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Abstract— Observer design for descriptor systems, or systems
of differential algebraic equations (DAEs) as they are also
known, is well studied in the linear time invariant (LTI) case.
However, those studies do not readily extend to general linear
time varying (LTV) or nonlinear descriptor systems. This paper
presents an alternative approach for observer design that not
only works for the LTI case but also shows great potential for
the design of observers for general LTV descriptor systems.

I. INTRODUCTION

Many physical systems are most naturally modeled as
systems of differential algebraic equations (DAEs) [4]. Con-
siderable effort has been expended on designing simulation
and analysis tools for DAEs. Observers play an important
role in control theory, so it is natural to consider observers for
DAEs. Work to date has focused on the linear time invariant
(LTI) case [2], [9], [10], [11] and does not easily extend to the
linear time varying (LTV) or nonlinear cases. Recently there
has been progress on generating stabilized completions of
LTV and nonlinear DAEs [7], [13]. This work was originally
developed with an eye toward numerical simulation of DAEs.
In this paper, we begin to consider how these recent results
can be used to develop theory and algorithms for observers
for linear and nonlinear DAEs by focusing on the LTI case.

Section II presents the general approach and background
information. Section III develops connections between com-
pletions and observable subspaces. Sections IV and V each
discuss a method for generating a stabilized completion.
Section VI gives a computational example. Section VII
discusses some technical details that must be addressed
before extending this approach to LTV DAEs. This approach
for observer design also shows great potential for nonlinear
DAEs, but that discussion is beyond the scope of this paper.
Conclusions are in Section VIII. Due to space limitations we
assume that the reader is familiar with basic DAE theory [4].

II. THE GENERAL APPROACH

We start with a solvable LTI DAE

Eẋ(t) + Fx(t) = Bu(t), (1a)
y(t) = Cx(t) +Du(t), (1b)

where E,F,B,C,D are appropriately sized matrices. Here
(1a) is the process and (1b) is the output equation. Additional
known inputs can be included in (1a) without difficulty.
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Our goal is to define an ordinary differential equation
(ODE) observer with state estimator x̂(t) such that ‖x(t)−
x̂(t)‖ = O(exp(−δt)‖x(0)−x̂(0)‖) for any x̂(0) and for any
consistent initial condition x(0) for (1a). Here δ > 0 gives
the convergence rate that we want for our observer. A similar
appearing problem was considered in [1], but there are
several key differences between [1] and this paper. In [1] x̂(t)
was consistent with (1a), but in this paper x̂(t) satisfies (1a)
asymptotically. Also, the results on stabilized completions
were not yet available so the algorithms in [1] are much
more complex. Finally, unlike this paper, the approach of [1]
does not have the potential for being extended to nonlinear
problems.

A completion of a DAE is a system of ODEs whose
solutions include those of the DAE. Ways of converting
a DAE into an ODE have been used since at least the
1970s. However, if the problem was not LTI, these ap-
proaches required the problem to have explicit constraints
and structure. The first general algorithm was based on least
squares solutions of the derivative array [5] and formed the
least squares completion (LSC). However, a completion has
solutions in addition to those of the original DAE, and it
was shown that these additional dynamics could be unstable
[6]. Recently an investigation into these additional dynamics
has begun [7], [13], including showing how to modify the
process of computing the completion so that the additional
dynamics could have some desired stability properties [7].

The approach of this paper may be summarized as follows.
We choose a convergence rate for the observer and construct
a stabilized completion whose additional dynamics converge
faster than this desired rate. We then design an observer for
the stabilized completion with a convergence rate that is at
least the desired rate.

III. COMPLETIONS AND OBSERVABILITY

First we examine how computing a completion affects
observability. If computed from the derivative array equations
as described later, the completion takes the form

˙̃x(t) = Ãx̃(t) +
k∑
i=0

B̃iu
(i)(t) (2)

independent of how the completion is computed. Here u(i)

is the ith time derivative. From the theory of DAEs, there is
a full row rank matrix M such that

Mx̃(t) =
k∑
i=0

B̂iu
(i)(t) (3)
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defines the solution manifold of (1a). M is assumed without
loss of generality to be full row rank and is determined
while computing the completion. In [3] we use (3) to modify
the reduced order observer approach of [14]. Any other
completion computed from the derivative array is ˙̌x(t) =
(Ã+ ∆M)x̌(t) +

∑k
i=0 B̌iu

(i)(t) for some matrix ∆ [6].
Theorem 1: Let OX be the observability matrix for the

pair (X,C). Let N(Y ) denote the nullspace of Y . Then

N(M) ∩N(OÃ) = N(M) ∩N(OÃ+∆M ). (4)

In particular, each finite eigenvalue of the matrix pencil
sE+F is either observable or unobservable for all comple-
tions. That is, changing the completion does not alter which
finite matrix pencil eigenvalues are observable.

