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Abstract— This paper presents a nonlinear adaptive control
strategy based on the Wiener model for control of the Neuro-
Muscular Blockade in anesthesia. The structure combines the
inversion of the static nonlinearity present in the Wiener model
with a pole-placement controller for the linearized system.
The overall strategy exploits identification of a minimally
parameterized model for the description of the effect of the
muscle relaxant atracurium in the NeuroMuscular Blockade.
An Extended Kalman Filter was developed for that purpose,
providing estimates of the model parameters for both the linear
controller and the blocks where the inversion of the static
linearity is performed. Simulations were run in a database of
100 patients simulated with the standard physiologically-based
pharmacokinetic/pharmacodynamic model for the NeuroMus-
cular Blockade. The results show that the nonlinear adaptive
controller performs well regarding reference following and
tackles changes in the patient’s dynamics. Noisy scenarios were
also simulated to test the robustness of the proposed strategy.

I. INTRODUCTION

Regardless of the field of application, the development of
any control strategy comprises several main tasks, namely,
system modeling, design of a control law, implementation
and validation. Having a good mathematical model of the
system becomes more and more important as the complexity
of the system to be controlled increases. In biomedical
applications, due to the strong parameter variability from
patient to patient this requirement is particularly demanding.
Moreover, since the patient dynamics may change during the
time-course of the control action, an adaptive control strategy
is a natural choice when dealing with control of a particular
human response to external or internal excitation.

This paper presents a nonlinear adaptive control strategy,
based on the Wiener model, for control of the NeuroMuscular
Blockade (NMB) in anesthesia. The Wiener model consists
of linear dynamics in cascade with a static nonlinear function
[1]. In the anesthesia field this structure is frequently present
when modeling the effect of drug administration in the
human body e.g. for the NMB or the Bispectral Index (BIS).
According to this structure an initial dynamic mixing of
the administered drug is present in the different theoretical
compartments of the human body [2], being followed by a
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static transduction from the concentration of the drug in the
effect site to the observed clinical effect [3]. Even though
nonlinear, some advantages result from the fact that the
nonlinearity is static. In particular, in controllers for Wiener
type models a common strategy is to apply the inverse of
the nonlinearity to the reference signal and to the measured
output signal, and to design linear controllers for the obtained
signals afterwards [4]. The main contribution of this paper
presents a combination of this structure with adaptivity. The
overall strategy also exploits the recursive identification of
a new minimally parameterized model for the effect of the
muscle relaxant atracurium in the NMB [5], [6]. This is
of central importance since the excitation properties of the
input (atracurium dose profile) are known to be poor and the
number of output datapoints (NMB measurements) is small.
Good results are expected to be achieved with this strategy
since the main drawback of identifying and controlling an
overparameterized model is not present.

Section II describes the NMB minimally parameterized
model used for the system modeling and the identification
strategy, an Extended Kalman Filter (EKF). Section III
presents the main features of the adaptive control strategy
while section IV shows the results of running the proposed
strategy in a database of 100 simulated patients. Section V
draws the conclusions.

II. THE MODEL AND THE IDENTIFICATION
ALGORITHM

A. The minimally parameterized model for the NMB

A Single Input Single Output (SISO) nonlinear Wiener
model (Fig. 1) describing the effect of the muscle relaxant
atracurium in the NMB is presented here. It should be
emphasized that the choice of this model with a minimal
number of parameters to model the relationship between the
drug and the measured effect is crucial for the success of
the present adaptive control strategy [5], [6]. Moreover the
units of the input and output in this minimally parameterized
model comply with the standard clinical units [7].

The linear dynamic part of the model was first constructed
in continuous-time and then sampled with a zero-order hold
strategy [8] which enables the derivation of an EKF algo-
rithm to estimate the underlying continuous-time parameters
to be used by the adaptive controller.

