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Abstract— An optimal Set-Valued Observer (SVO) for at-
titude estimation that merges rate gyro readings with body
frame vectorial observations is proposed. The observer pro-
vides singularity-free estimates and considers sensor readings
corrupted by bounded (but unknown) measurement noise. The
suggested solution is an alternative method to the ones available
in the literature, with the guarantee that the state is inside
the estimated set. Optimal estimates are obtained, provided
that there is no uncertainty in the angular velocity measure-
ments, whereas the case with noisy rate gyros measurements
is addressed by resorting to a relaxation of the problem.
The sensor readings are exploited directly in the observer,
without intermediate attitude estimate computation. Moreover,
the feasibility of the technique is demonstrated in simulation.

I. INTRODUCTION

Attitude estimation is an essential element in many modern
platforms such as aircrafts, satellites, unmanned air vehicles,
and underwater autonomous robots. Typical solutions to this
problem require either the exact measurement of the sensed
variables or the knowledge of a stochastic description for the
exogenous disturbances and measurement noise. However,
if this information is not available a priori, while norm
bounds on the disturbances are known, it may be desirable
to compute explicit bounds on the attitude of the vehicle.
Such bounds are suitable, for instance, in robust control
designs, where worst-case guarantees are provided regarding
the performance of the closed-loop system – see, for instance,
[22], [17].

There is a wide variety of attitude estimation techniques
presented in the literature. Some, like the nonlinear ob-
servers, have a deterministic nature [8], [18], [19], while
others use a stochastic description of the exogenous distur-
bances and measurement noise to provide optimal estimates
of the attitude [21], [11], [7]. However, this stochastic char-
acterization may not be available and only magnitude bounds
be known. The work in [15] discusses the state estimation
for systems with bounded inputs, while in [3], [9] a similar
problem, but using a set-membership description for model
uncertainty, is addressed. New advances in the framework
of these estimators, known as Set-Valued Observers (SVOs)
[1], are presented in [16], [12], [13]. The SVOs consider
that the set-valued estimate of the state can be described
by polytopes, while the so-called interval analysis, where
those sets are over-bounded by hyper-parallelepipeds, thus
yielding more conservative results. The work in [14] exploits
a different approach and proposes an attitude estimator
where uncertainty ellipsoids bound the sensor measurements
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and the filter states. However, this estimator relies on the
linearization of the system to propagate the uncertainty
ellipsoids. In the context of deterministic estimators, the
work in [20] proposes a nonlinear observer for attitude esti-
mation. This estimator exploits information from exact vector
observations and biased angular velocity measurements and
prove exponential convergence of the estimation errors to the
origin.

The main contribution of the work presented in this paper
is the development of an optimal attitude estimator based
on SVOs which rely on vector observations and rate gyros
measurements, where the sensor measurements are assumed
to be corrupted by bounded noise. We propose a solution
that considers uncertainties defined by polytopes and that
guarantees that the true state of the system is inside the esti-
mated set, as long as the assumptions on the bounds on the
measurements are satisfied. No linearization is required and
nonconservative estimates are derived for the case where no
uncertainty is present in the angular velocity measurements.
The case with noisy angular velocity measurements is tackled
by relaxing the problem.

The remainder of this article is organized as follows. In
Section II, the attitude estimation problem is introduced and
the available sensor information is described. The SVOs
for attitude estimation, with noisy and noise-free angu-
lar velocity measurements are derived in Section III. The
interpretation of the estimated set using different SO(3)
parameterizations is discussed in Section IV. In Section V,
the yaw, pitch and roll bounds are illustrated in simulation
for a typical trajectory, as well as a comparison between
the SVOs and the deterministic observer proposed in [20].
Finally, Section VI presents some concluding remarks and a
few comments on the future work.

