
  

  

Abstract—Sampling arises simultaneously with input and 
output delays in networked control systems. When the delay is 
left uncompensated, the sampling period is generally required 
to be sufficiently small, the delay sufficiently short, and, for 
nonlinear systems, only semiglobal practical stability is 
generally achieved. In this paper we present two general 
results. First, we present global asymptotic stabilizers for 
forward complete systems under arbitrarily long input and 
output delays, with arbitrarily long sampling periods, and with 
continuous application of the control input. Second, we 
consider systems with sampled measurements and with control 
applied through a zero-order hold, under the assumption that 
the system is stabilizable under sampled-data feedback for 
some sampling period, and then construct sampled-data 
feedback laws that achieve global asymptotic stabilization 
under arbitrarily long input and measurement delays.  All the 
results employ “nominal” feedback laws designed for the 
continuous-time systems in the absence of delays, combined 
with “predictor-based” compensation of delays and the effect of 
sampling. 

I. INTRODUCTION 
AMPLING arises simultaneously with input and output 
delays in many control problems, most notably in control 
over networks. In the absence of delays, in sampled-data 

control of nonlinear systems semiglobal practical stability is 
generally guaranteed [6,27,28,29], with the desired region of 
attraction achieved by sufficiently fast sampling. 
Alternatively, global results are achieved under restrictive 
conditions on the structure of the system [5,8,11,12,14,31]. 
On the other hand, in purely continuous-time nonlinear 
control, input delays of arbitrary length can be compensated 
[15,19,20] but no sampled-data extensions of such results are 
available. Simultaneous consideration to sampling and 
delays (either physical or sampling-induced) is given in the 
literature on control of linear and nonlinear systems over 
networks [3,4,7,26,30,31,32,33] or sampled-data control 
[2,22], but most available results rely on delay-dependent 
conditions for the existence of stabilizing feedback. 
 
    Despite the remarkable accomplishments in the fields of 
sampled-data, networked, and nonlinear delay systems, the 
following example problems remain open:  global 
stabilization of strict-feedforward systems under sampled 
measurements and continuous control, sampled-data 
stabilization of the nonholonomic unicycle with inputs 
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applied via zero-order hold and under arbitrarily sparse 
sampling, and sampled-data stabilization of LTI systems 
over networks with long delays.  
      In this paper we introduce two frameworks for solving 
such problems: 
1. We present global asymptotic stabilizers for forward 

complete systems under arbitrarily long input and output 
delays, with arbitrarily long sampling periods, and with 
continuous application of the control input.  

2. We consider systems with sampled measurements and 
with control applied through a zero-order hold, under the 
assumption that the system is stabilizable under 
sampled-data feedback for some sampling period, and 
then construct sampled-data feedback laws that achieve 
global asymptotic stabilization under arbitrarily long 
input and measurement delays.  

In both frameworks we employ “nominal” feedback laws 
designed in the absence of delays, combined with “predictor-
based” compensation of delays.  
 
Problem Statement. As in [15,19,20,21,23,24,25,34], we 
consider systems with input delay, 

))(),(()( τ−= tutxftx                               (1)  

where mn
n tutxtxtx ℜ∈ℜ∈′= )(,))(),....,(()( 1 , nmnf ℜ→ℜ×ℜ:  

is a locally Lipschitz mapping with 0)0,0( =f  and 0≥τ  is 
a constant. In [15,19,20,21], the feedback design problem for 
system (1) is addressed by assuming a feedback stabilizer 