In the frequency domain, the linear part of the model may
be summarized by the transfer function

Y m
l (s, α) =

k1 k2 k3 α
3

(s+ k1 α)(s+ k2 α)(s+ k3 α)
U(s), (1)
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Fig. 1. The nonlinear Wiener model. The signal ym
l

is not available for
measurement.

where Y m
l (s, α) is the Laplace transform of the continuous-

time output yml (t, α) of the linear dynamic part of the
model and U(s) is the Laplace transform of the input
signal u(t) in Fig. 1. Here the parameter α to be identified
describes the inter-patients’ dynamics variability. Aiming for
the best modeling, the parameters ki, {i = 1, 2, 3} must be
chosen, noting that k1 = 1 needs to hold to get a unique
parameterization. A brute force search on the available real
database was performed in [9]. The combination k2 = 4 and
k3 = 10 was the one that minimized the normalized error
between the real and the simulated NMB signals for all cases
in the real database. The constants k2 and k3 are fixed to 4
and 10, respectively, in all simulations that give rise to the
results of this paper.

The static nonlinearity is modeled by the Hill equation [7]

r : (γ, yml (t, α)) ∈ ]0,+∞[× [0,+∞[

7−→ ym(t) = r(γ, yml (t, α)) ∈ ]0, 100] ,

where

r(γ, yml (t, α)) =
100Cγ

50

Cγ
50 + (yml (t, α))γ

. (2)

Here γ is the parameter to be identified; r(·, ·) is a
known static nonlinear function; ym(t) is the output of
the nonlinearity; yml (t, α) is the continuous-time output of
the linear dynamic part of the model (1); and C50 is a
normalizing constant that is kept constant during simulations,
similarly to [5].

Due to the Wiener model cascade structure, and as stressed
in [1], only the product of the small signal static gains of
the two cascaded blocks is important from an input-output
point of view. Noting that the linear part (1) contributes with
a unity gain for the whole system, the differential static gain
must be estimated by the parameter γ to be adapted in the
nonlinear part (2). At the same time, γ adapts the shape
or nonlinear static differential gain of (2). The parameter
vector to be identified in the EKF structure is then selected
as θ = [α γ] T . Hence only two parameters are estimated.

B. Identification: the EKF algorithm

In order to implement the model structure (1), (2) in the
EKF algorithm, the continuous-time representation (1) was
sampled using a zero-order hold method [8].

The discrete-time model becomes
{

x(kh+ h) = Φ(α)x(kh) + Γ(α)u(kh)
yml (kh, α) = C(α)x(kh)

, (3)

where
Φ(α) = eA(α)h

Γ(α) =
∫ h

0
eA(α)s dsB(α)

. (4)

Here, u(kh) ∈ R is the input (piecewise constant
atracurium dose), x(kh) ∈ R

3×1 is the discrete-time state-
vector, yml (kh, α) ∈ R is the discrete-time output of the
linear block, Φ(α) ∈ R

3×3 and Γ(α) ∈ R
3×1 are the

sampled system matrices, and A(α) ∈ R
3×3 and B(α) ∈

R
3×1 are the continuous-time system matrices. Note that the

k′is, {i = 1, 2, 3} are not shown explicitly in (3) since they
are fixed in the simulations, prior to (2). Due to the fact that
in the surgery environment, data from NMB is monitored and
acquired every 20 seconds to ensure that all the nerve fibers
are recruited every time a electrical stimulation is performed,
the zero-order hold method is applied using h = 1/3 min−1.

The sampling does not affect the nonlinear block, hence
(2) can be used as it is. The model output is then given by:

ym(kh) = r(γ, yml (kh, α)) =
100Cγ

50

Cγ
50 + (yml (kh, α))γ

. (5)

To describe the EKF, the underlying general discrete-time
nonlinear model is assumed to be

x̂(t+ 1) = f(t, x̂(t), u(t)) + g(t, x̂(t)) v(t)

ŷ(t) = h(t, x̂(t)) + e(t) , (6)

where v(t) and e(t) are mutually independent Gaussian white
noise sequences with zero means and covariances R1(t)
and R2(t), respectively. The EKF algorithm can then be
summarized as follows (cf. e.g. [10]):

H(t) =
∂h(t, x)

