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Abstract— A Faà di Bruno type Hopf algebra is developed for
a group of integral operators known as Fliess operators, where
operator composition is the group product. The result is applied
to analytic nonlinear feedback systems to produce an explicit
formula for the feedback product, that is, the generating series
for the Fliess operator representation of the closed-loop system
written in terms of the generating series of the Fliess operator
component systems. This formula is employed to provide a proof
that local convergence is preserved under feedback.

I. INTRODUCTION

Let f and g be two functions with convergent Taylor
series about x = 0 which leave the origin invariant, say
f(x) =

∑

n≥1 fnx
n/n! and g(x) =

∑

n≥1 gnx
n/n!. The

composition h = f ◦ g has the same nature as f and g, and
the well known Faà di Bruno formula provides its Taylor
series coefficients, specifically,

hn =

n∑

k=1

fk

k!

∑

j

n!k!

j1!j2! · · · jn!

gj1
1 g

j2
2 · · · gjn

n

(1!)j1(2!)j2 · · · (n!)jn
, (1)

where the second sum is over all j1, j2, . . . , jn ≥ 0 such
that j1 + j2 + · · · + jn = k. In the event that the series are
not convergent, the functions involved can be interpreted as
formal functions rather than as analytic functions. In either
case, if f1 6= 0 then f has a compositional inverse, f−1,
and therefore, the corresponding set of functions forms a
group under composition. In the special case where f1 =
1, the coordinate functions an : f 7→ fn, n ≥ 1 on
the corresponding subgroup form a graded connected Hopf
algebra, a so called Faà di Bruno Hopf algebra [2], [3],
[6], [20]. The antipode of this Hopf algebra acts on each
coordinate function to produce a polynomial expression for
the coordinates of the compositional inverse. It turns out that
this algebra has great utility in quantum field theory and
related areas [6].

In this paper, an analogous Faà di Bruno Hopf algebra is
developed for a group of integral operators known as Fliess
operators. Such an operator, Fc, is normally written in terms
of a generating series c over a noncommutative alphabet
X = {x0, x1, . . . , xm} [7], [8]. It was shown in [19] that
a noncommutative version of (1) describes the input-output
map Fc : u 7→ y when u is described by a Taylor series
(in one variable). In contrast, the focus here is on system
interconnections. First, it is shown that the set of operators

Fδ := {I + Fc : c ∈ R〈〈X〉〉},

where I denotes the identity operator, and R〈〈X〉〉 is the
set of all formal power series over X , forms a group under
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operator composition when m = 1. It is worth noting that
the elements of Fδ bear some resemblance to the group of
diffeomorphisms on R having the form f(x) = x+ O(x2),
as well as to the noncommutative compositional groups that
appear in [3], [9]. In the latter case, however, composition
refers to the direct composition of power series, a notion
which is entirely distinct from the composition product used
here to describe Fliess operator composition [4], [5], [12],
[21], [22]. Furthermore, an element like I + Fc is not,
strictly speaking, a Fliess operator since I has no integral
representation. Nevertheless, tools already exist for handling
this modest generalization of the Fliess operator concept in
the context of operator composition since Fδ naturally arises
in the study of analytic nonlinear feedback systems [12],
[21]. Next, a graded Faà di Bruno bialgebra is systematically
constructed for the coordinate functions of Fδ . Since the
generating series are completely arbitrary, Fc may only be
a formal Fliess operator and not necessarily convergent in
any sense [7], [15]. It will be shown subsequently that
convergent operators form a subgroup of Fδ . Next, the
existence of an antipode is addressed. It is shown that while
the bialgebra under consideration is not connected, a well
defined antipode does exist so as to render a graded Faà
di Bruno Hopf algebra. This class of combinatorial Hopf
algebras is quite distinct from those normally associated with
the Cauchy product and shuffle product [10], [16]–[18], [24],
which for the most part involve a finite alphabet. Finally,
it is shown that the subgroup of operators having proper
generating series, i.e., generating series with a zero constant
term, leads to a connected Faà di Bruno Hopf subalgebra.
This structure is most similar to the one in the classical
case. As an application, it is demonstrated that the antipode
formula naturally appears in the context of feedback theory
for Fliess operators. Specifically, it was shown via a fixed
point argument in [12], [15] that any feedback connection
involving two Fliess operators Fc and Fd always produces
a closed-loop system with a Fliess operator representation.
The fixed point, represented by the generating series c@d,
defines a formal series product of c and d referred to as
the feedback product. Such an approach, however, does not
provide an explicit formula for computing this product. It
will be shown here that a suitable formula can be derived in
terms of the Faà di Bruno Hopf algebra antipode associated
with Fδ . Aside from the obvious computational benefits, it
will be used to provide a proof of the fact that feedback
preserves local convergence. This result was recently proved
in [13], [26] for the special case of unity feedback systems,
that is, when Fd is replaced with I in the feedback path. Here
the general case is addressed. Finally, it should be noted that
the journal version of this paper is available as [11]. So a
majority of the proofs are suppressed here for brevity.