)(xku =  for system (1) with no delay, i.e. (1) with 0=τ , or  
))(),(()( tutxftx =                                (2) 

and applying a delay compensator (predictor) methodology 
based on the knowledge of the delay. In this paper, we 
incorporate also a consideration of measurement delay, 
namely, we address the problem of stabilization of (1) with 
output 

nrtxty ℜ∈−= )()(                           (3) 
where 0≥r  is a constant, i.e., we consider delayed 
measurements. The motivation for a simultaneous 
consideration of input and measurement delays is that in 
many chemical process control problems the measurement 
delay of concentrations of chemical species can be large.  
    We also assume that the output is available at discrete 
time instants iτ  (the sampling times) with 01 >=−+ Tii ττ , 
where 0>T  is the sampling period. Very few papers have 
studied this problem (an exception is [9] where input and 
measurement delays are considered for linear systems but 
the measurement is not sampled and the papers [2,22] where 
no measurement delay is present).  
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     The problem of stabilization of (1) with output given by 
(3) is intimately related to the stabilization of system (1) 
alone. To see this, notice that the output )(ty  of (1), (3) 
satisfies the following system of differential equations for all 

rt ≥ : 
))(),(()( τ−−= rtutyfty  

Consider the comparison between two problems described 
by the same differential equations: the problem of 
stabilization of (1) with input delay 0>r  and no 
measurement delay (i.e., ))(),(()( rtutxftx −=  for all 

0≥t ) and the problem of stabilization of (1), (3) with no 
input delay and measurement delay 0>r  (i.e., 

))(),(()( rtutyfty −=  for all rt ≥ ). The two problems are 
not identical: in the first stabilization problem the applied 
input values for ],0[ rt ∈  are given (as initial conditions), 
while in the second stabilization problem the applied input 
values for ],0[ rt ∈  must be computed based on an arbitrary 
initial condition )()( 0 θθ xx = , ]0,[ r−∈θ  (irrespective of 
the current value of the state). Therefore, serious technical 
issues concerning the existence of the solution for ],0[ rt ∈  
arise for the second stabilization problem.  
 
Results of the paper. We establish two general results: 
1. A solution for the stabilization of (1) with output given 
by (3) under the assumption that system (2) is globally 
stabilizable and forward complete and the input can be 
continuously adjusted (Theorem 2.1). The proposed dynamic 
sampled-data controller uses values of the output (3) at the 
discrete time instants +∈+= ZiiTti ,0τ , where 0>T  is the 
sampling period and 00 ≥t  is the initial time. This justifies 
the term “sampled-data”. No restrictions for the values of the 
delays 0, ≥τr   or the sampling period 0>T  are imposed. 
In general, we show that there is no need for continuous 
measurements for global asymptotic stabilization of any 
stabilizable forward complete system with arbitrary input 
and output delays. 
2. A solution for the stabilization of (1) with output given 
by (3) under the assumption that system (2) is globally 
stabilizable and forward complete and the control action is 
implemented with zero order hold (Theorem 3.2). Again, the 
proposed sampled-data controller uses values of the output 
(3) at the discrete time instants +∈+= ZiiTti ,0τ , where 

0>T  is the sampling period and 00 ≥t  is the initial time. 
In this case, we can solve the stabilization problem for 
systems with both delayed inputs and measurements 
provided that the user chooses the sampling period as the 
ratio of the input delay and any integer.  
 
   Our delay compensation methodology guarantees that any 
controller (continuous or sampled-data) designed for the 
delay-free case can be used for the regulation of the delayed 
system with input/measurement delays and sampled 
measurements. For example, all sampled-data feedback 
designs proposed in [5,6,11,14,27,28,29,31] which guarantee 
global stabilization can be exploited for the stabilization of a 

delayed system with input/measurement delays, sampled 
measurements and input applied with zero order hold. The 
results can be directly applied to the case of linear 
autonomous systems and to the case of nonlinear systems 
which are diffeomorphically equivalent to a chain of 
integrators (see [16]). Moreover, the stabilization problem 
for nonholonomic unicycle with arbitrarily sparse sampling 
is also addressed in [16].  
 
Due to space limitations all proofs are omitted and are 
available upon request. 
 