∂x

∣

∣

∣

∣

x=x̂(t|t−1)

K(t) = P (t|t− 1)HT (t)

× [H(t)P (t|t− 1)HT (t) +R2(t)]
−1

x̂(t|t) = x̂(t|t− 1) +K(t)[y(t)− h(t, x̂(t|t− 1))]

P (t|t) = P (t|t− 1)−K(t)H(t)P (t|t− 1)

x̂(t+ 1|t) = f(t, x̂(t|t), u(t))

F (t) =
∂f(t, x)

∂x

∣

∣

∣

∣

x=x̂(t|t)

(7)

G(t) = g(t, x)
∣

∣

x=x̂(t|t)

P (t+ 1|t) = F (t)P (t|t)FT (t) +G(t)R1(t)G
T (t)

To enable the estimation of the model parameters with the
EKF, a coupled identification model is defined. The model
merges the sampled model (3) and a random walk model for
the parameter estimates [11]. The resulting augmented state
vector (denoted by x) becomes

x(kh) = [x1(kh) x2(kh) x3(kh) α(kh) γ(kh)]
T . (8)

Using (8), the extended state-space model is the following:

x̂(kh+ h) =

[

Φ(α̂(kh)) 03×2

02×3 I

]





x̂(kh)
α̂(kh)
γ̂(kh)



+

+

[

Γ(α̂(kh))
02×1

]

u(kh) +





vx(kh)
vα(kh)
vγ(kh)




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≡







f1(kh, x̂(kh), u(kh))
...

f5(kh, x̂(kh), u(kh))






+ v(kh)

≡ f(kh, x̂(kh), u(kh)) + v(kh) , (9)

ŷm(kh) =
100C

γ̂(kh)
50

C
γ̂(kh)
50 + (C(α̂(kh))x̂(kh))γ̂(kh)

+ e(kh)

≡ h(kh, x̂(kh)) + e(kh) , (10)

C(·) = [C(·) 0 0] . (11)

In the EKF algorithm structure (7) it is necessary to
linearize both f(t, x) and h(t, x). The linearization of
f(kh, x̂(kh), u(kh)) in (9) was performed analytically. The
formula for F (kh) is not shown here due to its complexity.
The linearization of h(kh, x̂(kh)) in (10) was performed
numerically in order to reduce the computational complexity
of the calculations:

H(kh) =
h(kh, x̂(kh) + ∆x̂(kh))− h(kh, x̂(kh))

∆x̂(kh)
,

where ∆x̂(kh) is the step for the differentiation and is chosen
to be small.

III. THE ADAPTIVE CONTROLLER

A. Structure

The structure of the adaptive controller proposed in this
paper is shown in Fig. 2 and comprises three main tasks that
are performed by order at each time step: online identification
of the model parameters by the EKF, inversion of the nonli-
nearity using the current estimate of the nonlinear parameter
and linear adaptive control. The use of the online identified
model parameters to linearize the Wiener model and to
calculate the linear control law determines the adaptivity
nature of this controller.

Fig. 2. Adaptive controller for the NMB minimally parameterized Wiener
model.

B. Inversion

Both the measured NMB from the patient (output y) and
the reference value yref are first inverted through r−1(·, ·)
[4] using the current estimate of γ provided by the EKF
identification block. It should be stressed that r(·, ·) is a
bijective function and both y and yref in Fig. 2 lay inside

[0, 100] as consequence of monitoring restrictions of the
NMB in the clinical practice. Moreover, as a result of a
projection algorithm in the EKF structure [5], γ̂ is also lower-
bounded. Due to this, and considering the domains affecting
r(·, ·) (2), no problems arise in this inversion. Ideally, when
γ is accurately estimated and no disturbances are present,
r(γ̂, ·) is a perfect model of the static nonlinearity and the
loop becomes linear. The static nonlinearity of the system
is then canceled exactly by r−1(γ̂, ·) which means that the
output of the linear block of the Wiener system appears
directly as input for the linear controller. The linear part
of the controller is therefore designed to control the output
of the linear dynamic part of the Wiener type system as
if there was no static nonlinearity. For the linear control a
continuous-time pole placement strategy with integral action
is used [4]. This allows the linearized control error to be
regulated away. This then also regulates away differences
between the reference yref and the output y since the same
inverting function is applied to both these signals.