The paper is organized as follows. In the next section, a
brief overview is given of Fliess operator theory. Similarly,
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Fig. 1. Cascade connection of two Fliess operators.

the essential elements of Hopf algebra theory employed in
the paper are summarized. In Section III, the Faà di Bruno
Hopf algebra of interest is constructed. Its application to
feedback systems is described in the subsequent section. The
main conclusions are summarized in the final section.

II. PRELIMINARIES

A finite nonempty set of noncommuting symbols X =
{x0, x1, . . . , xm} is called an alphabet. Each element of X
is called a letter, and any finite sequence of letters from X ,
η = xi1 · · ·xik

, is called a word over X . The length of η,
|η|, is the number of letters in η. The set of all words with
length k is denoted by Xk. The set of all words including
the empty word, ∅, is written as X∗. Clearly X∗ forms a
monoid under catenation. Any mapping c : X∗ → Rℓ is
called a formal power series. The value of c at η ∈ X∗ is
written as (c, η). Typically, c is represented as the formal
sum c =

∑

η∈X∗(c, η) η. A series c is called proper when

(c, ∅) = 0. For any language L ⊆ X∗, its characteristic
series is defined as char(L) =

∑

η∈L η. The collection of all

formal power series over X is denoted by Rℓ〈〈X〉〉, while the
set of polynomials over X is designated by R〈X〉. Each set
forms an associative R-algebra under the catenation (Cauchy)
product and a commutative and associative R-algebra under
the shuffle product, denoted here by ⊔⊔ [7].

A. Fliess Operators and Their Interconnections

One can formally associate with any series c ∈ Rℓ〈〈X〉〉
a causal m-input, ℓ-output operator, Fc, in the following
manner. Let p ≥ 1 and t0 < t1 be given. For a Lebesgue
measurable function u : [t0, t1] → Rm, define ‖u‖p =
max{‖ui‖p : 1 ≤ i ≤ m}, where ‖ui‖p is the usual
Lp-norm for a measurable real-valued function, ui, defined
on [t0, t1]. Let Lm

p [t0, t1] denote the set of all measurable
functions defined on [t0, t1] having a finite ‖ · ‖p norm and
Bm

p (R)[t0, t1] := {u ∈ Lm
p [t0, t1] : ‖u‖p ≤ R}. Define

iteratively for each η ∈ X∗ the map Eη : Lm
1 [t0, t1] →

C[t0, t1] by setting E∅[u] = 1 and letting

Exiη̄[u](t, t0) =

∫ t

t0

ui(τ)Eη̄[u](τ, t0) dτ,

where xi ∈ X , η̄ ∈ X∗, and u0 = 1. The input-output
operator corresponding to c is the Fliess operator

Fc[u](t) =
∑

η∈X∗

(c, η)Eη[u](t, t0)

[7], [8]. If there exists real numbers Kc,Mc > 0 such that

|(c, η)| ≤ KcM
|η|
c |η|!, η ∈ X∗,

then Fc constitutes a well defined mapping from
Bm

p (R)[t0, t0 + T ] into Bℓ
q(S)[t0, t0 + T ] for sufficiently

small R, T > 0, where the numbers p, q ∈ [1,∞] are
conjugate exponents, i.e., 1/p + 1/q = 1 [14]. The set of
all such locally convergent series is denoted by Rℓ

LC〈〈X〉〉.
When Fc and Fd with c ∈ Rℓ〈〈X〉〉 and d ∈ Rm〈〈X〉〉

are interconnected in a cascade fashion as shown in Fig. 1,

u
v

y

Fd

Fc

Fig. 2. Feedback connection of two Fliess operators.

the composite system u 7→ y always has a Fliess operator
representation, and the composition product can be used to
describe its generating series. It is convenient to first define
a family of mappings

Dxi
: R〈〈X〉〉 → R〈〈X〉〉 : e 7→ x0(di ⊔⊔ e),

where i = 0, 1, . . . ,m and d0 := 1. Let D∅ be the identity
map on R〈〈X〉〉. Such maps can be composed in an obvious
way so that Dxixj

:= Dxi
Dxj

provides an R-algebra which
is isomorphic to the usual R-algebra on R〈〈X〉〉 under the
catenation product.

