃τ‖2

])
dτ

≤
√
nγ∆‖V −1(λ)‖eλM t

(
1−eλMt

|λM | IE
[
‖ε̃0‖2

]
+

∫ t

0

eλM (t−τ)IE
[
‖ε̃τ‖2

]
dτ

)
≤
√
nγ∆‖V −1(λ)‖eλM t

(
IE
[
‖ε̃0‖2

]
|λM |

+

∫ t

0

eλM (t−τ)IE
[
‖ε̃τ‖2

]
dτ

)
,

(39)
where the property 2‖a‖ · ‖b‖ ≤ ‖a‖2 + ‖b‖2 has been used.

As for the third term of eq.(34), it is:

IE

[ ∫ t

0

∫ t

0

∥∥eΛ(t−τ)1∆ε(zτ , ẑτ , uτ )
∥∥

·
∥∥eΛ(t−θ)1∆ε(zθ, ẑθ, uθ)

∥∥dτdθ]
≤
∫ t

0

∫ t

0

eλM (t−τ)eλM (t−θ)nγ2
∆‖V −1(λ)‖2

·IE
[
‖ε̃τ‖ · ‖ε̃θ‖

]
dθdτ

≤ nγ2
∆‖V

−1(λ)‖2
2

∫ t

0

∫ t

0

eλM (t−τ)eλM (t−θ)

·
(
IE
[
‖ε̃τ‖2

]
+ IE

[
‖ε̃θ‖2

])
dθdτ

≤ nγ2
∆‖V −1(λ)‖2 1−eλMt

|λM |

∫ t

0

eλM (t−τ)IE
[
‖ε̃τ‖2

]
dτ

≤ nγ2
∆‖V

−1(λ)‖2
|λM |

∫ t

0

eλM (t−τ)IE
[
‖ε̃τ‖2

]
dτ.

(40)
As for the fourth term of eq.(34), according to hypothesis

H3, it is:

IE

[
s∑
i=1

∫ t

0

∥∥∥eΛ(t−τ)1LgiL
n−1
φ h

(
Θ−1(zτ )

)
F
∥∥∥2

dτ

]

≤
∫ t

0

ne2λM (t−τ)‖F‖2
s∑
i=1

IE
[∥∥LgiLn−1

φ h
(
Θ−1(zτ )

)∥∥2
]
dτ

≤ sγ1n‖F‖2
∫ t

0

e2λM (t−τ)dτ ≤ sγ1n‖F‖2

2|λM |
,

(41)
and, finally,for the fifth term of eq.(34), it is:∫ t

0

∥∥eΛ(t−τ) V (λ)KG
∥∥2
dτ ≤ ‖V (λ)KG‖2

2|λM |
. (42)
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By using inequalities (35,39-42) and re-arranging the
terms, we have:

IE
[
‖ε̃t‖2

]
≤ eλM t

(
eλM t +

√
nγ∆‖V −1(λ)‖
|λM |

)
IE
[
‖ε̃0‖2

]
+
(√

nγ∆e
λM t +

nγ2
∆‖V −1(λ)‖2

|λM |

)
·
∫ t

0

eλM (t−τ)IE
[
‖ε̃τ‖2

]
dτ +

sγ1n‖F‖2 + ‖V (λ)KG‖2

2|λM |
.

(43)
Note that, by denoting β(t) = e−λM tIE

[
‖ε̃t‖2

]
, it is:

β(t) ≤ α1 + α2e
−λM t + α3

∫ t

0

β(τ)dτ (44)

with
α1 =

(
1 +

√
nγ∆‖V −1(λ)‖
|λM |

)
IE
[
‖ε̃0‖2

]
α2 =

sγ1n‖F‖+ ‖V (λ)KG‖2

2|λM |

α3 =
√
nγ∆e

λM t +
nγ2

∆‖V −1(λ)‖2

|λM |

(45)

By appropriately using one of the available integral inequal-
ities (see for example Theorem 1.3 in [4], pag. 3) we have
the following implication:

β(t) ≤ α1 + α2e
−λM t +

∫ t

0

(
α1 + α2e

−λMs
)
e

∫ t
s
α3dτds

= α1 + α2e
−λM t +

α1

(
eα3t−1

)
α3

+ α2

α3+λM

(
e(α3+λM )t − 1

)
e−λM t,

(46)
from which

IE
[
‖ε̃t‖2

]
≤ α1e

λM t + α2 + α1

α3

(
eα3t − 1

)
eλM t

+ α2

α3+λM

(
e(α3+λM )t − 1

)
.

(47)

Now, if α3 + λM < 0, we finally have

IE
[
‖ε̃t‖2

]
≤ α1 + α2 +

α1

α3
+

α2

|α3 + λM |
(48)

Notice that the requirement α3 +λM < 0 is equivalent to

√
nγ∆

(
1 +

√
nγ∆‖V −1(λ)‖2

|λM |

)
+ λM < 0, (49)

and since it is possible (see [13]) to fix λM and choose
the remaining eigenvalues λi in order to have ‖V −1(λ)‖
arbitrarily close to 1, the left-hand side of (49) can assume
any prescribed negative value. This way it is shown that there
exists a bound for IE

[
‖ε̃t‖2

]
, eq.(48), and, therefore, the zt-

observer defined in (28) has a bounded error in the mean
square sense, with bound given by:

IE
[
‖εt‖2

]
≤ ‖V −1(λ)‖2

(
α1 + α2 +

α1

α3
+

α2

|α3 + λM |

)
(50)