NOMENCLATURE

To enhance the readability of this paper, we introduce the
following notation. The set of special orthogonal matrices
is denoted by SO(3) and the associated algebra is denoted
by so(3). The skew-symmetric operator in R

3 is denoted
by [.]× : R

3 7→ so(3), and satisfies [v]×w = v × w,
v,w ∈ R

3. The Kronecker product of matrices is denoted
by A ⊗ B (for further details see [22, p. 25]). The 3 × 3
matrices whose elements are zeros except the element ij
and whose all elements are ones, are denoted by Ei,j and
13×3, respectively. The operator vec(M) stacks the columns
of the 3×3 matrix M into a long 9×1 vector and the inverse
operation of vec(.) is denoted as mat(.). The matrix norm
||.||max is defined as the maximum of the absolute value of
all matrix elements, i.e., ‖A‖max := max{|aij |}. Consider a
polytope defined by {x ∈ R

nx : Ax ≤ b}. Then, define the
Fourier-Motzkin projection [6] as (Ā, b̄) := FM(A,b, n),
where n = nx − n̄x > 0, and Ā and b̄ satisfy, for all
x̄ ∈ R

n̄x , Āx̄ ≤ b̄ ⇔ ∃x∈Rn : A[x̄T xT ]T ≤ b. Finally
define MatSet(M,m) := {Y ∈ R

a×b : M vec(Y) ≤ m}.
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II. PROBLEM FORMULATION

The attitude of a rigid body is often mathematically
modeled as a rotation matrix, which is a linear transformation
that maps coordinates between reference frames with the
same origin. Denote vector x expressed in reference frame
{I} as Ix ∈ R

3. We obtain this vector expressed in reference
frame {B}, Bx ∈ R

3, by using the relationship Bx = B

I
RIx,

where B

I
R ∈ SO(3) is the rotation matrix from {I} to {B}.

Let R := B

I
R and assume the reference frame {I} to be

inertial. The kinematics of the attitude is given by

Ṙ(t) = [ω(t)]×R(t), (1)

where ω is the angular velocity of the inertial frame with
respect to the rigid body. This continuous-time model is not
suitable to be implemented in a digital system. However, for
a sufficiently small sampling period, T , we can approximate
the angular velocity between sampling times by a constant
function, and use the Euler approximation (see [5, p. 126])
of (1), which is given by

R(k + 1) = exp(Tω(k))R(k), (2)

where exp(.) : R3 7→ SO(3) is the exponential map on the
special orthogonal group. An advantage of this approxima-
tion is the linearity on R of the discrete-time model in (2).

Suppose there is a triad of rate gyros fixed in reference
frame {B} which measures ω, and on-board sensors such as
magnetometers, star trackers, among others, which provide
vector observations expressed in body frame coordinates, i.e.,

Bvi = RIvi, (3)

where i = 1, . . . , Nv , and Nv is the number of vector
observations and that no three of which are collinear, or,
in the matrix form,

BV = RIV, (4)

where BV = [Bv1 . . .
BvNv

] such IV = [Iv1 . . .
IvNv

]. If
the linear acceleration is neglectable in comparison with the
gravity, accelerometers are also suitable to be used as vector
observations. We assume that the sensor measurements are
corrupted by noise and that a measurement q ∈ R

n belongs
to the convex polytope defined as Set(M,m) := {q : Mq ≤
m}, where M is a m× n real matrix and m ∈ R

m. Hence,
at each time k we obtain a set of observations, rather than a
vector observation.

The objective of the present work is to optimally estimate
the attitude of a rigid body using the available sensor
suite, i.e., to obtain the set-valued attitude estimate with the
smallest possible uncertainty.

III. ATTITUDE ESTIMATION USING SVOS

In this section, we propose a methodology for the attitude
estimation problem with bounded sensor noise. We present
two solutions based on SVOs, namely one for the case with
noisy vector observations and another for the case in which
the angular velocity measurements are also corrupted by
bounded noise. The first result is stronger since the minimal
set that contains the state is obtained, whereas in the latter
case the existence of uncertainties in the angular velocity
measurements hinders the estimation problem and requires
the introduction of conservatism in the solution.