Notations Throughout this paper we adopt the following 
notations:  
∗  For a vector nx ℜ∈  we denote by x  its usual Euclidean 
norm, by x′  its transpose. 
∗  +ℜ  denotes the set of non-negative real numbers. +Z  
denotes the set of non-negative integers. For every 0≥t , [ ]t  
denotes the integer part of 0≥t , i.e., the largest integer 
being less or equal to 0≥t .  
∗   For the definition of the class of functions KL , see [17]. 
∗  By )(AC j  ( );( ΩAC j ), where 0≥j  is a non-negative 
integer, we denote the class of functions (taking values in 
Ω ) that have continuous derivatives of order j  on A . 

∗  Let nbrax ℜ→− ),[:  with 0≥> ab  and 0≥r . By 
xtTr )(  we denote the “history” of x  from rt −  to t , i.e., 

( ) ]0,[;)(:)()( rtxxtTr −∈+= θθθ , for ),[ bat ∈ . By xtTr )(  
we denote the “open history” of x  from rt −  to t , i.e., 
( ) )0,[;)(:)()( rtxxtTr −∈+= θθθ , for ),[ bat ∈ . 

∗  Let ),0[: +∞=ℜ⊆ +I  be an interval. By  );( UI∞L  

( );( UIloc
∞L ) we denote the space of measurable and (locally) 

bounded functions )( ⋅u  defined on I  and taking values in 
mU ℜ⊆ . Notice that we do not identify functions in 
);( UI∞L  which differ on a measure zero set. For 

)];0,([ nrx ℜ−∈ ∞L  or ));0,([ nrx ℜ−∈ ∞L  we define 
)(sup:

]0,[
θ

θ
xx

r
r

−∈
=  or )(sup:

)0,[
θ

θ
xx

r
r

−∈
= . Notice that 

)(sup
]0,[

θ
θ

x
r−∈

  is not the essential supremum but the actual 

supremum and that is why the quantities )(sup
]0,[

θ
θ

x
r−∈

 and 

)(sup
)0,[

θ
θ

x
r−∈

 do not coincide in general. We will also use the 

notation UM  for the space of measurable and locally 

bounded functions Uu →ℜ+: . 
∗  We say that a system of the form (2) is forward complete 
if for every nx ℜ∈0 , UMu ∈  the solution )(tx  of (2) with 

initial condition nxx ℜ∈= 0)0(  corresponding to input 

UMu ∈  exists for all 0≥t . 
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II. DYNAMIC SAMPLED-DATA FEEDBACK FOR 
CONTINUOUSLY ADJUSTED INPUT  

 
We start by presenting the assumptions for system (2). Our 
first assumption concerning system (2) is forward 
completeness.  
 
Hypothesis (H1): System (2) is forward complete. 
 
Assumption (H1) guarantees that system (1) is forward 
complete as well: for every nx ℜ∈0 , 

));,([ m
locu ℜ+∞−∈ ∞ τL  the solution )(tx  of (1) with initial 

condition nxx ℜ∈= 0)0(  corresponding to input 

));,([ m
locu ℜ+∞−∈ ∞ τL  exists for all 0≥t . Therefore, we 

are in a position to define the “predictor” mapping 
( ) nmn r ℜ→ℜ−−×ℜΦ ∞ );0,[: τL  for all 0, ≥τr  with 

0>+τr  in the following way: 
“for every nx ℜ∈0 ,  ( )mru ℜ−−∈ ∞ );0,[ τL  the 
solution )(tx  of (1) with initial condition 

0)( xrx =−  corresponding to input 

( )mru ℜ−−∈ ∞ );0,[ τL  satisfies ),()( 0 uxx Φ=τ ” 
 
By virtue of the results in [1,10], we can guarantee the 
existence of ∞∈ Ka  such that  

( )τ+
+≤Φ ruxaux ),( , 

for all ( )mn rux ℜ−−×ℜ∈ ∞ );0,[),( τL        (4) 
 
We assume next that (2) is globally stabilizable.  
 
