
Risk-sensitive mean field stochastic games

Hamidou Tembine

Abstract— Recently, there has been much interest in un-
derstanding the behavior of large-scale systems in dynamic
environment. The complexity of the analysis of large-scale
systems is dramatically reduced by exploiting the mean field
approach leading to macroscopic dynamical systems. Under
regularity assumptions and specific time-scaling techniques
the evolution of the mean field limit can be expressed in
deterministic or stochastic equation or inclusion (difference or
differential). In this paper, we study a risk-sensitive mean field
stochastic game with discounted and total payoff criterion. We
provide a risk-sensitive mean field system for the long-term
total payoff and derive backward-forward mean field equations.
In contrast to risk-neutral discounted case, we show the non-
existence of stationary mean field response in a simple scenario
with two actions for each generic player.

I. INTRODUCTION

Mean field interactions with large number of players with
different types, locations and controls can be described as
a sequence of dynamic games. Since the population profile
involves many players for each type, class or location, a
common approach is to replace individual players and to use
continuous variables to represent the aggregate average of
type-location-secondary actions. The validity of this method
has been proven only under specific time-scaling techniques
and regularity assumptions. The mean field limit is then mod-
eled by state and location-dependent time process. This type
of aggregate models have been proposed in von Neumann
(1944) and Nash (1951) in the mass-action interpretation.
It is also known as non-atomic or population games and
have been studied by Wardrop (1952, [8]) in a deterministic
and stationary setting of identical players. In the infinite
population games, an equilibrium m is characterized by
a fixed inclusion: the support of the population profile is
included in the argmax of the payoff function r,

{x, mx > 0} = support(m) ⊆ arg max r(m) (1)

In other words, if the fraction of players under a specific
action is non-zero then the payoff of the corresponding
action is the maximum. This large-scale methodology has
inherent connections with evolutionary game theory when
one is studying a large number of interacting players in
different subpopulations. Different solution concepts such
as evolutionarily state states or strategies, neutrally stable
strategies, invadable states have been proposed and several
applications can be found in evolutionary biology, ecology,
control design, networking and economics (see [6], [5], [3]
and the references therein).
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In [7], [4], risk-neutral models of interacting players in dis-
crete time with finite number of states have been considered.
The players share local resources which have finite number
of states. The players are observable only through their own
state which changes according to a Markov decision process.
In the limit, when the number of players goes to infinity, it is
found that the system can be approximated by a non-linear
dynamical system.

Most formulations of discrete time mean-field models have
been of risk-neutral type where the cost (or payoff, utility)
functions to be minimized (or to be maximized) are the
expected values of the stage-additive loss functions.

Not all behavior, however, can be captured by risk-neutral
payoff functions. One way of capturing risk-seeking or risk-
averse behavior is by exponentiating instantaneous payoff
functions before expectation. In this paper we study discrete
time risk-sensitive mean field Markov games. Our work ex-
tends the results in [2], [1] developed for risk-sensitive con-
trolled Markov chain. Compared to the traditional Markov
decision process techniques, additional difficulties arise in
mean field games due to the fact the transitions probabilities
may be controlled by the generic player but also by the mean
field.

Our contribution can be summarized as follows. (i) we es-
tablish backward-forward equation with multiplicative mean
field system, (ii) we show that if a stationary strategy is
obtained maximizing the right-hand side of the mean field
equation, then this strategy is best-response to mean field
whenever it induces a Markov decision process with a unique
positive recurrent class, however, (iii) if this last property
fails, the existence of a best-response strategy cannot be
generally ensured. (iv) In contrast to the risk-neutral dis-
counted payoff where it is well-known (Shapley, 1953) that a
stationary equilibrium exists under complete information and
finite state and actions spaces. The result has been extended
to more general state and action spaces. Here, we show
that optimal stationary strategies may not exist in the risk-
sensitive case. We give examples of non-existence of mean
field best response and sub-optimality of stationary strategies
under the risk-sensitive criterion.