C. Linear Control Design

According to (1), and following the notation in [4], pp.
93, the patient continuous-time linear dynamics is given by

A(s) ŷml (t) = B(s)u(t) + w(t) , (12)

where A(s) = (s + k1 α)(s + k2 α)(s + k3 α), B(s) =
k1 k2 k3 α

3, and w(t) is a disturbance. The idea is to require
that the response from the command signal ŷrefl (t) (here
being the linear reference signal to be followed) to the output
ŷml (t) be described by the dynamics

Am(s) ŷml (t) = Bm(s) ŷrefl (t) . (13)

with Am(s) = (s+ pm1)(s+ pm2)(s+ pm3) and Bm(s) =
bm0 since deg Am(s) = deg A(s) and deg Bm(s) = deg
B(s).

The admissible control laws enabling the achievement of
such requirements are given by [4], pp. 93,

R(s)u(t) = T (s) ŷrefl (t)− S(s) ŷml (t) . (14)

In order to design such a causal control law, a factorization
of B(s) must be performed as B(s) = B+(s)B−(s), where
B+(s) is a monic polynomial whose zeros are stable and
B−(s) corresponds to unstable or poorly damped factor
that cannot be canceled. Due to the fact that there are
no process zeros to be canceled in (12), B+(s) = 1 and
B−(s) = B(s). Since deg B(s) = deg Bm(s) = 0,
Bm(s) = β B(s) where β = Am(0)/B(0). The closed-
loop characteristic polynomial is Ac(s) = Ao(s)Am(s) with
Ao(s) = (s + po1)(s + po2), and the Diophantine equation
to be solved with respect to the unknowns R(s) and S(s)
becomes [4], pp. 94,

A(s)R(s) +B(s)S(s) = Ac(s) = Ao(s)Am(s) . (15)

As in [12], and since the adaptive controller applies
the same inverting transformation to the measured output
y and to the reference value yref , the controlled output
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will approach any constant reference setpoint provided that
the controller has integral action, and that the closed loop
remains stable. To enforce stability in practice, the closed-
loop poles are kept in the stable region by a parameter
projection into the set of stable models, cf. e.g. [1]. The
condition of having integral action in the controller aims
to regulate away any static error that may be present in
the controlled signal ŷml (t). This static error regulation is
captured by assuming that the disturbance w(t) in (12) is
generated by Ad(s)w(t) = e(t), where e(t) is continuous-
time white noise and Ad(s) = s. In terms of pole placement
controller design this means that an additional stable closed-
loop pole X(s) = s + x0 has to be added to the adaptive
controller structure [4], pp. 124. The new polynomial R0(s)
will be given by R0(s) = Ad(s)R

0′(s). Hence, if R(s) and
S(s) are solutions to (15),

R0(s) = X(s)R(s) + Y (s)B(s) (16)

S0(s) = X(s)S(s)− Y (s)A(s) (17)

will satisfy [4], pp. 123,

A(s)R0(s) +B(s)S0(s) = X(s)Ac(s) . (18)

From (16) it follows that

R0(s) = sR0′(s) = (s+ x0)R(s) + y0 B(s) , (19)

with x0 to be chosen and Y (s) = y0 obtained by making
s = 0 in (19):

y0 = −
x0 R(0)

B(0)
. (20)

Inserting X(s) and y0 into (16) and (17) the new controller
is found. The complete control law is then given by

R0(s)u(t) = T (s) ŷrefl (t)− S0(s) ŷml (t) , (21)

resulting in a closed-loop system of order 6.