Proof: N(M) and N(OÃ) are Ã invariant. N(M) is
invariant since Mx(t) = 0 describes the solutions of Eẋ(t)+
Fx(t) = 0. If φ ∈ N(M), then (Ã+ ∆M)φ = Ãφ. But Ãφ
is again in N(M) by invariance. Hence (Ã+∆M)rφ = Ãrφ
for all integers r ≥ 0. Theorem 1 now follows.

Let us examine the situation more carefully. Let V1 and
V2 be subspaces such that V2 ⊕N(M) ∩N(OÃ) = N(M)
and V1 ⊕N(M) = Rn. Assuming we pick a compatible set
of coordinates, we get that

Ã =

 A1 0 0
A2 A3 0
A4 A5 A6

 , M =
[

M1 0 0
]
,

and C =
[

C1 C2 0
]
. Since N(OÃ) ⊂ N(C) we know

M1 is invertible and C2 is full column rank. Then

Ã+ ∆M =

 A1 + ∆1M1 0 0
A2 + ∆2M1 A3 0
A4 + ∆3M1 A5 A6

 .
But for a given M1, the matrix ∆ can be chosen so the
first block column of Ã + ∆M is anything. In particular,
the rank of the observability matrix can vary from one
completion to another, and thus, observability properties can
vary between completions. The computational example will
show that the rank of the observability matrix can differ even
when working with the most widely used completions.

IV. USING STABILIZED DIFFERENTIATION

The first method of computing a completion uses stabilized
differentiation and forms the stabilized LSC. Suppose that
E,F,B,C,D are constants and that {E,F} is a regular
pencil. That is, sE + F is square and is not identically
singular as a function of s. Suppose the index is k and the
desired convergence rate of the observer is δ. Take λ > δ.
Then the stabilized derivative array is formed by applying
the differential polynomial d

dt + λ to (1a) k times, giving

Ew(t) + Fx(t) = Bv(t), (5)

the stabilized version of the derivative array equations where

F =

 λ0F
...

λkF

 , w(t) =

 ẋ
...

x(k+1)

 , v(t) =

 u
...

u(k)

 ,

and E , B respectively are the following (k + 1) × (k + 1)
block matrices,

E 0 . . . 0

λE + F E
. . .

...
...

...
. . . 0

...
...

... E

 ,


B 0 . . . 0

λB B
. . .

...
...

...
. . . 0

...
...

... B

 .
In the LTI case the index k of the DAE may be taken as
the smallest nonnegative integer such that [E ,F ] is full row
rank and the first dim(x) columns of E are independent of
the other columns of E [4]. In the LTV case there is an
additional condition that E has constant rank. In practice
a subset of the equations (5) may suffice for carrying out
subsequent calculations and would not affect our results. For
instance the example (12) is a Hessenberg system [4] so that
three differentiations of (12c), two differentiations of (12b),
and one differentiation of (12a) could be used to build the
derivative array (5).

Previous theory shows [E ,F ] is full row rank but E is
neither full row nor full column rank. Taking the least squares
solution of (5) for w(t) given x, u uniquely determines ẋ(t)
and results in the stabilized LSC with output

˙̃x(t) = Ãx̃(t) +
k∑
i=0

B̃iu
(i)(t) (6a)

ỹ(t) = Cx̃(t) +Du(t). (6b)

The LSC comes from the first block row of E† [B − F ]
where E†(Bv(t)−Fx(t)) is the least squares solution of (5)
for w(t) and E† is the Moore-Penrose inverse of E [8]. All
solutions of (1a) are also solutions of (6a), which can be
written as x̃(t) = x(t) + x̄(t). x(t) satisfies (1a), and

d

dt
(Hx̄(t)) = (−λI +N)Hx̄(t) + g(t) (7)

is satisfied by Hx̄(t) for N a nilpotent matrix of index k and
H an appropriate coordinate change. Thus x̄(t) is a linear
combination of functions with form tje−λt for 0 ≤ j ≤ k−1.