Hypothesis (H2) (continuously adjusted input): There 
exists );(1 mnCk ℜℜ×ℜ∈ + , ∞∈ Kg  with  

( )xgxtk ≤),( , for all nxt ℜ×ℜ∈ +),(           (5) 

such that nℜ∈0  is Uniformly Globally Asymptotically 
Stable for system (2) with ),( xtku = , i.e., there exists a 

function KL∈σ  such that for every nxt ℜ×ℜ∈ +),( 00  the 
solution )(tx  of (2) with ),( xtku =  and initial condition 

nxtx ℜ∈= 00 )(  satisfies the following inequality: 
( )00 ,)( ttxtx −≤ σ , 0tt ≥∀                  (6) 

 
    Consider system (1) under hypotheses (H1), (H2) for 
system (2). Our proposed dynamic sampled-data feedback 
has states ( )mn

r rutTtz ℜ−−×ℜ∈ ∞
+ ];0,[))(),(( ττ L  and 

inputs nty ℜ∈)(  and for each 00 ≥t , 

( )mn ruz ℜ−−×ℜ∈ ∞ ];0,[),( 00 τL   the states are computed 
by the interconnection of two subsystems: 
 
1) A sampled-data subsystem (see [10]) with inputs 

( )mn
r rutTty ℜ−−×ℜ∈ ∞

+ ];0,[))(),(( ττ L : 

( )
n

irii

ii

ztz

uTyz

Zittutzftz

ℜ∈=

Φ=

∈∈=

++++

+
+

00

111

1

)(

)(),()(

,),[,))(),(()(

τττ

ττ

τ                (7) 

where 
+∈+= ZiiTti ,0τ  

are the sampling times and 0>T  is the sampling period. We 
stress that the proposed sampled-data dynamic controller 
uses only values of the output nrtxty ℜ∈−= )()(  at the 

discrete time instants iTti += 0τ , where +∈ Zi . 
2) A subsystem described by Functional Difference 
Equations (see [13]) with inputs ntz ℜ∈)( : 

( )m
r ruutT

tttztktu

ℜ−−∈=

>+=
∞

+ ];0,[)(

,))(,()(

00

0

τ

τ

τ L
                          (8) 

 
Our first main result is now stated. 
 
Theorem 2.1: Let 0>T , 0, ≥τr  with 0>+τr  and 
suppose that hypotheses (H1), (H2) hold for system (2). Then 
the closed-loop system (1), (3) (7), (8) is Uniformly Globally 
Asymptotically Stable, in the sense that there exists a 
function KL∈σ~  such that for every 00 ≥t , 

( )mnn rrCuzx ℜ−−×ℜ×ℜ−∈ ∞ ];0,[)];0,([),,( 0
000 τL , the 

solution mnntutztx ℜ×ℜ×ℜ∈))(),(),((  of the closed-loop 
system (7), (8), (3), (1) with initial condition 

nztz ℜ∈= 00 )( , ( )m
r ruutT ℜ−−∈= ∞
+ ];0,[)( 00 ττ L , 

( )n
r rCxxtT ℜ−∈= ];0,[)( 0

00  satisfies the following 
inequality for all 0tt ≥ : 

( )0000 ,~
)()()(

ttuxz

utTxtTtz

rr

rrrr

−++

≤++

+

++

τ

ττ

σ
                (9) 

 
Remark 2.2:For the implementation of the controller (7), 
(8), we must know the “predictor” mapping 

( ) nmn r ℜ→ℜ−−×ℜΦ ∞ );0,[: τL . This mapping can be 
explicitly computed for 
(i) Linear systems BuAxx += , with mn ux ℜ∈ℜ∈ , . 
In this case (Corollary 3.4 below) the predictor mapping 

( ) nmn r ℜ→ℜ−−×ℜΦ ∞ );0,[: τL  is given by the explicit 

equation ( ) ( )∫
−−

−++=Φ
0

)(exp)(exp:),(
τ

τ
r

dwwBuAwxrAux .  