The remainder of the paper is structured as follows. In the
next section we overview the mean field model description.
After we focus on the risk-sensitive cumulative payoff and
the mean field backward forward in Section III. In section
IV we analyze the risk-sensitive discounted payoff. Finally,
Section V concludes the paper.
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II. THE SETTING

We consider a system with n players. Time t ∈ Z+ is
discrete, Z+ denotes the set of natural numbers. For every
player j, X is its own-state space. In this paper X is finite or
X = Z+. Each individual state has two components: the type
of the player and the internal state. The type is a constant
during the game. The individual state of player j at time t
is denoted by xnj,t = (θj , y

n
j,t) where θj is the type and ynj,t

denotes the internal individual state of the player j at time
t. The set of possible states Xj = {1, 2, ...,Θ} × Yj . The
set Yj may include other parameters, such as classes, space
location, current direction and so on. For every player j, Ãj
is the set of actions of that player. Aj : Xj −→ 2Ãj is
a set-valued map (correspondence) that assigns to each state
xj ∈ Xj the set of actions Aj(xj) that are available to player
j. We assume that the set Aj(xj) depends only on the type θj
and value of the state xj (not on the index of the player). In
this paper we restrict our attention to finite number of actions
per state or one-dimensional compact action set per states.
The action of player j at time t is denoted by anj,t. The global
state of the system at time t is xnt = (xn1,t, ..., x

n
n,t). Denote

by ant = (an1,t, . . . , a
n
n,t) the action profile at time t. The

system xnt is Markovian once the action profile ant are drawn
under Markovian strategies. We denote the set of Markovian
strategies by U . The players are coupled not only via their
instantaneous payoff function by rnt (xnt , a

n
t ) but also via the

state evolution xnt i.e the evolution of xnj,t may depend on the
actions and states of the other players. When n is large, the
stochastic game leads to a curse of dimensionality problem.
Define M̃n

t to be the current population profile i.e

M̃n
t (x) =

1

n

n∑
j=1

1l{xnj,t=x}. (2)

where 1l{} denotes the indicator function.
At each time t, M̃n

t is in the set {0, 1
n ,

2
n , . . . , 1}

|X |, and
M̃n
t (x) is the fraction of players who belong to population

of individual state x. The population profile Mn
t depends

implicitly on the strategies adopted by the player. We denote
Uj the set of admissible strategies of player j. For u =
(u1, . . . , un) ∈

∏
j Uj , and a subset X1 ⊆ X , define

Mn
t [u](X1) := 1

n

∑n
j=1 δ{xnj,t[u]∈X1} where δz denotes the

Dirac measure.
We assume that for any given Markovian strategy, the

transition kernel Ln is invariant by any permutation of the
index of the players within the same type. This implies in
particular that the players are only distinguishable through
their individual state. Moreover, this means that the process
Mn
t is also Markovian when the sequence of Markovian

strategies is given. This allows us to use existing frameworks
for the weak convergence of the process Mn

t in Skhorohod
topology.

Kernel definitions: Let Fnt = σ(xnt′ , a
n
t′ , t′ ≤ t) be

the filtration generated by the sequence of states and ac-
tions up to t. The evolution of the system depends on the
decision of the interacting players. Given a history ht =
(xn0 , a

n
0 , . . . , x

n
t , a

n
t ).

Ln(x′;x, u) is the transition kernel on Xn under the
strategy un. The system evolves according to the kernel

Ln(m′;m,u) := P(Mn
t+1 = m′ |Mn

t = m,unt = u)

where h̃t = (xnt′ , a
n
t′ , t′ ≤ t, xnt = xn), such that

1
n

∑n
j=1 δxnj = m. Ln(m′;m,u) corresponds to the pro-

jected kernel of Ln. We examine the discrete time mean
field limit case. Sufficient conditions for weak convergence
of the process {Mn

t }0≤t≤T can be found in [5], [4].