The actual outputs y(t) from (1) only involve x(t) that
satisfy (1a). However, since (6) is constructed so x̄(t) goes
to zero fast enough, it suffices to construct our observer for
(1) based on (6). Using the usual techniques for observer
design, an observer for (6) has the form

˙̂x(t) = Ãx̂(t) +
k∑
i=0

B̃iu
(i)(t) + L(y(t)− ŷ(t)), (8a)

ŷ(t) = Cx̂(t) +Du(t). (8b)

The pair (Ã, C) does not need to be observable, but all
eigenvalues γ of Ã with Re(γ) ≥ −δ must be observable.
We refer to this condition as strongly detectable. Addition-
ally, L is chosen, using the usual algorithms, so that all
eigenvalues ψ of Ã− LC have Re(ψ) < −δ.

The existence of derivatives of u(t) in (8a) raises questions
of both a computational and a practical nature, but it is
important to note two things. First, u(t) is a known input. In
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many problems it is possible to provide derivatives, at least to
low order, of this input. Second, in particular problems many
B̃i are often zero. This structure is illustrated in Section VI.

V. USING THE ALTERNATIVE STABILIZATION

An approach is introduced in [12] that numerically finds
an index one DAE and integrates it with a BDF method.
We modified this approach in [13] to get the alternative
stabilized completion (ASC). The method of computing a
completion using alternative stabilization is computationally
more intricate to program but has a number of potential
advantages in the generation of stabilized dynamics to be
used in observers for LTV and nonlinear systems. In this
section we review how the extra dynamics of the ASC have
merely e−λt terms rather than tje−λt terms for LTI systems.
E is singular. A wide tilde on matrices E ,F ,B indicates

the last block row has been deleted. These modified matrices
include enough information from the derivative array equa-
tions to explicitly give the constraints defining the solution
manifold as well as the continuous derivatives but not enough
to determine all the derivatives of the algebraic variables.

Let Z2 be a matrix whose columns form an orthonor-
mal basis for R(Ẽ)⊥. Thus ZT2 Ẽ = 0. Let L = k − 1
and ZT2 = [ZT2,0, . . . , Z

T
2,L]. Let T2 be a matrix whose

columns form an orthonormal basis for N(ZT2 F̃). Since
F̃T = [FT , 0, . . . , 0]T , we have ZT2 F̃ = ZT2,0F . Let Z1

be a matrix whose d columns form an orthonormal basis
for R(ET2). The matrix

[
ZT1 E
ZT2,0F

]
is square and invertible.

Observe that Z1, Z2, T2 are unique up to right multiplication
by an orthogonal transformation. Now define

Γ =


ZT1 0d×kn
ZT2 0a×n
0a×n ZT2

ZT3

 =


ZT1 0 · · · 0
ZT2,0 · · · ZT2,L 0

0 ZT2,0 · · · ZT2,L
ZT3,0 ZT3,1 · · · ZT3,k

 .
The ZT3 are extra orthonormal rows, orthogonal to the other
rows, that make Γ invertible. Γ is conformal with E but not
Ẽ and is unique up to an orthogonal matrix on the left.

Instead of solving Ew(t) = Bv(t) − Fx(t) in the least
squares sense, we shall solve ΓEw(t) = Γ(Bv(t) − Fx(t))
using least squares. That is, w̄(t) = (ΓE)†Γ(Bv(t)−Fx(t)).
This answer is unique and independent of how the Z1, Z2, T2

are constructed numerically. While the intermediate calcula-
tions are done pointwise and may not be smooth in t, the
final answer is smooth in t. For the remainder of this section,
the t dependence has been omitted and f̃ ′ rather than ˙̃f has
been used to improve readability. The augmented form of
the derivative array equations [E||F|f ] is [ΓE||ΓF|Γf ], where
f = Bv. This system is

ZT1 E 0 · · · −ZT1 F ZT1 Bu

0 0 · · · −ZT2,0F ZT2 f̃
ZT2,0F 0 · · · 0 ZT2 f̃ ′

W0 J1 · · · W1 W2

 . (9)

The third row of (9) is the derivative of the second row. We
replace (9) with its stabilized differentiation version

ZT1 E 0 · · · −ZT1 F ZT1 Bu

0 0 · · · −ZT2,0F ZT2 f̃
ZT2,0F 0 · · · −λZT2,0F ZT2 f̃ ′ + λZT2 f̃
W0 J1 · · · W1 W2

 . (10)

But
[
ZT1 E
ZT2,0F

]
is invertible and the J block is full row rank.