(ii) Bilinear systems uCxBuAxx ++= , with 
ℜ∈ℜ∈ ux n ,  and CAAC = .  

(iii) Nonlinear systems of the following form: 

),...,,(),...,,(

)()(

1111

1111

−− +=

+=

nnnnnn xxufxxxuax

ufxuax
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where mnux ℜ×ℜ∈),(  and all mappings ii fa ,  ( ni ,...,1= ) 
are locally Lipschitz. In this case the predictor mapping 

( ) nmn r ℜ→ℜ−−×ℜΦ ∞ );0,[: τL  can be constructed 
inductively. Example 2.3 below applies Theorem 2.1 to a 
three-dimensional nonlinear system of the above class. 
(iv) Nonlinear systems ),( uxfx = , for which there exists  a 

global diffeomorphism nn ℜ→ℜΘ :  such that the change 
of coordinates )(xz Θ=  transforms the system to one of the 
above cases.  
For globally Lipschitz systems, one can utilize approximate 
“predictor” mappings ( ) nmn r ℜ→ℜ−−×ℜΦ ∞ );0,[: τL  as 
shown in [15] under additional and more restrictive 
hypotheses.  
 
We next present an example which shows how the obtained 
results can be applied to feedforward nonlinear systems. 
 
Example 2.3 (Control of strict-feedforward systems with 
arbitrarily sparse sampling): Consider the following 
example taken from [20]:  

ℜ∈ℜ∈′=

−=−+=
+=

)(,))(),(),(()(

)()(),()()()(
),()()(

3
321

3332

2
321

tutxtxtxtx

tutxtutxtxtx
txtxtx

ττ       (10) 

Here, we consider the stabilization problem for (10) with 
output given by (3) available only at the discrete time 
instants iτ  (the sampling times) with 01 >=−+ Tii ττ , 
where 0>T  is the sampling period. Hypothesis (H1) holds 
for system (10) and the predictor mapping can be explicitly 
expressed by the equations:  

( ) ( )

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢

⎣

⎡

+

+++++=Φ

∫

∫ ∫∫

−−

−− −−−−
0

3

00

332

1

)(

)()(1)(

),(

:),(

τ

τ ττ

τ

φ

r

r

s

rr

dssux

dsdqqusudssuxxrx

ux

ux  

  (11) 
where 

( )

( ) ( )

( ) ∫ ∫

∫ ∫ ∫

∫ ∫

−− −−

−− −− −−

−− −−

⎟
⎟

⎠

⎞

⎜
⎜

⎝

⎛
+++

+++++

++=

0 2

2
3

0

21

3
2

0

31

)(

)()(1

2
1)(3),(

τ τ

τ τ τ

τ τ

τ

τ

τφ

r

s

r

r

s

r

w

r

r

s

r

dsdqquxr

dsdwdqquwuxrx

xrdsdqquxux

  (12) 

Moreover, hypothesis (H2) holds as well with the smooth, 
time-independent feedback law: 

⎟
⎟

⎠

⎞

⎜
⎜

⎝

⎛
⎟
⎠
⎞

⎜
⎝
⎛ −−−+++

−−−−−−=

2
2
32

3
3

2
33233

32313
2
221

2
1

4
3

2
1

4
5

8
3

2
3

4
33

8
33:)(

xxxxxxxx

xxxxxxxxxk

    (13) 

It follows from Theorem 2.1 that the dynamic sampled-data 
controller ))(()( tzktu =  with  

3
321

3332

2
321

))(),(),(()(

)()(),()()()(
),()()(

ℜ∈′=

=+=
+=

tztztztz

tutztutztztz
tztztz

, for ),[ 1+∈ iit ττ  

           (14) 
and  

+
++++ ∈Φ= ZiuTyz irii ,))(),(()( 111 τττ τ         (15) 

where ( ) 33 );0,[: ℜ→ℜ−−×ℜΦ ∞ mr τL  is defined by (11), 

(12) and ℜ→ℜ3:k  is defined by (13), guarantees global 
asymptotic stability for system (10).      
 