A. SVO with uncertainties in the vector observations

We firstly develop an SVO for attitude estimation when
there is uncertainty solely in the vector observations.

Definition 1: We say that R is compatible with a set of
observations, S, if there exists Bv ∈ S such that (3) is
satisfied.

In the next lemma, we show how the output of the system
relates with the state, i.e., the time-varying rotation matrix.

Lemma 1: Assume that the vector observations Bvi(k),
i = 1, . . . , Nv , at each time k satisfy Bvi(k) ∈
Set(Mvi(k),mvi(k)). Then, there exist a matrix M and a
vector m such that

M(k)vec(R(k)) ≤ m(k),

if and only if R(k) is compatible with the set of observations,
Set(Mv(k),mvk), where

Mv(k) =





Mv1 (k) 0

. . .
0 MvNv

(k)



 , mv(k) =





mv1 (k)

...
mvNv

(k)



 .

Proof: The vector observations Bvi(k), i = 1, . . . , Nv ,
at each time k, satisfy Bvi(k) ∈ Set(Mvi(k),mvi(k)),
i.e., vec(BV(k)) satisfy Mv(k) vec(

BV(k)) ≤ mv(k). On
the other hand, it follows from (4) that vec(BV(k)) =
Q(k)vec(R(k)), where Q(k) is given by

Q(k) =





Iv11I
Iv21I

Iv31I

...
...

...
Iv1Nv

I Iv2Nv
I Iv3Nv

I





and Ivij is the element of line i and column j of matrix
IV(k). Hence, we have that

Mv(k)Q(k)
︸ ︷︷ ︸

M(k)

vec(R(k)) ≤ mv(k)
︸ ︷︷ ︸

m(k)

.

Remark 1: For the sake of comprehension, the problem
of observability is not addressed in this paper. Thus, we
consider that three or more non-coplanar vector observations
are available, which guarantees observability [2], [7]. The
case with vector observations that solely span a line or a
plane are still under research.

We are now in conditions of stating the following theorem,
which can be used to optimally obtain an SVO for the
estimation of R(k).

Theorem 1: Assume that the angular velocity ω(.) is
constant between sampling times, that it is measured by rate
gyros with no uncertainty, and that measurements Bvi, i =
1, . . . , Nv satisfying the conditions of Lemma 1 are available.
Also assume that there exist a matrix Ms(k) and a vector
ms(k), such that the possible values of the attitude at time
k are defined by all R(k) satisfying

R(k) ∈ MatSet(Ms(k),ms(k)) ∩ SO(3).

Moreover, define Ms(k + 1) and ms(k + 1) such that

Set(Ms(k + 1),ms(k + 1)) =

Set(M(k + 1),m(k + 1)) ∩ Set(Ms(k)Ω
−1(k),ms(k)),

where Ω(k) = I3×3⊗exp(Tω(k)) and where M(k+1) and
m(k+1) satisfy R(k+1) compatible with the observations
⇔ vec(R(k + 1) ∈ Set(M(k + 1),mmb(k + 1))). Then,
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R(k+1) satisfies (2) and is compatible with the current set
of observations if and only if

R(k + 1) ∈ MatSet(Ms(k + 1),ms(k + 1)) ∩ SO(3)
Proof: If the rate gyros measure the angular velocity

ω(k) without uncertainty, then the predict equation (2) can
be rewritten in the form

x(k + 1) = Ω(k)x(k), (5)

where x(k) = vec(R(k)). By assumption, the set of states
at time k is defined as

X(k) :=
{
x ∈ R

9 : Ms(k)x ≤ ms(k),mat(x) ∈ SO(3)
}
.