In this special circumstance the Moore-Penrose inverse of the
block lower triangular matrix to the left of || in (10) is also
a block lower triangular matrix [8]. Thus the dynamics of
this new completion are given by

˙̃x =
[
ZT1 E
ZT2,0F

]−1([
ZT1 Bu

ZT2 f̃ ′ + λZT2 f̃

]
−
[
ZT1 F
λZT2,0F

]
x̃

)
. (11)

The ASC (11) contains all the solutions of the original
DAE. In addition, the free response (when f = 0) has a
space of additional solutions ce−λt, where c is a constant,
of dimension equal to the solution manifold.

VI. COMPUTATIONAL EXAMPLE

To illustrate the above algorithms we consider

ẋ1(t) = x2(t), (12a)
ẋ2(t) = Kx1(t) + Sx2(t) +HTx3(t) +Qu1(t), (12b)

0 = Hx1(t) + u2(t), (12c)
y(t) = Cx(t), (12d)

and u = [u1, u2]T . We take D = 0 since D does not
affect the observer design. (12) is in the general form of a
constrained mechanical system. Here x1(t) is position, x2(t)
is velocity, (12c) is a physical constraint, and HTx3(t) can
be thought of as the force caused by the constraint. Qu1(t), if
present, is an applied force, and u2(t) allows for adjusting the
constraint. Depending on the problem, u2(t) can be another
control or known input. H is full row rank.

When implementing an observer for a DAE, it is unnec-
essary to numerically integrate (1a) since y(t) is a measured
output of the system. However, in running an example to
illustrate and test our observer design, it is necessary to
produce an x(t) whose values lie on the solution manifold.
System (12) has the structure of a Hessenberg system [4] so
a consistent initial condition x(0) is given by

x1(0) = −H†u2(0), (13a)
x2(0) = −H†u̇2(0), (13b)
x3(0) = −H† [Kx1(0) + Sx2(0) +Qu1(0)]

−(HHT )−1ü2(0). (13c)

Once the consistent initial condition has been calculated,
we integrate the stabilized completion, which includes the
corresponding solution of the DAE, so we can compare the
system’s solution with the observer.

As a specific example let K =
[
−2 1

1 −2

]
, S =

1
4

[
1 0
0 1

]
, H =

[
1 −1

]
, Q =

[
1
1

]
, and u(t) =
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[sin(t) sin(t)]T . S is chosen S > 0 to keep the free response
from being damped and posing an additional challenge for
the observer. We consider three illustrative choices of C:

C1 =
[

0 0 1 0 0
0 0 0 1 0

]
, (14)

C2 =
[

0 0 1 −1 0
]
, (15)

C3 =
[

0 0 1 1 0
]
. (16)

System (12) is index three, so we take k = 3. The finite
eigenvalues are 0.1250± 0.9922i for the matrix pencil

 I 0 0
0 I 0
0 0 0

 ,−
 0 I 0
K S HT

H 0 0

 ,

indicating the free response is a slowly growing oscillation
and the solution manifold is two dimensional (see Figure 1).
Please note in the following subsections, space prohibits the
inclusion of all computed quantities but they are available
from the authors upon request.

0 5 10 15
−20

−15

−10

−5

0

5

10

15

20

25

Fig. 1. Trajectories of the DAE (12) on [0 15].

A. Stabilized Least Squares Completion Results

We compute the stabilized LSC with λ = 2 to find Ã
and B̃. The eigenvalues of Ã are numerically 0.1250 ±
0.9922i,−2,−2,−2. As expected [13], these eigenvalues
include the two matrix pencil eigenvalues and three eigen-
values equal to −2 provided by this completion. The matrix
B̃ = [B̃0, B̃1, B̃2, B̃3] is

0.0 −0.783 0 −0.565 0 −0.087 0 0.0
0.0 0.783 0 0.565 0 0.087 0 0.0
1.0 −0.174 0 −0.348 0 −0.130 0 0.0
1.0 0.174 0 0.348 0 0.130 0 0.0
0.0 −2.130 0 −3.261 0 −2.098 0 −0.5

 .
If u2(t) = 0, we may drop the second column of each

B̃i leaving only B̃0 to be nonzero. The situation in which
many of the higher derivatives of u(t) do not appear in (6a)
is common. Controls frequently do not enter through the
constraints but act more like u1(t) than u2(t) since it is easier
to apply a time varying force than a time varying position.