III. SAMPLED-DATA FEEDBACK FOR INPUT APPLIED WITH 
ZERO-ORDER HOLD  

 
This section is devoted to the case where the input is applied 
with zero order hold. In this section we assume that (2) is 
globally stabilizable with feedback applied with zero order 
hold.  
 
Hypothesis (H3) (input applied with zero order hold): 
There exists mnk ℜ→ℜ: , ∞∈ Kg , 0>T  such that  

( )xgxk ≤)( , for all nx ℜ∈                         (16) 

and such that nℜ∈0  is Uniformly Globally Asymptotically 
Stable for the sampled-data system 

n
ii

t
i

iii

xx

T

txx
txktxftx

i

ℜ∈=≥=

+=

=
∈=

+

→
+

+

−
+

00

1

1

1

)0(,00

)(lim)(
),[,)))((),(()(

1

τ

ττ

τ
τττ

τ          (17) 

in the sense that there exists a function KL∈σ  such that for 
every nx ℜ∈0  the solution )(tx  of (17) with initial 

condition nxx ℜ∈= 0)0(  satisfies inequality (6) with 00 =t  
for all 0≥t . 
 
Remark 3.1: Hypothesis (H3) seems like a restrictive 
hypothesis, because it demands global stabilizability by 
means of sampled-data feedback with positive sampling rate. 
However, hypothesis (H3) can be satisfied for: 
(i) Linear stabilizable systems, where BuAxuxf +=),( , 

mnnn BA ×× ℜ∈ℜ∈ , ,  
(ii) Nonlinear systems of the form uxgxfx )()( += , 

ℜ∈ℜ∈ ux n , , where the vector field nnf ℜ→ℜ:  is 
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globally Lipschitz and the vector field nng ℜ→ℜ:  is 
locally Lipschitz and bounded, which can be stabilized by a 
globally Lipschitz feedback law )(xku =  (see [8]). 
(iii)  Nonlinear systems of the form 

1),(),( ++= iiii xuxguxfx  for 1,...,1 −= ni  and 
uuxguxfx nnn ),(),( += , where the drift terms ),( uxf i  

( ni ,...,1= ) satisfy the linear growth conditions 

ii xLxLxf ++≤ ...)( 1  ( ni ,...,1= ) for certain constant 
0≥L  and there exist constants 0>≥ ab  such that 

buxga i ≤≤ ),(  for all ni ,...,1= , ℜ∈ℜ∈ ux n ,  (see [12]). 
(iv)  Asymptotically controllable homogeneous systems with 
positive minimal power and zero degree (see [5]). 
(v) Systems satisfying the reachability hypotheses of 
Theorem 3.1 in [14], or hypotheses (A1), (A2), (A3) in 
Section 4 of [11], 
(vi) Nonlinear systems ),( uxfx = , for which there exists  a 

global diffeomorphism nn ℜ→ℜΘ :  such that the change 
of coordinates )(xz Θ=  transforms the system to one of the 
above cases. 
 
Consider system (1) under hypotheses (H1), (H3) for system 
(2). In this case we propose a feedback law that is simply a 
composition of the feedback stabilizer and the delay 
compensator: 

( )( ) ),[,)(),()( 1++ ∈Φ= iiiri tuTyktu ττττ τ    (18) 

where +∈= ZiiTi ,τ  are the sampling times and 

( ) nmn r ℜ→ℜ−−×ℜΦ ∞ );0,[: τL  is the predictor mapping 
involved in (4), (2.2). The control action is applied with zero 
order hold, i.e., it is constant on ),[ 1+ii ττ ; however the 
control action affecting system (1) remains constant on the 
interval ),[ 1 ττττ ++ +ii .   
 