(6)

From (5) and (6), we derive the following constraint in the
state at time k + 1

x(k + 1) ∈ (7)
{
x : Ms(k)Ω

−1(k)x ≤ ms(k),mat(Ω−1(k)x) ∈ SO(3)
}

By Lemma 1, and by resorting to the vector observations
Bvi, i = 1, . . . , Nv , at each time k+1, there exists M(k+1)
and m(k + 1) such that x(k + 1) is compatible with the
observations, if and only if,

M(k + 1)x(k + 1) ≤ m(k + 1) (8)

Enclosing the constraints (7) and (8), we can write
[

Ms(k)Ω
−1(k)

M(k + 1)

]

︸ ︷︷ ︸

Ms(k+1)

x(k + 1) ≤

[
ms(k)

m(k + 1)

]

︸ ︷︷ ︸

ms(k+1)

,

mat(Ω−1(k)x(k)) ∈ SO(3).

The condition mat(Ω−1(k)x(k)) ∈ SO(3) can be replaced
by x(k + 1) ∈ SO(3). To show this, we start by stating a
property of the SO(3) manifold. For any matrix A ∈ SO(3),
AB ∈ SO(3) if and only if B ∈ SO(3). Since (5) is
equivalent to mat(x(k + 1)) = exp(Tω(k))mat(x(k)),
and exp(Tω(k)),mat(x(k+ 1)) ∈ SO(3) we conclude that
mat(x(k)) ∈ SO(3). Thus, we conclude that at each time
k + 1, mat(x(k + 1)) = R(k + 1) satisfies

R(k + 1) ∈ MatSet(Ms(k + 1),ms(k + 1)) ∩ SO(3),

if and only if (2) is satisfied and R(k+1) is compatible with
the current set of observations.

Remark 2: It should be noticed that this observer is opti-
mal in the sense that, at each time k, it provides the smallest
set that contains all the solutions to (2).

B. SVO with uncertainties in the vector observations and in
the angular velocity measurements

In this section, we assume that the angular velocity mea-
surements, ωr(k), are corrupted by bounded noise and are
given by

ωr(k) = ω(k) + n(k),

where ω(k) ∈ R
3 is the true angular rate at time k, and

n(k) ∈ R
3 is a vector with the noise components such that

for all k ≥ 0, there exists n̄ ∈ R
+, with ‖n(k)‖∞ ≤ n̄. We

also assume that the angular velocity is bounded, i.e., for all
k ≥ 0, there exists ω̄ ∈ R

+, such that ‖ω(k)‖∞ ≤ ω̄. The
kinematics of the attitude is given by

R(k + 1) = exp (T (ωr(k)− n(k)))R(k),

which can be rewritten as

x(k + 1) = Ω(k)x(k).

where x(k) = vec(R(k)) and Ω(k) = I3×3 ⊗
exp (T (ωr(k)− n(k))).

Theorem 2: Assume that the angular velocity, ω(.), is
constant between sampling times and that tri-axial rate gyros
provide angular velocity measurements corrupted by noise
bounded by n̄, and that measurements Bvi , i = 1, . . . , Nv
under the conditions of Lemma 1 are available. Also assume
that there exist a matrix Ms(k) and a vector ms(k), such
that

R(k) ∈ MatSet(Ms(k),ms(k)) ∩ SO(3).

Let Ms(k+ 1) and ms(k+ 1) be defined as in the proof
of this theorem, then

i) R(k + 1) satisfy (2), and
ii) R(k+ 1) ∈ MatSet(Ms(k+ 1),ms(k+ 1))∩ SO(3),

if R(k + 1) is compatible with the current observations.
Proof: By assumption, the set of states at time k is

defined as

X(k) :=
{
x ∈ R

9 : Ms(k)x ≤ ms(k),mat(x) ∈ SO(3)
}
.

Also, define X(k+1) as the set of all possible states of the
system at time k + 1. By the definition of exponential map
we have

exp(T (ωr − n)) = I+ [Tωr]× − [Tn]× +

∞∑

k=2

[Tω]k
×

k!
.