For each of the output matrices Ci, i = 1, 2, 3, we checked
the observability of (Ã, Ci) by computing the rank of the
observability matrix. When the observability matrix was not
full column rank, we determined the observable modes by

computing the standard form for unobservable systems. We
found that the observability matrix of (Ã, C1) has rank 5.
Since each eigenvalue is observable, we can construct an
observer for this case. For C2 the observability matrix has
rank 3. The two unobservable eigenvalues are the matrix
pencil eigenvalues, and since they are unstable, it is not
possible to construct an observer for any completion. The
observability matrix of (Ã, C3) has rank 2. This calculation
was numerically more delicate than the previous two, so
we used an SVD to make the rank determination. The
matrix pencil eigenvalues are the two observable eigenvalues,
indicating (Ã, C3) is strongly detectable. Thus, an observer
can be constructed for this case.

Subsection VI.B discusses the ASC results, but from
Theorem 1 we already know for which Ci the matrix pencil
eigenvalues are observable. For any completion of (12),
Theorem 1 tells us the matrix pencil eigenvalues will be
unobservable for C2 and observable for C1 or C3. However,
using different completions can impact observer design and
performance, as illustrated in Subsection VI.C.

B. Alternative Stabilized Completion Results

We compute the ASC with λ = 2. The eigenvalues
of Ã are −2 with an algebraic multiplicity of three and
0.1250± 0.9922i. These eigenvalues are the same as before
but instead of −2 going with a 3× 3 Jordan block from (7),
there are now three eigenvectors for −2. For C1 the rank of
the observability matrix has changed from 5 to 3. The matrix
pencil eigenvalues remain observable, as expected from
Theorem 1, but two eigenvalues provided by the completion
are now unobservable. Since these unobservable eigenvalues
are stable, we can again construct an observer for this case.
For C3 neither the rank of the observability matrix nor the
observability of the matrix pencil eigenvalues changes.

C. Observer Results

To illustrate the behavior of the two observers based on
Sections VI.A and VI.B we take x̂(0) = [6 7 8 9 10]T . Each
observer places the observable eigenvalues at ρ.

1) Observers for C1: There is a dramatic difference in
the behavior of the observers constructed from the two
completions when considering output matrix C1 and ρ = −1.
Figures 2 and 3 graph the observer estimation error when
using the stabilized LSC and the ASC, respectively. The error
converges to zero faster for the observer constructed from the
ASC. Also the error for the observer constructed from the
stabilized LSC is initially much larger and oscillates more.
As predicted by the theory, the estimation error is of the form
tje−λt for the observer using the stabilized LSC while it is
of the form e−λt for the observer using the ASC.

2) Observers for C3: Figure 4 shows the observer esti-
mation error for both observers when considering C3 and
ρ = −1. The solid lines are for the observer constructed
from the ASC and the dashed lines are for the observer
constructed from the stabilized LSC. Unlike the observers
for C1, the behavior of these observers constructed from the
two completions for C3 is similar.
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Fig. 2. Estimation error with ρ = −1 using the stabilized LSC with output
matrix C1.
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Fig. 3. Estimation error with ρ = −1 using the ASC with output matrix
C1.

From the theory of numerical methods for DAEs [4], con-
vergence rates for numerical integrators can be different for
differential and algebraic variables. This different behavior
between the variables is presented in Figures 5 to 7, which
plot the estimation error for three state vector components
using ρ = −1,−2,−3,−4,−5 and the stabilized LSC.
In Figure 5, as ρ is decreased, the interval on which the
estimation error in the second component of x̂1 is greater
than a given nonzero tolerance becomes shorter but the
magnitude of the estimation error on that interval becomes
larger. Alternatively, Figures 6 and 7 show that for the state
estimation error in x̂2, the interval on which the estimation
error is greater than a given nonzero tolerance not only
shrinks with decreasing ρ but the magnitude of the estimation
error on that interval either stays bounded or goes to zero.
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Fig. 4. Estimation error with C3 using both observers with ρ = −1.
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Fig. 5. Estimation error in the second component of x̂1 with ρ =
−1,−2,−3,−4,−5 using C3 and the stabilized LSC.
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Fig. 6. Estimation error in the first component of x̂2 with ρ =
−1,−2,−3,−4,−5 using C3 and the stabilized LSC.