D. Anti-windup

Due to the nature of the problem to be solved, u(t) must
be nonnegative and below a predefined maximum umax.
Moreover, knowing that controllers with integral action may
perform poorly in the presence of actuators that saturate [4],
pp. 128, the control law (21) was further augmented with an
anti-windup strategy (depicted in Fig. 2). Rewriting (21) in
the observer form and describing the saturation in the input
as

ū(t) =











0, if u(t) < 0

u(t), if 0 ≤ u(t) ≤ umax ,

umax, if u(t) > umax

(22)

the control law avoiding windup is then given by [4], pp.
456,

A0(s)u(t) = T (s) ŷrefl (t)− S0(s) ŷml (t) (23)

+(A0(s)−R0(s))ū(t) .

The control law (23) was discretized using the zero-order
hold method in [8] to obtain the drug dose to be given to
the simulated patient in each time instant.

IV. SIMULATION RESULTS

A number of simulations were carried out to test the
performance of the proposed nonlinear adaptive controller.
Each simulated patient was chosen from a bank of 100
models that was randomly generated in [13] assuming
a lognormal probability distribution for the 8 parameters
present in the standard physiologically-based Pharmacoki-
netic/Pharmacodynamic (PK/PD) model. Following clinical
procedures, a bolus of atracurium (500µg kg−1) was as-
sumed to be given to each simulated patient at t = 0 min,
making the NMB to drop from its initial value of 100% to a
value around 0% in less than 10 minutes after administration.

The design of the adaptive strategy is such that the
controller is only turned on at the beginning of the recovery
from the initial bolus (t ≈ 30 min [14]). This patient-
dependent time instant is calculated online by the OnLine
tuned Algorithm for Recovery Detection [15] that is coupled
to the adaptive controller structure (not shown in Fig. 2).

For simulation purposes, the EKF is initialized as in [6]
with

x̂(0| − 1) = [0 0 0 0.03 1]
T . (24)

The value of R2 is chosen as different from [6] and varies
depending on the scenario for simulation, among the three
that were tested.

Example 1: The first scenario assesses the nonlinear adap-
tive controller performance in a noiseless situation. Here
R2 = 103. The reference profile yref (t) to be followed
is a square wave of amplitude 0.5% around the setpoint of
10% with period equal to 60π. Some simulation results for
case number 98 in the database for this first scenario are
presented in Fig. 3. The roots of polynomials Am(s), Ao(s)
and X(s) are chosen such that the output signal of all cases
in the database behave similarly and are −0.7, −0.6, −0.3,
−0.8, −0.4, and −0.8, respectively. In Fig. 3(a) and 3(b) it is
clear that the output signal y(t) follows the reference yref (t).
The static error present at the beginning of the simulation is
regulated away with time, as expected due to the presence
of integral action in the controller. This reference tracking
is possible due to the control signal shown in Fig. 3(c). The
peaks of dose exist whenever the reference changes, being in
the admissible range of drug administration for atracurium.
The parameter estimates for this case, calculated by the EKF
are shown in Fig. 3(d) and 3(e).

Example 2: The adaptive capability of the designed adap-
tive controller is evaluated in the second simulation scenario.
The parameters of the standard physiologically-based PK/PD
model of case number 98 in the model bank are used to
simulate the patient until t = 333 min. After that, the
parameters of the simulated patient model are changed of
20%. It is expected that the controller tackles this change
in the model parameters, still following the reference signal
yref (t) (constant in a level of 10%). The pole locations of the
controller are the same as in Example 1. As it is clear in Fig.
4(a) the output signal y(t) tracks the reference yref (t) after
the controller is turned on. The adaptation of the controller
to the new patient parameters is shown in Fig. 4(b) through

44



0 200 400 600 800
0

20

40

60

80

100

Time [min]

N
M

B
[%

]

 

 

yref (t)
y(t)
control. start
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Fig. 3. Results for case number 98 in the database using the nonlinear
adaptive controller with pm1 = 0.7, pm2 = 0.6, pm3 = 0.3, po1 = 0.8,
po2 = 0.4, and x0 = 0.8. The star mark in the x-axis indicates the time
instant when the controller started.

one instantaneous change in the control action around minute
333. This is consequence of the significative change in the
parameters estimates provided by the EKF as adaptation to
the new conditions (Fig. 4(c) and 4(d)).