The dynamics of the system can be written in the form

x(k + 1) = A(k)x(k) +
9∑

i=1

Ai(k)∆i(k)x(k), (9)

for some ∆i(k), where |∆i(k)| ≤ 1, i = 1, . . . , 9, and

A(k) = I3×3 ⊗ (I+ T [ωr]×)

Ai(k) =

{
I3×3 ⊗ γ1Ei,j if m = n;
I3×3 ⊗ γ2Ei,j otherwise,

where m,n = 1, 2, 3, i = 3(n − 1) + m, and γ1 =
1
2 (exp(2T ω̄)− 1) − T ω̄, γ2 = γ1 + n̄, and the following
relation was used

‖[a]k
×
‖max ≤

(2ā)k

2
, (10)

for a ∈ R
3, ā = ‖a‖∞, and k ∈ N.

Due to the noise present in the angular velocity measure-
ments, the set of feasible states is not convex and hence
cannot be described by a polytope. Despite of this, we will
see next that, considering specific realizations of (9) and
using SVOs to obtain the polytope that contains the state for
each particular realization, we can derive a set that contains
the true state x(k + 1).

Consider a realization of (9) where ∆i(k) = ∆∗

i , |∆∗

i | ≤
1, i = 1, . . . , 9 and denote by A∆∗ the corresponding
uncertainty map, i.e., A∆∗ = A∗

1∆
∗

1 + · · · + A∗

9∆
∗

9. For
each A∆∗ , the technique in [16] can be used to design an
SVO which computes a set-valued estimate of the state of the
system. Indeed, if the matrix A(k) + A∆∗ is non-singular,
we can write the following inequality as a constraint for the
state x(k + 1)

[
Ms(k)(A(k)+A∆∗ )−1

M(k+1)

]

︸ ︷︷ ︸

M∗(k+1)

x(k + 1) ≤
[

ms(k)
m(k+1)

]

︸ ︷︷ ︸

m∗(k+1)

. (11)
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If, however, A(k) +A∆∗ is singular or ill-conditioned one
can write the inequality

[
I −A(k)−A∆∗ (k)
−I A(k)+A∆∗ (k)

M(k+1) 0
0 Ms(k)

]

︸ ︷︷ ︸

P

[
x(k+1)
x(k)

]

≤

[
0
0

m(k+1)
ms(k)

]

︸ ︷︷ ︸
q

, (12)

and then use the Fourier-Motzkin projection [6] to compute
M∗(k+1) and m∗(k+1) such that M∗(k+1)x(k+1) ≤
m∗(k + 1), i.e.,

(M∗(k + 1),m∗(k + 1)) = FM(P,q, 3).

Let vi, i = 1, . . . , 29 denote a vertex of the hyper-
cube H := {δ ∈ R

9 : |δ| ≤ 1}, where vi = vj ⇔
i = j. Then, we denote by X̂vi(k + 1) the set of points
x(k + 1) that satisfy (11) (or (12)) where A∆∗ = Avi

and with x(k) ∈ X̂(k). Further define X̂(k + 1) :=

co
{

X̂v1(k + 1), . . . , X̂v29
(k + 1)

}

, where co{p1, . . . , pm}

is the smallest convex set containing the points p1, . . . , pm,
also known as convex hull of p1, . . . , pm. Since X(k + 1)
is, in general, non-convex even if X(k) is convex, we are

going to use X̂(k + 1) to overbound the set X(k + 1).
Since X̂(k + 1) is the convex hull of a finite number

of polytopes, it can be written in the form Set(Ms(k +
1),ms(k+1)). Then, an overbound on the space of possible
solutions of R at time k + 1 is given by the intersection of
the two sets R(k + 1) ∈ MatSet(Ms(k + 1),ms(k + 1)) ∩
R(k + 1) ∈ SO(3).