The greatest difference between the estimation errors of
the two observers is the unobservable estimation error in
x̂3, whose dynamics are set by the stabilized completion.
Figure 8 reveals the estimation error in x̂3 is independent
of the value of ρ. In both observers the rate of convergence
of x̂3 is determined by λ, the parameter used in generating
the stabilized completion. However, Figure 8 (right) shows
simple exponential decay in contrast to what is seen in Figure
8 (left), which is due to the larger Jordan blocks present in
the stabilized LSC.

In the study of DAEs, variables are sometimes described
as being of a particular index. A variable is index 0 if it is
given by an ODE and index k with k ≥ 1 if it depends
algebraically on k − 1 derivatives of a general input. If

0 5 10 15
−10

−8

−6

−4

−2

0

2

4

ρ=−1

ρ=−2

ρ=−3

ρ=−4

ρ=−5

Fig. 7. Estimation error in the second component of x̂2 with ρ =
−1,−2,−3,−4,−5 using C3 and the stabilized LSC.
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Fig. 8. Estimation error in x̂3 with ρ = −1,−2,−3,−4,−5 using C3

and the stabilized LSC (left) and the ASC (right).

we transform (12) into canonical form, we discover two
index 0 variables correspond with the finite modes, x3 is
an index three variable, part of x1 is an index two variable,
and part of x2 is an index one variable. These higher index
variables are the ones that get the stabilized dynamics when
we form a stabilized LSC. Note that the independence of the
convergence rate from the value of ρ in Figure 8 occurs with
the higher index variable.

VII. LINEAR TIME VARYING DAES

One advantage of the approach for full order observer
design presented in this paper is that it has great potential
for LTV DAEs. The application of this design to LTV DAEs
is under development but is not as straightforward as the
LTI case. We are able to compute (6a) and (11) for LTV
DAEs so the numerical calculations at each time t result in
a completion that is continuous in t. Coefficient continuity
is one of the advantages of both the stabilized LSC and the
ASC. However, the time dependence means the usual charac-
terizations of observability cannot be used immediately since
they involve derivatives of the completions’ state coefficient
matrices. It is possible to get these derivatives by working
with larger derivative arrays, but a better way is to try and
compute the information from the original derivative array.

The key to being able to compute the needed information
from the derivative array comes from the work of Ter-
rell [15], [16]. He provides a characterization of smooth
observability in terms of a derivative array based on the
original coefficients and the output matrix C(t). In addition
Terrell shows that under reasonable assumptions there exist
smooth projections that pick out the unobservable part, the
output nulling part, and an observable part and that these
projections are the solutions of differential equations. Thus
the projections can be generated with a numerical simulation.

The next piece of information that is needed to carry out
the LTV observer design is on the smallest singular value
of M(t), where M(t) describes the solution manifold. This
information about M(t) is needed to ensure that M(t)x(t)−
q(t) going to zero is providing an estimate of a part of x(t)
whose error is also going to zero.

Given an LTV system in the form of (1a) with sufficiently
smooth coefficients we can test smooth observability using
the techniques of [15], [16]. If the system is observable,
we can then generate a stabilized completion. In principle

an observer can now be constructed. However, doing so in
a robust numerical manner requires some care and will be
reported on later.

VIII. CONCLUSION

Recent results on the numerical generation of stabilized
completions have provided new tools that can be used
in the construction of observers for general unstructured
DAEs. This paper has introduced some of the key ideas and
illustrated their application on LTI DAEs. Two completion
algorithms are presented and a computational example is
worked. Both observers work well, but for this example, the
ASC exhibits some advantages. The advantages of the ASC
are expected to be even greater when the theory is worked
out for the more general case of LTV DAEs.

Unlike traditional methods for constructing observers for
LTI DAEs, our approach has considerable potential for the
construction of observers for LTV and nonlinear DAEs since
it does not require any specific structure to the DAE nor does
it fundamentally rely on techniques restricted to LTI systems.
Most importantly, there exist a number of useful results and
numerical techniques for working with LTV and nonlinear
versions of the derivative array that were developed as part
of the work on general DAE integrators.
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