Definition 1: [4], [5], [12] The composition product of
a word η ∈ X∗ and a series d ∈ Rm〈〈X〉〉 is defined as

(xik
xik−1

· · ·xi1
︸ ︷︷ ︸

η

) ◦ d = Dxik
Dxik−1

· · ·Dxi1
(1) = Dη(1).

For any c ∈ Rℓ〈〈X〉〉 define

c ◦ d =
∑

η∈X∗

(c, η)Dη(1).

The composition product is associative, distributes to the
left over the shuffle product, and has the key property that
Fc ◦Fd = Fc◦d [4], [5]. In addition, the composition product
preserves local convergence [12], and the mapping d 7→ c◦d
is a contraction on Rm〈〈X〉〉 in an ultrametric sense [4],
[12].

In the event that two Fliess operators are interconnected
to form a feedback system as shown in Fig. 2, the output y
must satisfy the feedback equation

y = Fc[v] = Fc[u+ Fd[y]]

for every admissible input u. It was shown in [12], [15]
that there always exists a unique generating series e so that
y = Fe[u]. In which case, the feedback equation becomes
equivalent to

Fe[u] = Fc[u+ Fd◦e[u]] = Fc◦̃(d◦e)[u],

where ◦̃ denotes the modified composition product. That is,
the product

c◦̃d =
∑

η∈X∗

(c, η) D̃η(1),

where

D̃xi
: R〈〈X〉〉 → R〈〈X〉〉 : e 7→ xie+ x0(di ⊔⊔ e)

with d0 := 0. It was shown in [12], [21] that the modified
composition product preserves local convergence and that the
mapping d 7→ c ◦̃ d is also an ultrametric contraction. The
feedback product of c and d, namely c@d, is defined as the
unique fixed point of the contractive iterated map

S̃ : ei 7→ ei+1 = c◦̃(d ◦ ei).
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(a) Associative property

−−−−−−−−−−−→

∼

−−−−→
σ⊗id −−−−→id⊗σ

−−−−−−−−−−−→
∼

−−
−
−
−
−
−→

µ

R⊗A A⊗A A⊗ R

A
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Fig. 3. Defining properties of an R-algebra (A, µ, σ).
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−−
−
−
−
−
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−
−
−
−
−→

∆

−−−−−−−−−−−−−−−−→ ∆

A⊗A⊗A A⊗A

A⊗A A

(a) Coassociative property

−−
−−

−−
−−

−−
−→

∼

−−−−→ǫ⊗id
−−−−→
id⊗ǫ

−−
−−
−−
−−
−−
−→

∼

−−
−
−
−
−
−→

∆

R⊗A A⊗A A⊗ R

A

(b) Counitary property

Fig. 4. Defining properties of an R-coalgebra (A, ∆, ǫ).

Specifically, c@d = e, where e = c◦̃(d ◦ e). In the case
of a unity feedback system, this equation reduces to e =
c◦̃e. Given arbitrary c and d, there is no general method for
computing c@d explicitly.

B. Hopf Algebra Fundamentals

The basic elements of Hopf algebra theory used in the
paper are now summarized. The treatment is based on [1],
[2], [6], [25]. The starting point is a systematic statement of
what it means for a set A to be an associative R-algebra. Let
A be an R-vector space and consider an R-bilinear map and
an R-linear map,

µ : A⊗A→ A, σ : R→ A,

respectively, which satisfy the associative property and uni-
tary property as described by the commutative diagrams in
Fig. 3. Here id denotes the identity map on A, and the
symbol ∼ denotes the canonical isomorphism between the
vector spaces A and A ⊗ R. These diagrams are equivalent
to, respectively, the identities

(ab)c = a(bc), a, b, c ∈ A

1A a = a = a1A, a ∈ A,

where µ(a ⊗ b) = ab and σ(1) = 1A is the unit of A.
Traditionally, µ is called the multiplication map, and σ is
called the unit map. The triple (A,µ, σ) is an associative
R-algebra. Next suppose there exist two R-linear maps

∆ : A→ A⊗A, ǫ : A→ R,

which satisfy the coassociative property and the counitary
property as illustrated in Fig. 4. These commutative diagrams
are the same as the ones depicted in Fig. 3 except that the
directions of the arrows have been reversed. In this case, ∆
is called the comultiplication map, and ǫ is the counit map.
The triple (A,∆, ǫ) is called an R-coalgebra. In this setting,
consider the following definition.