A. Classical mean field payoff

A history of length t for a generic player is a col-
lection (xnj,t′ , a

n
j,t′ ,M

n
t′ , t′ ≤ t). We denote by Hj,t

the set of histories up to t. A strategy of player j is
a collection of mappings from ∪t≥0Hj,t −→ ∆(A). A
initial state xnj,0, the strategy profile σ, and a trajectory
{Mn

t (.)}t≥0 generates a probability measure Pσ,x0,m0 over
the set of play. We write Eσ,x0,m0

to denote the expec-
tation operator under Pσ,x0,m0

. The long-term total payoff
is given by R∞(σ, x,m) = Eσ,x,m

∑
t≥0 rt(xt, at,mt), the

δ−discounted payoff is Rδ(σ, x,m) = Eσ,x,m
∑
t≥0 δ

t(1 −
δ)rt(xt, at,mt), and the limiting time-average payoff (also
called Cesaro mean payoff) is given by R(σ, x,m) =
lim infT

Eσ,x0,m0

(
1

T + 1

T∑
t=0

rt(xt, at,mt) |x0 = x,m0 = m

)
.

Recall that the mean field system in the risk-neutral
cases are given by Bellman-Shapley equations (backward for
finite horizon, fixed-point for infinite horizon) and Poisson
equation (for the time-average). In this paper, we establish
the analogous of these equations under the mean field risk-
sensitive payoffs.

B. Risk-sensitive formulations

A link between stochastic and deterministic mean field
viewpoints is provided by considering risk-sensitive stochas-
tic approach. Let g(y) be a smooth function such that
g′(y) > 0, g′′(y) 6= 0. The risk-sensitive approach consists
to optimize the expectation E(g(R)) where R is the tra-
ditional long-term payoff function. The certainty-equivalent
expectation e(R) is defined by g(e(R)) = E(g(R)). When
g = e

y
µ is exponential,

e(R) = g−1 (E(g(R))) = µ log
(
E
(
e
R
µ

))
, µ > 0.

The case where µ is negative can be examined following in a
similar way. These equalities can be interpreted as follows. A
generic player with payoff criterion g is indifferent between
the random (thus uncertain) payoff R and the (certain) payoff
e(R). We define

Fδ,µ(σ, x,m) = µ logE
(
e

1
µ

∑
t≥0 δ

t(1−δ)rt(xt,at,mt)
)

(3)

= g−1(E(g(Rδ))) (4)

F∞,µ(σ, x,m) = µ logE
(
e

1
µ

∑
t≥0 rt(xt,at,mt)

)
(5)
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III. OPTIMALITY FOR THE RISK-SENSITIVE PAYOFF

We first observe that if we translate rt(.) with a constant c,
rt(.)+c then the risk-sensitive payoff F∞,µ becomes F∞,µ+
c. This means that the optimal strategies and the equilibrium
strategies are unchanged by the translation operation. Thus,
we can consider positive function rt(.).

Assumption A0: The mapping rt(.) is positive. The infinite
sum in F∞,µ is finite. In the continuous case, the payoff and
the transition probabilities are continuous in (a,m).

Define vj,µ(x,m) = supσ F∞,µ(σ, x,m). Let qxσx′(m)
be the marginal of the limiting of Ln for a generic player.

A. Risk-sensitive Mean field

We establish a risk-sensitive mean field equation for the
function vj,µ.

Proposition 1: The optimal value vj,µ(x,m) of a generic
player j with type θj corresponding to the first component
of x satisfies the µ−risk sensitive mean field best-response
equation: g(v∗j,µ(xt,mt)) =

sup
a∈∆(A(xt))

[
e

1
µ rt(xt,a,mt)

∑
x′

qxtax′(mt)g(v∗j,µ(x′,mt+1))

]
Proof: See appendix.

Next, we define an equilibrium concept called mean field
equilibrium for this class of dynamic games.

Definition 1: A pair (u∗t ,m
∗
t )t≥0 is a risk-sensitive mean

field equilibrium if {u∗t }t≥0 is a best-response to the mean
field trajectory {m∗t }t≥0 and for any time t, u∗t generates the
mean field m∗t .
We are now prepared to state the risk-sensitive mean field
system.