Either using the inversion of matrices in (11) or using the
Fourier-Motzkin algorithm in (12), the sizes of Ms(k) and
ms(k) may be increasing very fast with time, which can be
problematic. To overcome this issue, one should eliminate
the linearly dependent constraints. This can be done by
solving several small linear programming problems at each
sampling time, which, however, increases the complexity of
the practical implementation of this type of observers.

IV. IMPLEMENTATION ISSUES

The representation of the uncertainty in R(k) by means of
a set may not be suitable in practice. Therefore, this section
is devoted to the problem of describing the uncertainty in
attitude of the rigid body through: i) a rotation vector; and
ii) Euler angles.

A. Representation in terms of a rotation vector

We start by showing how to describe the uncertainty in
the attitude of the rigid body by means of a rotation vector,
where a vector λ ∈ R

3 that parameterizes a rotation matrix
R satisfies R = exp([λ]×), ||λ|| ≤ π. The attitude SVOs,
introduced in Section III, provide a polytope description in
R

9 that contains the true state, i.e., Ms(k) and ms(k) such
that Ms(k) vec(R(k)) ≤ ms(k). We can use this result to
derive an inequality for the rotation vector parameterization
of the attitude such that Mλ(k)λ(k) ≤ mλ(k). Since R =
exp([λ]×), we can write Ms vec(exp([λ]×)) ≤ ms, where k
was omitted for simplicity of the notation. By the definition
of exponential map we obtain

Ms vec

(

I+ [λ]× +
∞∑

k=2

[λ]k
×

k!

)

≤ ms.

Moving the nonlinear terms to the right-hand side of the
inequality, we obtain Ms vec([λ]×) ≤ ms − Ms vec(I) −

Ms vec
(
∑

∞

k=2

[λ]k
×

k

)

. Noting that ∃V : vec([λ]×) = Vλ,

we conclude

Mλλ ≤ mλ,

where Mλ = MsV, and mλ = ms − Ms vec(I) +
Ms vec(µ13×3) where, resorting to (10), we can set µ =
1
2 (exp(2||λ||∞)− 1− 2||λ||∞).

B. Representation in terms of Euler angles

A different and well-known alternative to the one pre-
sented in the last section is the Euler angles representation,
which is defined by the angles that each axis of the rigid
body reference frame has to rotate to match the axis of the
inertial reference frame. These angles are named yaw (ψ),
pitch (θ), and roll (φ), and correspond to the rotation around
the z-axis, the y-axis and the x-axis, respectively. For the
ZYX-Euler angles, the rotation matrix R ∈ SO(3) can be
computed using

R =

[
cψcθ cψsθsφ − sψcφ sψsφ + cψsθcφ
sψcθ sψsθsφ + cψcφ sψsθcφ − cψsφ
−sθ cθsφ cθcφ

]

,

where cψ := cos(ψ), sψ := sin(ψ), cθ := cos(θ), sθ :=
sin(θ), cφ := cos(φ) and sφ := sin(φ).

We are interested in computing the maximum and min-
imum values of each Euler angle along time. This can
be cast into a nonlinear optimization problem and solved
using the techniques presented in [4], [10]. For instance, the
minimum value of the roll angle can be obtained by solving
the following problem

minφ(k), s.t. Ms(k) vec(R(k))−ms(k) ≤ 0.

As an applicability example, this method will be used in
the following section.

V. SIMULATION RESULTS

In this section, we present simulation results that illus-
trate the feasibility of the proposed solution. The simulated
trajectory is characterized by an angular velocity with the
following oscillatory profile

ωx(k) = 0.07 sin(2π0.05kT )
ωy(k) = −0.05 sin(2π0.04kT )
ωz(k) = 0.06 sin(2π0.02kT )
ω(k) = α[ωx(k) ωy(k) ωz(k)]

T ,

where α is a scaling factor. The directions for the sensed
vectors in the inertial reference frame are given by Iv1 =
[1 0 0]T , Iv2 = [0 1 0]T , Iv3 = [0 0 1]T . These vectors
observations are measured in the body reference frame and
each component is corrupted by uniform noise with absolute
value bounded by 0.1.