Definition 2: A morphism between two R-algebras
(A1, µ1, σ1) and (A2, µ2, σ2) is any R-linear map ψ : A1 →
A2 such that

ψ ◦ µ1 = µ2 ◦ (ψ ⊗ ψ)

ψ ◦ σ1 = σ2.
An analogous definition can be given for a morphism

between two R-coalgebras. Using either concept, one can
produce the notion of a bialgebra as described next.

Definition 3: The five-tuple (A,µ, σ,∆, ǫ) is called an RRR-
bialgebra when ∆ and ǫ are both R-algebra morphisms.

Specifically this means that the mapping ∆ : A → A⊗A
must be an R-algebra morphism between the R-algebras
(A,µ, σ) and (A⊗A,µA⊗A, σA⊗A), where

µA⊗A : (A⊗A) ⊗ (A⊗A) → A⊗A

: (a1 ⊗ a2) ⊗ (a3 ⊗ a4) 7→ µ(a1 ⊗ a3) ⊗ µ(a2 ⊗ a4)

σA⊗A : R→ A⊗A

: k 7→ σ(k) ⊗ 1A.

In which case, it follows directly that

1. ∆◦µ = µA⊗A◦(∆⊗∆) = (µ⊗µ)◦(id⊗τ⊗id)◦(∆⊗∆)
2. ∆ ◦ σ = σA⊗A = σ ⊗ σ,

where τ : A ⊗ A → A ⊗ A : a ⊗ a′ 7→ a′ ⊗ a. Similarly,
ǫ : A → R must be an R-algebra morphism between the
R-algebras (A,µ, σ) and (R, µR, σR). Therefore,

3. ǫ ◦ µ = µR ◦ (ǫ⊗ ǫ) = ǫ2

4. ǫ ◦ σ = σR = 1.

Note that properties 1 and 2 can be expressed in terms of
the commutative diagrams shown in Fig. 5, and, likewise,
properties 3 and 4 are shown in Fig. 6. If instead one intro-
duces the notion of a R-coalgebra morphism as suggested
above, then an equivalent characterization of a bialgebra is
one where µ and σ are both R-coalgebra morphisms, yielding
properties 1 and 3, and properties 2 and 4, respectively.

To complete the development of the Hopf algebra defini-
tion, consider the set of all R-endomorphisms on A, denoted
by End(A). Given two arbitrary f, g ∈ End(A), the Hopf
convolution product,

f ∗ g := µ ◦ (f ⊗ g) ◦ ∆,

defines another element of End(A). The following theorem
is central to the theory.
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−−−−−−−−−−−−−−−−−−−−−−−−−−→

µA⊗A

−−−−−−−−−−−−−−−−−→
id⊗τ⊗id

−−
−
−
−
−
−→

∆⊗∆

−−
−
−
−
−
−→

µ⊗µ

−−−−−−−−−−→
µ

−−−−−−−−−−→
∆

A⊗A⊗A⊗A A⊗A⊗A⊗A
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(a) Property 1

−−−−−−−−−−−−−−→ σ⊗σ

−−
−
−
−
−
−→

∆

−−
−
−
−
−
−→

∼

−−−−−−−−−−−−−−−−−→ σ

A⊗A R⊗ R

A R

(b) Property 2

Fig. 5. Commutative diagrams describing ∆ as an R-algebra morphism.

−−−−−−−−−−−−−−→
ǫ⊗ǫ

−−
−
−
−
−
−→

µ

−−
−
−
−
−
−→

µR

−−−−−−−−−−−−−−−−−→
ǫ

A⊗A R⊗ R

A R

(c) Property 3

−−−−−−−−→

ǫ

−−−−−−−→σ

−−−−−−−−→

1

A R

R

(d) Property 4

Fig. 6. Commutative diagrams describing ǫ as an R-algebra morphism.

Theorem 1: The triple (End(A), ∗, ϑ) forms an associa-
tive R-algebra with unit ϑ = σ ◦ ǫ.

Finally, an element α ∈ End(A) is called an antipode of
the bialgebra if

id ∗ α = α ∗ id = ϑ.

Clearly, this implies that an antipode is a convolution inverse
of the identity map id. When an antipode exists, it is unique
and described by the series

α = id∗−1 = (ϑ− (ϑ− id))∗−1 =

∞∑

k=0

(ϑ− id)∗k.

For any a, a′ ∈ A it follows that α(aa′) = α(a′)α(a). This
final bit of structure culminates in the definition below.