Corollary III-B: Assume A0 holds. Then, a risk-sensitive
mean field system is obtained i.e the optimal value and the
associated mean field satisfy:

g(v∗j,µ(xt,mt)) = maxu∈Aj(xt)

[
e

1
µ rt(xt,u,mt)∑

x′ qxtux′(mt)g(v∗j,µ(x′,mt+1))
]

mt+1(x′) =
∑
x̄∈X mt(x̄)L(x′|x̄, u∗t ,mt)

where

u∗t ∈ arg max
u

e
1
µ rt(xt,u,mt)

∑
x′

qxux′(mt)g(v∗j,µ(x′,mt+1)).

Proof: The proof of this result follows from Proposition
1 and the consistency relationship between the played actions
by the individual players and the resulting mean field limit
generating by the transition kernel.
Following the same reasoning, a stationary mean field equi-
librium (u∗,m∗) should satisfy

g(v∗j,µ(x,m∗)) = maxu∈∆(Aj(x))

[
e

1
µ r(x,u,m

∗)×∑
x′ qxux′(m

∗)g(v∗j,µ(x′,
∑
x̄∈X m

∗(x̄)L(x′|x̄, u∗,m∗)))
]

= e
1
µ r(x,u

∗(x),m∗)∑
x′ qxu∗(x)x′(m

∗)g(v∗j,µ(x′,m∗)
m∗(x′) =

∑
x̄∈X m

∗(x̄)L(x′| x̄, u∗,m∗)
rt(.) = r(.).

where u∗ ∈ arg maxu

{
e

1
µ r(x,u,m

∗)∑
x′ qxux′(m

∗)

g(v∗j,µ(x′,
∑
x̄∈X m

∗(x̄)L(x′|x̄, u∗t ,m∗)))
}
. To begin with

the notion of irreducibility in stochastic games, recall that
a set S is closed under σ if

∑
x′∈S qxσx′(m) = 1 for

every x, whereas is communicating under σ if for each
x ∈ S there exists a positive integer n(x, x′, σ) = n such
that P(xt = x′|x0 = x,m, σ) > 0; a subset S ⊂ X is a
recurrent class if S is both closed and communicating, so
that two different recurrent classes are disjoint. We say that
the Markov decision process with unique positive recurrent
class under a strategy u ∈ U if the corresponding Markov
chain has a unique positive recurrent class. This property is
referred as unichain property. For finite state case, positive
recurrent refers to the case where the expected return time
is finite. Below we give sufficient conditions for a stationary
strategy π to be best response to m∗.

Proposition 2: Assume A0 holds. Assume a stationary
strategy π satisfies:

• ∀x, g(v∗j,µ(x,m∗)) =

e
1
µ r(x,π(x),m∗)∑

x′ qxπ(x)x′(m
∗)g(v∗j,µ(x′,m∗)),

• The strategy π generates a Markov decision process
with unique positive recurrent class,

• m∗(x′) =
∑
x̄∈X m

∗(x̄)L(x′|x̄, π(x̄),m∗)

Then, π is a risk-sensitive compatible best-response to the
mean field (among all the general strategies).

Proof: A sketch proof is provided in Appendix.
We now state a general comparison result for the optimal
value for the best response to mean field.

Proposition 3: Suppose that A0 holds. Let v′ : X ×
∆(X ) −→ [0,∞) be a function such that for all (xt,mt),

g(v′(xt,mt)) ≥

sup
a∈A(xt)

e
1
µ rt(xt,a,mt)

∑
x′

qxtax′(mt)g(v′µ(x′,mt+1)).

Then, the optimal value v∗µ is bounded by v′ i.e v′ ≥ v∗µ =
supσ F∞,µ(σ, x,m).

Proof: In appendix.

C. Non-existence if not unichain

In this subsection we examine the non-existence of optimal
response if the assumptions of unique positive recurrent class
fail. Suppose µ > 0. Our example has two individual states
X = {0, 1}. The set of actions in state 0 is reduced to a
singleton Aj(0) = {0}, and the set of actions in state 1
is Aj(1) = [0, 1] (a continuum set of actions). The payoff
in state 0 is 0 and the payoff is state 1 is given by a
reward of 1 and a cost of investment proportional to a. We
choose a normalized factor µ

2 . Thus, the payoff in state 1
is r(1, a,m) = µ

2 − a
µ
2 . The transition probabilities in state

0 are q000(m) = 1, q001 = 0. The transitions from state 1
are q1a1(m) = a = 1 − q1a0(m). For a < 1, the more the
player investment is high the more he/she has chance to stay
in state 1 but has a higher cost (of investment). For a = 1,
the payoff is zero and the state will move to 0 the next slot.