A. Noise-free angular rate measurements

In the first set of simulations a high-end triad of rate
gyros measure the exact angular velocity. In order to assess
the performance of the proposed solution, we carry out
simulations under different operating conditions, namely,
different sampling periods, T , and magnitude of the angular
velocity, which is controlled by the scaling factor α.

In Table I, we present the RMS (root-mean-square) error
of the yaw, pitch, and roll angles of a typical Monte-
Carlo run. The upper and lower bounds on these angles
are computed according to the method in Section IV-B. In
the error computation, we considered the mean of the upper
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TABLE I

RMS ERROR OF THE PROPOSED SOLUTION – SIMULATION WITH

NOISE-FREE ANGULAR VELOCITY MEASUREMENTS.

T (s) α yaw (deg) pitch (deg) roll (deg)
0.1 1 0.0375 0.0228 0.0329
0.01 1 0.0118 0.0126 0.0125
0.1 2 0.1112 0.0657 0.1225
0.1 0.1 0.0044 0.0052 0.0043

TABLE II

RMS ERROR OF THE OBSERVER IN [20] – SIMULATION WITH

NOISE-FREE ANGULAR VELOCITY MEASUREMENTS.

T (s) α yaw (deg) pitch (deg) roll (deg)
0.1 1 0.2380 0.1992 0.2714
0.01 1 0.0297 0.0302 0.0499
0.1 2 0.4398 0.3611 0.5387
0.1 0.1 0.0289 0.0319 0.0300

TABLE III

RMS ERROR OF THE WAHBA’S SOLUTION [21].

T (s) α yaw (deg) pitch (deg) roll (deg)
0.1 1 3.9804 3.1825 3.0327
0.01 1 3.9966 3.1726 3.0268
0.1 2 4.5379 4.1532 3.6878
0.1 0.1 2.2964 2.3912 2.3671

and lower bounds to be the nominal estimate. The results
were compared with two solutions presented in the literature,
namely, the deterministic nonlinear observer derived in [20]
(Table II), and the Wahba’s solution [21] (Table III), which is
a classical algebraic approach that relies solely on the vector
observations.

The nonlinear observer in [20] has a better performance
than the Wahba’s solution. This fact is not surprising since
the former makes use of more information than the latter.
Nevertheless, it is worth noting that the accuracy of the
estimates are improved by a factor of ten. The proposed
solution outperforms the other two approaches presented in
the literature. Moreover, it provides upper and lower bounds
on the attitude, whereas the other approaches do not.

Figure 1 depicts the Euler angles representation of the
true state and the upper and lower bounds on the attitude
estimates for the simulation with parameters T = 0.1, α = 1.
We see that the proposed solution provides tight bounds on
the attitude of the rigid body. In Figs. 2(a) and 2(b), the
estimation error is illustrated, showing that, after the initial
transient, the estimation error of each angle is always below
0.1 deg.

B. Angular rate measurements with noise

In the second set of simulations, the rigid body is equipped
with low-end rate gyros which measure the angular veloc-
ity with additive noise with uniform distribution between
−0.573 deg s−1 and 0.573 deg s−1. The simulations were
performed under the same operating conditions that were
used for the simulations with noise-free angular rate mea-
surements.

The RMS errors of the Euler angles of a typical Monte-
Carlo run, computed according to the method in Section IV-
B, for the proposed SVO and for the nonlinear observer
presented in [20], are shown in Table IV and Table V,
respectively. In contrast to the first set of simulations, the
nonlinear observer in [20] performs better than the proposed
solution, when there is noise in the angular velocity. This
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Fig. 1. Euler angles representation of the true state and the upper and
lower bounds on the attitude estimates - simulation with noise-free angular
velocity measurements.