Definition 4: The six-tuple (A,µ, σ,∆, ǫ, α) is called an
RRR-Hopf algebra.

The following definitions concerning bialgebras will be
important.

Definition 5: An R-bialgebra (A,µ, σ,∆, ǫ) is filtered if
there exists a nested sequence of R-vector subspaces of A,
say A0  A1  · · · , such that A = ∪n≥0An and

∆An ⊆
n∑

i=0

Ai ⊗An−i.

The collection {An}n≥0 is called a filtration of A.
Definition 6: An R-bialgebra that is filtered such that

A0 = σ(R) is said to be connected.

Definition 7: An R-bialgebra is graded if there exists a
set of R-vector subspaces of A, say {A(n)}n≥0, such that
A = ⊕n≥0A(n) with

A(i)A(j) ⊆ A(i+j), ∆A(n) ⊆
n⊕

i=0

A(i) ⊗A(n−i),

and ǫ(A(n)) = 0, n > 0.
Definition 8: Let A be an R-bialgebra. An element g ∈ A

is group-like if ǫ(g) = 1 and ∆g = g ⊗ g. If A has only
one group-like element, then any other element a ∈ A is
primitive if ∆a = a⊗ g + g ⊗ a.

A number of useful results follow from these definitions.
For example, if A has a grading {A(n)}n≥0, then a natural
filtration of A is {An}n≥0, where

An =

n⊕

i=0

A(i).

Furthermore, if A(0) = σ(R) then A has only one group-
like element. Perhaps the most important aspect concerning
a connected bialgebra is a key property of its coalgebra. If
A+ := ker ǫ and A+

n := A+ ∩ An then for any a ∈ A+
n it

follows that

∆a = a⊗ 1 + 1 ⊗ a+ ∆′a, (2)

where ∆′a ∈ A+
n−1 ⊗ A+

n−1. From this property, it can be

shown that A = A0 ⊕ A+ and that the following theorem
holds.

Theorem 2: Let (A,µ, σ,∆, ǫ) be a connected R-
bialgebra. Then (A,µ, σ,∆, ǫ, α) is an R-Hopf algebra,
where the antipode is given on A+ by

α = −id +
∞∑

k=1

(−1)k+1 µk∆′ k (3)

with

µk : A⊗A⊗· · ·⊗A→ A : a1⊗a2⊗· · ·⊗ak+1 7→ a1a2 · · · ak+1

∆′ n+1 = (id ⊗ ∆′)∆′ n = (∆′ ⊗ id)∆′ n, n ≥ 1.

Furthermore, for k ≥ n ≥ 1

(ϑ− id)∗k+1a = (−1)k+1µk∆′ ka = 0, a ∈ A+
n ,

and thus, (3) evaluated at a has at most n nonzero terms.
Otherwise, on A0, α = id.
It is easy to show that the reduced coproduct, ∆′, inherits
its coassociativity property from that of ∆.

III. A FAÀ DI BRUNO HOPF ALGEBRA FOR A GROUP OF

FLIESS OPERATORS

A. Group of Fliess Operators

For brevity the presentation henceforth is restricted to the
single-input, single-output case, i.e., m = ℓ = 1. Let X =
{x0, x1} and define the set of operators

Fδ = {I + Fc : c ∈ R〈〈X〉〉}.

It is convenient to introduce the Dirac symbol δ and the
definition Fδ = I such that I + Fc = Fδ+c = Fcδ

with
cδ := δ+ c. In which case, c ◦̃ d = c ◦ (δ+ d). The set of all
such generating series for Fδ will be denoted by R〈〈Xδ〉〉.
The transformation ω : c 7→ δ+c can be viewed as a type of
Magnus transformation. That is, ω maps the free semigroup
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Fig. 7. Compositional inverse of I + Fc.

(R〈〈X〉〉), ◦, δ) to a free group with generators δ + xi, i =
0, 1 [23, Theorem 5.6]. This suggests that Fδ will also form
a group under composition. Consider the composition of two
elements in Fδ:

Fcδ
◦ Fdδ

= (I + Fc) ◦ (I + Fd)

= I + Fd + Fc(I + Fd)

= Fδ+d+c ◦̃ d

= Fcδ◦dδ
,

where cδ ◦ dδ := δ+ d+ c ◦̃ d. It was shown in [21] that the
modified composition product on R〈〈X〉〉 is not associative.
The following lemma, however, holds.

Lemma 1: The composition product on R〈〈Xδ〉〉 is asso-
ciative.