Thus, for every strategy σ, the state 0 is an absorbing
state. One has, P

(∑
t≥0 r(xt, at,mt) = 0 | x0 = 0

)
= 1.
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Thus, the expectation

Eσ,x,m

g
∑
t≥0

r(xt, at,mt)

 | x0 = 0

 = 0.

and payoff under σ is zero if the starting state is 0. Hence,
v∗µ(0,m) = 0, for any m. Then, the analysis reduces to the
events until absorption i.e the exit time from state 1. A pure
stationary strategy in this mean field stochastic game consists
to specify the action to be played in state 1 (because in state
0 the only available choice is 0). We consider the stationary
strategy π defined by π(0) = 0, π(1) = a1

Proposition 4: • The payoff is monotone in a1.
• There is an optimal payoff. The optimal payoff is
µ log 2.

• There is no stationary strategy that is best response to
mean field.

Since action spaces are compact in any state, there ex-
ists a stationary strategy solving the dynamic programming
equation. The above result shows that such strategies are
not optimal for the risk-sensitive payoff. This discontinuity
comes from the discontinuity in the transition probabilities
in the class of reduction of chain.

This example tell us that there is a big difference between
standard repeated games (playing the game all the steps
or equivalently single state stochastic game) and stochastic
games (in the sense of Shapley 1953). In standard repeated
games, playing an optimal strategy at each step leads to an
optimal strategy for the long-term game. Here, it is not the
case. It is important to notice that the strategy π provides
an ε−optimal response to the mean field for arbitrary small
ε > 0. However, there is no 0−optimality.

IV. DISCOUNTED PAYOFF

Following the above analysis, we established that the
δ−discounted value satisfies:

g(v∗j,µ,δ(xt,mt)) = maxu∈Aj(xt)

[
e

1−δ
µ rt(xt,u,mt)∑

x′ qxtux′(mt)g(δv∗j,µ,δ(x
′,mt+1))

]
mt+1(x′) =

∑
x̄∈X mt(x̄)L(x′|x̄, u∗t ,mt)

It is well known that for the risk-neutral case, under
irreducibility conditions of Markov decision process, that
when the discounted goes to zero the limitting values (resp.
the optimal strategies in the discounted case give optimal
value (resp. optimal strategies) of the average cost criterion.
The same property holds for a fixed mean field trajectory.

It is natural to ask whether a vanishing discount approach
is possible or not in the risk-sensitive mean field case.

As we will see in the next sections, the answer to this
question is negative for the risk-sensitive payoff.

A. Non-existence

In this subsection, we provide a non-existence result for
stationary strategies under the payoff Fδ. There is no type
and no resource state (equivalently both are singletons). Let
X be the set of natural numbers. There is only one choice
in state 0, A(0) = {a0}. There are two actions in any

state x ≥ 1, A(x) = {a0, a1}, ∀x ≥ 1. The transition
probabilities of a generic player j, Ln(xnj,t+1;xnj,t, a

n
j,t,m

n
t )

is given by Ln(0; 0, a0,m
n) = 1 = Ln(0;x, a0,m

n), ∀x ≥
1, Ln(x;x, a1,m

n) = 1
2 − εξn(mn), Ln(0;x, a1,m

n) =
1
2 + εξn(mn), ∀x ≥ 1. When n −→∞, the term ξn −→ 0.
The asymptotic of the payoff r(xnj,t, a

n
j,t,m

n
t ) is given by

r(x, a0,m) ∼ χ1 = 2
3δ0 + 1

3δ3, r(x, a1,m) ∼ χ2,x, where
χ2,x = χ̄2,tx , χ̄2,t ∼ 1

2δ0 + 1
2δ2+ 1

t
, t ≥ 1.