0 5 10 15 20 25 30
−2

−1

0

1

ro
ll

(d
eg

)

 

 

estimation error

0 5 10 15 20 25 30
−2

−1

0

1

p
it
ch

(d
eg

)

0 5 10 15 20 25 30
−2

−1

0

1
ya

w
(d

eg
)

time (s)

(a)

15 20 25 30
−0.05

0

0.05

ro
ll

(d
eg

)

 

 

estimation error

15 20 25 30
−0.02

0

0.02

0.04

p
it
ch

(d
eg

)

15 20 25 30
−0.1

0

0.1

ya
w

(d
eg

)

time (s)

(b)

Fig. 2. Estimation error - simulation with noise-free angular velocity
measurements.

indicates that the mean of the lower and upper bounds is
not the most likely attitude inside the set. Regardless of this
fact, the proposed solution has the advantage of providing
explicit bounds on the attitude of the rigid body.

Figure 3 depicts the Euler angles representation of the
true state and the upper and lower bounds on the attitude
estimates for the simulation with parameters T = 0.1, α = 1.
We see that the proposed solution provides tight bounds on
the attitude of the rigid body. In Fig. 4 the estimation error
is illustrated, showing that it is always below 1 deg.

The simulations with different operating conditions evi-
dence that, as could be anticipated, for the nonlinear ob-

TABLE IV

RMS ERROR OF THE PROPOSED SOLUTION – SIMULATION WITH NOISY

ANGULAR VELOCITY MEASUREMENTS.

T (s) α yaw (deg) pitch (deg) roll (deg)
0.1 1 0.3551 0.3457 0.2892
0.01 1 0.1057 0.1041 0.0877
0.1 2 0.3929 0.3775 0.3524
0.1 0.1 0.2561 0.2683 0.2667

TABLE V

RMS ERROR OF THE OBSERVER IN [20] - SIMULATION WITH NOISY

ANGULAR VELOCITY MEASUREMENTS.

T (s) α yaw (deg) pitch (deg) roll (deg)
0.1 1 0.2169 0.2542 0.3418
0.01 1 0.0760 0.0611 0.0811
0.1 2 0.3657 0.4184 0.5955
0.1 0.1 0.1518 0.1476 0.1466
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Fig. 3. Euler angles representation of the true state and the upper and lower
bounds on the attitude estimates - simulation with noisy angular velocity
measurements.
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Fig. 4. Estimation error - simulation with noisy angular velocity measure-
ments.

server and the SVOs smaller sampling periods yield better
estimates, whereas the Whaba’s solution do not improve its
accuracy by reducing the sampling period. We also conclude
that, greater angular velocity leads to larger estimation errors,
and that in the presence of noisy angular velocity measure-
ments, the estimate obtained using the mean of the upper and
lower bounds produces larger errors, and that the difference
between these bounds is also larger, when compared to
the results obtained for the case of noise-free gyroscopes.
Hence, as expected, the uncertainty in the angular velocity
measurements results in uncertainty in the estimates of the
attitude.

VI. CONCLUSIONS

This work addresses the problem of attitude estimation
of a rigid body assuming that the sensor measurements have
uncertainties characterized by a polytope. The proposed solu-
tion is based on set-valued observers and relies on rate gyros
and vector observations. The observer has no singularities
since the attitude is given by the rotation matrix and is
global in the sense that is valid for any initial conditions. If
there is measurement noise only on the vector observations,

the uncertainty on the estimate is guaranteed to be the
smallest possible. If uncertainty is also present in the rate
gyros, the nonlinearities of the plant are tackled by adding
conservatism. Nevertheless, the simulation results indicate
that the solution is implementable, while yielding levels of
performance of the order of magnitude of the alternatives in
the literature and providing set-valued estimates for the state
of the system.

Further efforts are being deployed to reduce the estimation
errors when there is bias in the measurements provided by
the rate gyros.
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