In light of the uniqueness of generating series, the semi-
groups (Fδ, ◦, I) and (R〈〈Xδ〉〉, ◦, δ) are clearly isomorphic.
The next theorem establishes that (Fδ, ◦, I) is a group.

Theorem 3: The triple (Fδ, ◦, I), or equivalently
(R〈〈Xδ〉〉, ◦, δ), forms a group.

Example 1: A linear series c ∈ R〈〈X〉〉 is one whose
support is a subset of the language L := {xn1

0 x1x
n0

0 : ni ≥
0}. The composition product c ◦ d is both left and right R-
linear when c is a linear series. It follows directly in this
case that (δ + c)−1 = δ − c+ c◦2 − c◦3 + · · · .

Example 2: Suppose c ∈ RLC〈〈X〉〉 has finite Lie rank
n. Then I+Fc has an n dimensional input-affine state space
realization of the form

ż = g0(z) + g1(z)u1, z(0) = z0
ỹ1 = h(z) + u1,

where each gi and h is an analytic vector field and function,
respectively, on some neighborhood W of z0 [8]. It is easily
verified that

(c, η) = Lgη
h(z0), (4)

where

Lgη
h := Lgi1

· · ·Lgik
h, η = xik

· · ·xi1 ,

the Lie derivative of h with respect to gi, is defined as

Lgi
h : W → R : z 7→

∂h

∂z
(z) gi(z),

and Lg∅
h = h. It is not difficult to see that the compositional

inverse (I + Fc)
−1 = I + Fc−1 : u2 7→ y2 is described by

the feedback system in Fig. 7. A straightforward calculation
gives a realization for Fc−1 , namely, (g0 − g1h, g1,−h, z0).
Using this realization and (4), one can compute as many
coefficients of c−1 as desired. The first few are:

(c−1, ∅) = −(c, ∅)

(c−1, x0) = −(c, x0) + (c, ∅)(c, x1)

(c−1, x1) = −(c, x1)

(c−1, x2
0) = −(c, x2

0) + (c, ∅)(c, x0x1)+

(c, x0)(c, x1) + (c, ∅)(c, x1x0)−

(c, ∅)(c, x1)
2 − (c, ∅)2(c, x2

1)

(c−1, x0x1) = −(c, x0x1) + (c, x1)
2 + (c, ∅)(c, x2

1)

(c−1, x1x0) = −(c, x1x0) + (c, ∅)(c, x2
1)

(c−1, x2
1) = −(c, x2

1).

Example 3: For a single-input, single-output linear time-
invariant system with transfer function H(s) and state space
realization (A,B,C), the corresponding generating series is
c =

∑

i≥0(c, x
i
0x1)x

i
0x1, where (c, xi

0x1) = CAiB, i ≥ 0.
In light of the previous example, it follows that

(c−1, xi
0x1) = −C(A−BC)iB, i ≥ 0.

Simply expanding these matrix powers gives

(c−1, x1) = −(c, x1)

(c−1, x0x1) = −(c, x0x1) + (c, x1)
2

(c−1, x2
0x1) = −(c, x2

0x1) + 2(c, x1)(c, x0x1) − (c, x1)
3

...

B. Construction of the Faà di Bruno Hopf Algebra

The goal of this section is to describe a Faà di Bruno Hopf
algebra associated with the group (R〈〈Xδ〉〉, ◦, δ), where the
antipode, α, satisfies the identity

c−1
δ = δ + c−1 = δ +

∑

η∈X∗

(αaη)(c) η

with
aη : R〈〈X〉〉 → R : c 7→ (c, η)

denoting the coordinate function for η ∈ X∗. Formally
extend such mappings to R〈〈Xδ〉〉 by letting aδ(cδ) = 1.
Next define a commutative R-algebra of polynomials denoted
by

A = R[aη : η ∈ X∗ ∪ δ],

where the product is defined by

aηaξ(cδ) = aη(cδ)aξ(cδ)

for all η, ξ ∈ X∗ ∪ δ and any given cδ ∈ R〈〈Xδ〉〉. The
first objective is to produce a bialgebra having commutative
product and noncocommutative coproduct

µ : A⊗A→ A : aη ⊗ aξ 7→ aηaξ (5)

∆ : A→ A⊗A : aν 7→ ∆aν , (6)

respectively, such that

µ(∆aν(dδ ⊗ cδ)) = aν(cδ ◦ dδ) = (cδ ◦ dδ, ν)

= (δ, ν) + (d, ν) +
∑

η∈X∗

(D̃η(1), ν)(c, η).