Define γ1 = max{ 1
µk
, 1
µk
≤ δ(1 − δ)}. This is well-

defined because µk −→ +∞. γl = max{ 1
µk
, 1
µk
≤ δl(1 −

δ), 1
µk

< γl−1}, l ≥ 2. Let tl = max{t, δt(1 − δ) ≥ γl}.
We choose χ1, χ2 independent.

E
[
eδ
t(1−δ)r(xt,a0,mt)

]
= E

[
eδ
t(1−δ)χ1

]
E
[
eδ
t(1−δ)r(xt,a1,mt)

]
= E

[
eδ
t(1−δ)χ2

]
Now, using the property of the generating function of the

random variable χ1, χ2, one has E
[
eδ
t(1−δ)r(x,a1,mt)

]
≤

E
[
eδ
t(1−δ)r(x,a0,mt)

]
, t ≤ tx, x ≥ 1 Similarly,

E
[
eδ
t(1−δ)r(x,a1,mt)

]
> E

[
eδ
t(1−δ)r(x,a0,mnt )

]
, t > tx, x ≥ 1

Based on this observation, we construct the time-
dependent strategy σ = (σ∗t )t≥0.

x ∈ Z+, σ
∗
t (x) =

{
a1 if t > tx
a0 if t ≤ tx

Proposition 5: (i) The strategy σ∗t is an optimal strategy
in response to the mean field. (ii) No stationary strategy can
be optimal.

Proof: The statement (i) follows from the fact the
difference E

(
e

1
µχ2,x − e

1
µχ1

)
is 1

2 + 1
2e

(2+ 1
x ) 1

µ − 2/3 −
1/3e

3
µ is zero for some µ = µ∗x, strictly positive for µ > µ∗x

and strictly negative for µ < µ∗x. Moreover the mapping
(integers) x −→ µ∗x is strictly increasing and goes to infinity
when x goes to infinity. The second statement follows from
the fact any strategy is weakly dominated by σ∗t . Since
tx −→ +∞ when x −→ +∞, σ∗t strictly dominates any
stationary strategy.

S-modular risk-sensitive mean stochastic games

We provide sufficient conditions for structural results,
monotonicity of optimal response to mean field and the
associated value functions. The monotonicity can be the state
variable or time t. Since one has a multiplicative Bellman-
Shapley equation, we need to have properties that preserve
the S-modularity of a product of two functions. In order
words, what are the conditions under which g1g2 is S-
modular? Let (E,�) be a lattice. We say that g1 is sub-
additive if g1(inf(e, e′)) + g1(sup(e, e′)) ≤ g1(e) + g1(e′).
Here we report a well-known result.

Proposition 6: Let (E,�) be a lattice and g1, g2 be non-
negative and sub-additive functions on E. Assume in addi-
tion that for any non-comparable pair (e, e′) ∈ E2, such that
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g1(e) ≤ g1(e′), one has g1(e) = g1(inf(e, e′)), g2(e′) =
g2(sup(e′, e)). Then the product g1g2 is sub-additive in E.

We apply this result to g1 = e
1
µ r(x,a,m) and g2 =∑

x′ qxax′(m)g(v(x′, 〈m,L〉)). One can use Tarski’s fixed-
point theorem to establish the existence of fixed point under
suitable conditions.

V. CONCLUSION

In this paper we have presented risk-sensitive mean field
stochastic games as well as their optimality equations. We
provided examples of non-existence and suboptimality of
stationary strategies.
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APPENDIX

For the clarify the presentation, the proofs are done for
time-homogeneous instantaneous payoff function i.e rt(.) =
r(.).

Proof of Proposition 1 First, observe that
g(
∑
t≥0 r(xt, at,mt)) = e

r(x0,a0,m0)
µ g(

∑
t≥1 r(xt, at,mt)),

for any arbitrary strategy σ, x0, x1 ∈ X , a0 ∈ A(x), the
Markov property implies that

G∞ = E

g(
∑
t≥0

r(xt, at,mt) | x0, a0,m0, x1,m1)


= e

r(x0,a0,m0)
µ Eσ

g(
∑
t≥1

r(xt, at,mt) | x0, a0,m0, x1,m1)


= e

r(x0,a0,m0)
µ Eσ′

g(
∑
t≥0

r(xt, at,mt) | x1,m1)


where σ′ is the strategy induced by σ after the history
(x0, a0,m0) i.e σ′(.|ht) = σ(.|x0, a0,m0, ht). Since g is
positive and increasing,

e
r(x0,a0,m0)

µ g(F∞,µ(σ′, x1,m1)) ≤ e
r(x0,a0,m0)

µ g(v∗µ(x1,m1)).