Example 3: The third scenario aims to access the perfor-
mance of the nonlinear adaptive controller in the presence of
noise. At this stage, a NMB record from a typical real patient
was chosen from a database of cases previously collected in
the surgery room [5], [9]. The EKF algorithm described in [6]
was applied to this case and the residuals obtained after this
identification step are used as the noise vector to be added
to the output signal in simulation. Due to the presence of
noise, the value of R2 associated with the error in the output
signal is chosen as 2× 103. In the simulations whose results
are shown in Fig. 4 the roots of polynomials Am(s), Ao(s)
and X(s) are −0.7, −0.6, −0.05, −0.8, −0.4, and −0.1,
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(a) Reference signal yref (t) and output signal y(t).
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(b) Control signal (atracurium dose).
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Fig. 4. Results for case number 98 in the database using the nonlinear
adaptive controller with pm1 = 0.7, pm2 = 0.6, pm3 = 0.3, po1 = 0.8,
po2 = 0.4, and x0 = 0.8. The star mark in the x-axis indicates the time
instant when the controller started and the square mark indicates the time
where the patient parameters were changed.

respectively; x0 takes the value of 0.1 in order to smooth
the control action. In Fig. 5(a) it is clear that the output
signal y(t) follows the reference signal yref (t), constant in
10%. The oscilation in the output signal after the controller
is turned on (with maximum value of 12% and minimum
of 7%) is clinically accepted. The control signal u(t) in this
example is displayed in Fig. 5(b) and the parameter estimates
obtained by the EKF in Fig. 5(c) and 5(d).

These results show the ability of the developed nonlinear
adaptive controller in steering the NMB (output signal) to
a desired reference, tracking a certain constant or varying
profile. The proposed controller structure, taking advantage
of the identification of the minimally parameterized model
for the NMB [6], is also able to deal with parameter-
varying systems, as Fig. 4 indicates. Equally important is
the good performance of the nonlinear adaptive controller in
the presence of measurement noise, which is crucial when
testing this structure in real environments.

V. CONCLUSIONS AND FUTURE WORK

Even though many different strategies for the control of the
NeuroMuscular Blockade have been developed, analyzed and
implemented both in simulation and in real clinical situations
during the past years e.g. [13], [16], [17], the features of the
problem mainly the high inter- and intra-patient variability
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Fig. 5. Results for case number 98 in the database using the nonlinear
adaptive controller with pm1 = 0.7, pm2 = 0.6, pm3 = 0.05, po1 = 0.8,
po2 = 0.4, and x0 = 0.1, and with the addition of noise. The star mark in
the x-axis indicates the time instant when the controller started.

and the restrictions imposed by the clinical practice suggest
the development of different approaches.

The novelty of the strategy proposed in this paper is the
use of a minimally parameterized model for the description
of the effect of the muscle relaxant atracurium in the
NeuroMuscular Blockade [6] and the incorporation of an
online identification strategy (an Extended Kalman Filter) in
the controller structure, providing adaptivity to the nonlinear
controller. As a consequence the variability of the patient
parameters does not interfere with the performance of the
controller. Moreover, this new strategy constitutes one reli-
able alternative to the use of a finite number of patient models
to switch from [17]. Since stability conditions are monitored
by the Extended Kalman Filter, the controller is hence able
to cover a continuous-range of patient nonlinear behaviors. It
should also be stressed that the proposed adaptive controller
addresses the control of the NeuroMuscular Blockade in a
highly realistic scenario, exemplified by the third scenario
of simulation where noise present in a real record collected
in the surgery room is added to the output signal. The good
results obtained in simulation are strong indications that the
proposed nonlinear adaptive controller will behave well when
implemented in a real control situation.

In order to guarantee total patient safety and before
implementing this adaptive control strategy in real control

platform, further work has to be developed to screen con-
vergence and stability properties of the proposed closed-
loop structure. This nonlinear adaptive controller is also
highly promising when extended to other nonlinear Wiener
responses in anesthesia, namely the Bispectral Index.
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