It is clear that the associativity of the composition product
on R〈〈Xδ〉〉 supplies the required coassociativity property

for ∆. Observe that since D̃xi
: e 7→ xie + x0(di ⊔⊔ e), the
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ord(D̃xi
D̃η(1)) ≥ ord(D̃η(1)) + 1 for any letter xi ∈ X .

Therefore, ord(D̃η(1)) ≥ |η| for any η ∈ X∗, and one can
write instead the finite sum

µ(∆aν(dδ⊗cδ)) = (δ, ν)+(d, ν)+

|ν|
∑

k=0

∑

η∈Xk

(D̃η(1), ν)(c, η).

With the aid of this expression and using the equivalence
aδ ∼ 1, the first eight coproducts are found to be:

∆1 = 1 ⊗ 1

∆a∅ = a∅ ⊗ 1 + 1 ⊗ a∅
∆ax0

= ax0
⊗ 1 + 1 ⊗ ax0

+ a∅ ⊗ ax1

∆ax1
= ax1

⊗ 1 + 1 ⊗ ax1

∆ax2

0

= ax2

0

⊗ 1 + 1 ⊗ ax2

0

+ a∅ ⊗ ax0x1
+ ax0

⊗ ax1
+

a∅ ⊗ ax1x0
+ a2

∅ ⊗ ax2

1

∆ax0x1
= ax0x1

⊗ 1 + 1 ⊗ ax0x1
+ ax1

⊗ ax1
+ a∅ ⊗ ax2

1

∆ax1x0
= ax1x0

⊗ 1 + 1 ⊗ ax1x0
+ a∅ ⊗ ax2

1

∆ax2

1

= ax2

1

⊗ 1 + 1 ⊗ ax2

1

.

Continuing the construction, define the unit and counit,
respectively, as

σ : R→ A : λ 7→ λaδ ∼ λ 1 (7)

ǫ : A→ R : aη1
aη2

· · · aηℓ
7→ aη1

(δ)aη2
(δ) · · · aηℓ

(δ). (8)

As required by the definition of a bialgebra, σ(1) = 1, which
is the unit of A, and ǫ◦σ = 1. Furthermore, since ǫ(aδ) = 1,
it follows that aδ is group-like. A central result of the paper
now follows.

Theorem 4: The five-tuple (A,µ, σ,∆, ǫ) described by
(5)-(6) and (7)-(8) is a graded R-bialgebra.

It is important to observe that this bialgebra is not con-
nected, that is, using the natural filtration associated with
the given grading, A0 6= σ(R) = span

R
{aδ}. For example,

a∅ ∈ A0 but a∅ 6∈σ(R). It is also clear that the coproduct
terms computed above do not satisfy (2). Despite this fact,
the following theorem still holds.

Theorem 5: The six-tuple (A,µ, σ,∆, ǫ, α) described by
(5)-(6), (7)-(8) and

αaν = −aν +

n∑

k=1

(−1)k+1 µk∆′ kaν , ν ∈ Xn, ν 6= δ

(9)
with α 1 = 1 is a graded R-Hopf algebra with the grading
given by

A(n) = span
R

{

aη1
aη2

· · · aηl
∈ A :

l∑

i=1

|ηi| = n

}

,

for n ≥ 0 and |δ| := 0.
The corresponding antipode terms are then found from (9)

to be:

α 1 = 1 (10a)

αa∅ = −a∅ (10b)

αax0
= −ax0

+ a∅ax1
(10c)

αax1
= −ax1

(10d)

αax2

0

= −ax2

0

+ a∅ax0x1
+ ax0

ax1
+

a∅ax1x0
− a∅a

2
x1

− a2
∅ax2

1

(10e)

αax0x1
= −ax0x1

+ a2
x1

+ a∅ax2

1

(10f)

αax1x0
= −ax1x0

+ a∅ax2

1

(10g)

αax2

1

= −ax2

1

. (10h)

These terms agree exactly with those for c−1 computed from
Lie derivatives in Example 2, where it was assumed that c
had finite Lie rank. In the present context, however, no such
assumption is required.

The following corollary establishes a direct analogy to the
classical Faà di Bruno Hopf algebra.

Corollary 1: The set of proper series forms a subgroup of
(R〈〈Xδ〉〉, ◦, δ), and the corresponding Faà di Bruno Hopf
subalgebra is connected and graded.
Proof: The first claim follows directly from the identities
(cδ ◦ dδ, ∅) = (c, ∅) + (d, ∅) and (10b). The second claim is
evident from the fact that under the properness assumption,
A0 ∼ R.