Now, we taking the expectation with respect to x1 yields

Eσ

g(
∑
t≥0

r(xt, at,mt) | x0, a0,m0)


≤ e

r(x0,a0,m0)
µ

∑
x1

qx0a0x1(m0)g(v∗µ(x1,m1))

≤ sup
a

[
e
r(x0,a,m0)

µ

∑
x1

qx0ax1
(m0)g(v∗µ(x1,m1))

]
.

Taking the expectation with the respect to a0 gives

g(Fµ(σ, x0,m0)) = Eσ

g(
∑
t≥0

r(xt, at,mt) | x0,m0)


≤ sup
a∈A(x0)

[
e
r(x0,a,m0)

µ

∑
x1

qx0ax1
(m0)g(v∗µ(x1,m1))

]
Since the strategy σ is arbitrary and g is increasing and
continuous, g(v∗µ(x0,m0))

≤ sup
a∈A(x0)

[
e
r(x0,a,m0)

µ

∑
x1

qx0ax1(m0)g(v∗µ(x1,m1))

]
.

Now, we establish the reverse inequality. Fix ε > 0. For
all x ∈ X , select an action ax ∈ A(x) and a strategy
satisfying F ∗µ(σx, x,m) ≥ v∗µ(x,m) − ε (the existence of
such strategy follows from the definition of sup). Now
we construct a new strategy as follows: For each state x,
σ̃0(ax|x) = 1, σ̃t(.|ht) = σt−1(.|xt, at−1, . . . , x2, a1, x1).
Let us compute the payoff under σ̃.

Eσ

g(
∑
t≥0

r(xt, at,mt)) | x, ax,m, x1

 =

e
1
µ r(x,ax,m)Eσ̃

g(
∑
t≥0

r(x′t, at,mt)) | x′0 = x1


= e

1
µ r(x,ax,m)g(Fµ(σ̃, x1)) ≥ e

1
µ r(x,ax,m)g(v∗µ(x1)− ε) =

e
−ε
µ e

1
µ r(x,ax,m)g(v∗µ(x1)).

Taking the expectation with the respect to x1 and ax, one
gets g(Fµ(σ̃, x)) ≥

e
−ε
µ e

1
µ r(x,ax,m)

∑
x1

qxaxx′(m)g(v∗µ(x1,mt+1)).

Since g(v∗µ(x,m)) ≥ g(Fµ(σ, x,m)) for any σ, the above
inequality implies that g(v∗µ(xt,mt)) ≥

e
−ε
µ e

1
µ r(xt,axt ,mt)

∑
x1

qxtaxtx′(mt)g(v∗µ(x′,mt+1))

for arbitrary ε > 0 and axt ∈ A(xt). Thus, g(v∗µ(xt,mt)) ≥

sup
a
e

1
µ r(xt,a,mt)

∑
x′

qxtax′(mt)g(v∗µ(x′,mt+1))

where mt+1 is driven by L. Combining together one gets
the announced result.
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PROOF OF PROPOSITION 3

g(v′(x,m)) ≥ Eσ,x1(e
1
µ r(x0,a0)g(v′(x1,m1)) | x0 =

x,m0 = m). We use the Markov property and induction
method to prove the comparison inequality. g(v′(xt,mt)) ≥
Eσ,xT+1

(e
1
µ

∑T
t=0 r(xt,at,mt)g(v′(xT+1,mT+1)) | xt =

x,mt = m). Since v′ ≥ 0 and g is increasing,
g(v′(xt+1,mt+1)) ≥ g(0)

g(

T∑
t=0

r(xt, at,mt)) −→ g(

∞∑
t=0

r(xt, at,mt)) < +∞

by positivity of r() and assumption A0.
Thus, the monotone convergence theorem implies that

g(v′(x,m)) ≥ Eσ

g(
∑
t≥0

r(xt, at,mt)) |x0 = x,m0 = m


Hence, g(v′(x,m)) ≥ g(Fµ(σ, x,m)), for all σ, x,m. This
completes the proof.