The xt-observer it is defined by coupling eq.(28) with x̂t =
Θ−1(ẑt). Then, since Θ−1(·) is Lipschitz, it is

IE
[
‖xt − x̂t‖2

]
≤ γ2

θIE
[
‖zt − ẑt‖2

]
≤ L (51)

with

L = γ2
θ‖V −1(λ)‖2

(
α1 + α2 +

α1

α3
+

α2

|α3 + λM |

)
. (52)

To complete the proof we show that the xt-observer
equations are given by (24). Indeed:

dx̂t =
dΘ−1

dz

∣∣∣∣
z=Θ(x̂t)

· dẑt. (53)

Since:

dΘ−1

dz

∣∣∣∣
z=Θ(x̂t)

=

[
dΘ

dx

]−1 ∣∣∣∣
x̂t

= Q−1(x̂t), (54)

it is:

dx̂t = Q−1(x̂t)
(
AbΘ(x̂t) +BbL

n
φh(x̂t)

+BbLgL
n−1
φ h(x̂t)ut

)
dt

+
1

2
Q−1(x̂t)Bb

s∑
i=1

FTi g
T (x̂t)Hφh(x̂t)g(x̂t)Fidt

+Q−1(x̂t)K
(
dyt − CbΘ(x̂t)dt

)
.

(55)
By suitably exploiting the full relative degree property, it is:

Q(x)φ(x) = AbΘ(x) +BbL
n
φh(x) (56)

Q(x)g(x) = BbLgL
n−1
φ h(x) (57)

so that the xt-observer equations (24) are readily obtained.
•

IV. EXAMPLE

Let us consider the following nonlinear stochastic system,
which is a version of the Michaelis-Menten model in phar-
makokinetics

dx1,t =

(
−k1x1,t +

vmx2,t

km + x2,t

)
dt

dx2,t = −
(

vmx2,t

km + x2,t

)
dt+ utdt+ FdW 1

t

dyt =
√
k2 + x2

1,tdt+GdW 2
t ,

(58)

where k1 = 0.1, k2 = 1.0, km = 5.0, and vm = 10.0 are
positive parameters. The input function is ut = 5(1 + sin t).
From the system equations it is readily seen that the Jacobian
of the observability map is nonsingular for x1,t 6= 0 and that
system (58) has a strong full relative degree property, since
g(x) = [0 1]T and Lgh(x) = (dh/dx) g(x) = 0. Moreover,

FgT (xt)Hφh(xt)g(xt)F =
∂h(xt)

∂x1,t

(
−2F 2vmkm
(km + x2,t)3

)
(59)

We have run 100 simulations in the time interval [0, 100]
for several choices of noise parameters using the Euler-
Maruyama method, with the integration step dt = 5 · 10−3.
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F G λM µo ± so µKB ± sKB 102 · (µo − µKB)/µKB

0.25 3 −4 · 10−2 0.366 ± 0.113 0.385 ± 0.141 -4.73 %
0.25 5 −2 · 10−2 0.658 ± 0.232 0.866 ± 0.334 -25.79 %
0.25 7 −1 · 10−2 0.909 ± 0.338 1.123 ± 0.415 -19.58 %
0.5 3 −5 · 10−2 0.887 ± 0.260 0.911 ± 0.284 -2.70 %
0.5 5 −4 · 10−2 1.251 ± 0.382 1.353 ± 0.494 -7.55 %
0.5 7 −2 · 10−2 1.423 ± 0.500 1.686 ± 0.655 -15.57 %

TABLE I
MEAN SQUARE ESTIMATION ERROR WITH STANDARD DEVIATION FOR THE PROPOSED OBSERVER-BASED ESTIMATE (µo) AND THE EKBF (µKB )

The performance of the observer is compared with an Ex-
tended Kalman-Bucy filter (EKBF) comparing the mean of
the squared estimation error (MSE)

µx =
1

N + 1

N∑
k=0

‖ xtk − x̂tk ‖2 (60)

with N = tmax/dt, and results are shown in Table I.
In these simulations the observer and the EKBF have

a fixed initial state x̂0 = [10, 10]T , whereas the initial
condition of the system is chosen around the point [5, 3]
by adding a random variables with mean 0 and variance
1,x0 = [5 + n(0, 1), 3 + n(0, 1)]T . The third column in
Table I reports the maximum eigenvalue used to compute
the observer gain. The impact of the initial transient is not
included, since the MSE is computed only for time instants
t > 10. Results of Table I focus on situations with a high
measurement noise and a medium state noise, since in these
cases the high-gain observer behaves better than the EKBF.

V. CONCLUSIONS AND FUTURE WORKS

We have analyzed the conditions under which a bound on
the estimation error can be provided by a high-gain observer.
From the simulations reported in the previous section we
may draw several conclusions. A high-gain nonlinear ob-
server displays good performance when the ratio between
measurement and state noise is high. Even if in several cases
the performance improvement over a EKBF is moderate or
questionable, the observer consistently produces a smaller
variance of the MSE in all the scenarios. The estimate error
is thus less sensitive to the initial conditions and to the
specific realization of the stochastic system with respect to
an EKBF. The high-gain observer behaves much better in
the transient phase and it can thus be useful for systems for
which transient situations are frequent.

A promising approach that we are currently investigating
is to use a fixed high-gain observer to provide a starting
estimate to a filter in charge of evaluating the displacement
of the stochastic system from the observer estimate.
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