Example 4: In the state space setting employed in Exam-
ple 2, c is proper if and only if z0 = 0. This is precisely the
case for the linear system described in Example 3.

A simple calculation shows that c−1 = (−c)@δ (see
Fig. 7). Thus, the following theorem from [26] establishes
that local convergence is preserved by the compositional
inverse operation.

Theorem 6: For any c ∈ RLC〈〈X〉〉 with growth constants
Kc,Mc > 0 it follows that

|(c@δ, η)| ≤ K (A(Kc)Mc)
|η| |η|!, η ∈ X∗,

for some K > 0 and

A(Kc) =
1

1 −Kc ln (1 + 1/Kc)
.

IV. AN EXPLICIT FORMULA FOR THE FEEDBACK

PRODUCT

Given two Fliess operators Fc and Fd which are linear
time-invariant systems with transfer functions G and H ,
respectively, the closed-loop system in Fig. 2 has the transfer
function

G(I −HG)−1 = G
∞∑

k=0

(HG)k.

The next theorem gives a nonlinear generalization of this
type of closed-loop system representation.

Theorem 7: For any c, d ∈ R〈〈X〉〉 it follows that

c@d = c ◦̃ (−d ◦ c)−1 = c ◦ (δ − d ◦ c)−1. (11)

Proof: Clearly the function v in Fig. 2 must satisfy the
identity

v = u+ Fd◦c[v].

Therefore,
(I + F−d◦c) [v] = u.

Applying the compositional inverse
(
I + F(−d◦c)−1

)
on the

left gives
v =

(
I + F(−d◦c)−1

)
[u],

and thus, Fc@d[u] = Fc[v] = Fc ◦̃ (−d◦c)−1 [u] as desired.

Note that (11) also applies when either c = δ or d = δ,
namely, c@δ = c ◦ (δ − c)−1 = (−c)−1 and δ@d = (δ −
d)−1 = δ−d−1, respectively. Next it is shown that feedback
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TABLE I

COEFFICIENTS OF THE SEQUENCES IN EXAMPLE 5.

η ∅ x0 x1 x2

0
x0x1 x1x0 x2

1

(c, η) 1 1 1 2 2 2 2

((−c)−1, η) 1 2 1 10 5 4 2

(c@δ, η) 1 2 1 10 5 4 2

Lgη h(1) 1 2 1 10 5 4 2

(A(1))|η| |η|! 1 3.3 3.3 21.2 21.2 21.2 21.2

preserves local convergence. But the following preliminary
result is needed first.

Theorem 8: The triple (RLC〈〈Xδ〉〉, ◦, δ) is a subgroup of
(R〈〈Xδ〉〉, ◦, δ).

Theorem 9: If c, d ∈ RLC〈〈X〉〉 then c@d ∈ RLC〈〈X〉〉.
Proof: Since the composition product, the modified compo-
sition product, and the compositional inverse all preserve lo-
cal convergence, the claim follows directly from Theorem 7.

Example 5: Consider the operator Fc in the feedback
configuration shown in Fig. 2, where c =

∑

η∈X∗ |η|! η and

Fd = Fδ = I . The first few terms of (−c)−1, as shown in
Table I, were computed using the antipode formulas (10).
After which, c@δ was computed using (11). As expected,
c@δ = (−c)−1. It can be shown that the Lie rank of c is
one. To construct a one dimensional state space realization,
first observe that

c =

∞∑

k=0

k! char(Xk) =

∞∑

k=0

char(X) ⊔⊔ k.

Therefore,

Fc =
∞∑

k=0

Echar(X) ⊔⊔ k =
∞∑

k=0

Ek
char(X) =

1

1 − Echar(X)
.

In which case, defining z = Fc, it follows that

ż = z2(1 + u), z(0) = 1

y = z

realizes y = Fc[u], and

ż = z2 + z3 + z2v, z(0) = 1

y = z

realizes y = Fc@δ[v]. The generating series for the closed-
loop system can be computed directly using (4) with
(g0, g1, h, z0) = (z2+z3, z2, z, 1). As expected, it is identical
to c@δ as shown in Table I. Finally, the upper bound on
the coefficients of c@δ as provided by Theorem 6 with
Kc = Mc = 1 is given in the bottom row of the Table I.

V. CONCLUSIONS

A Faà di Bruno Hopf algebra was constructed for a group
of Fliess operators. Its antipode was used to produce an
explicit formula for the feedback product of two formal
power series. This expression, in turn, facilitated a proof that
local convergence is preserved under feedback.
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