PROOF OF PROPOSITION 2

We provide only a sketch of proof. Assume A0. Let π be
a stationary strategy satisfying
(a) ∀x, g(v∗j,µ(x,m∗)) =

e
1
µ r(x,π(x),m∗)∑

x′ qxπ(x)x′(m
∗)g(v∗j,µ(x′,m∗)),

(b) The strategy π generates a Markov decision process
with unique positive recurrent class,

(c) m∗(x′) =
∑
x̄∈X m

∗(x̄)L(x′|x̄, π(x̄),m∗)

For each x,m and t, let wt(x,m) be the equivalent of
v∗j,µ(xt,mt) with the respect to g starting from t (not from
0).

g(wt(xt,mt)) = Eπ
[
g(v∗j,µ(xt,mt)) | x0 = x,m0 = m

]
.

The key element for the optimality of π as best response
to m is the ergodic Markov theorem which will give the
independence of payoff in x. There exists a positive function
c(.) which depends only on m such that

lim
t−→∞

wt(x,m) = c(m), ∀x.

Let prove this statement. Since π satisfies the relation (b) the
Markov property yields for a random variable xt

(∗) g(v∗j,µ(xt,mt))=

Eπ
(
e

1
µ r(xt,at,mt)g(v∗j,µ(xt+1,mt+1)) | xt,mt

)
.

and g(wt+1(x,m)) = Eπ(g(wt(x1)) | x0 = x). Then, (∗)
implies that

g(v∗j,µ(xt,mt)) ≥ Eπ(g(v∗j,µ(xt+1,mt+1)) | xt)

(because the positivity of µ and r(.) implies that the term
exponential in (∗) is greater than 1). This gives the inequality
g(wt+1(x,m)) ≤ g(wt(x,m)), ∀ x. i.e t −→ wt is mono-
tone decreasing in time. Note that w0(x,m) = v∗j,µ(x,m).
There exists a function w∗(x,m) such that wt(x,m) con-
verges to w∗(x,m). We now use the unichain property
which implies that there is a unique invariant distribution

(ix′(m))x′∈X of the Markov decision process induced by π
and m such that,

g(w∗(x,m)) = lim
T−→∞

1

T

T−1∑
t=0

Eπ (g(w∗(xt,mt))|x,m)

=
∑
x′

ix′(m)g(w∗(x′,m)) =: w∗(m)

which is independent of x. Now, c(m) = w∗(m) is positive.
It is clear that w∗(m) = 0 because v∗j,µ(x,m) − w∗(m)
satisfies the comparison property. i.e v∗j,µ(x,m)−w∗(m) ≥
v∗j,µ(m) from which we deduce w∗(m) ≤ 0 (note that by
unichain argument v∗j,µ(x,m) does not depend on x). Now,
consider the term e

1
µ

∑T
t=0 r(xt,at,mt). By positivity of r(.)

and monotonicity, one has

e
1
µ

∑T
t=0 r(xt,at,mt) −→ e

1
µ

∑+∞
t=0 r(xt,at,mt)

when T goes to infinity. Then,

e
1
µ

∑T
t=0 r(xt,at,mt)g(v∗j,µ(xT+1,mT+1)) −→

e
1
µ

∑+∞
t=0 r(xt,at,mt)g(w∗(m)).

Thus,

lim
T

Eπ
(
e

1
µ

∑T
t=0 r(xt,at,mt)g(v∗j,µ(xT+1)) |x,m

)
=

Eπ,x,m
(
e

1
µ

∑+∞
t=0 r(xt,at,mt) | x,m

)
and v∗j,µ(x,m) = Fj,µ(π, x,m) which gives the optimality
π in response to m. This completes the proof.
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