Our main result is stated next. 
 
Theorem 3.2: Let 0>T , 0, ≥τr  with 0>+τr  and 
suppose that there exists +∈ Zl  such that Tl=τ . 
Moreover, suppose that hypotheses (H1), (H2) hold for 
system (2). Then the closed-loop system (1) with (18), i.e., 
the following sampled-data system 
 

( )
0,

,),[,))(),(()(

))(),(()(

01

1

=+=
∈∈−Φ=

−=

+

+
++

τττ
ττττ

τ

τ

T
ZituTrxktu

tutxftx

ii

iiiri (19) 

is Uniformly Globally Asymptotically Stable, in the sense 
that there exists a function KL∈σ~  such that for every 

( )mn rrCux ℜ−−×ℜ−∈ ∞ );0,[)];0,([),( 0
00 τL , the solution 

mntutx ℜ×ℜ∈))(),((  of system (19) with initial condition 

( )m
r ruuT ℜ−−∈= ∞
+ );0,[)0( 0 ττ L , ( )n

r rCxxT ℜ−∈= ];0,[)0( 0
0  

satisfies the following inequality for all 0≥t : 

( )tuxutTxtT rrrrrr ,~)()( 00 τττ σ
+++ +≤+         (20) 

Finally, if system (17) satisfies the dead-beat property of 
order jT , where +∈ Zj  is positive, i.e., for all nx ℜ∈0  
the solution )(tx  of (17) with initial condition 

nxx ℜ∈= 0)0(  satisfies 0)( =tx  for all jTt ≥ , then 
system (19) satisfies the dead-beat property of order 

T
T
rlj ⎟⎟

⎠

⎞
⎜⎜
⎝

⎛
+⎥⎦

⎤
⎢⎣
⎡++ 1 , where ⎥⎦

⎤
⎢⎣
⎡
T
r  is the integer part of 

T
r , 

i.e., for every ( )mn rrCux ℜ−−×ℜ−∈ ∞ );0,[)];0,([),( 0
00 τL , 

the solution mntutx ℜ×ℜ∈))(),((  of system (19) with initial 

condition ( )m
r ruuT ℜ−−∈= ∞
+ );0,[)0( 0 ττ L , 

( )n
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Example 3.3: Dead-beat control with a predictor can be 
applied to any delayed 2-dimensional strict feedforward 
system, i.e., any system of the form: 

)()(),())(()()( 2221 ττ −=−+= tutxtutxptxtx   (21) 
where ℜ→ℜ:p  is a smooth function and the 
measurements are sampled and given by (3). The 
diffeomorphism given by (see [18]) 
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⎥
⎥

⎦

⎤

⎢
⎢

⎣

⎡
−=Θ ∫ 2

0
1 ,)()(

2

xdwwpxx
x

                 (22) 

transforms system (21) with 0=τ  to a chain of two 
integrators. Therefore, the feedback law  
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x
T

dwwp
T

x
T

u
x

−+−= ∫         (23) 

applied with zero order hold and sampling period 0>T  
achieves global stabilization of system (21) with 0=τ  when 
no measurement delays are present. Moreover, the dead-beat 
property of order T2  is guaranteed for the corresponding 
closed-loop system.  
 
We next consider the case where we have measurement 
delay 0>r  satisfying Tr < . In this case ( 0== ql , rr =~ ) 
we apply Theorem 3.2 and we can conclude that the 
feedback law  

+∈+∈= ZiTiiTtutu i ,))1(,[,)(               (24) 
with 
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                     (25) 

guarantees the dead-beat property of order T3  for the 
corresponding closed-loop system.      
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IV. CONCLUSIONS 
 
    Stabilization is studied for nonlinear systems with input 
and measurement delays, and with measurements available 
only at discrete time instants (sampling times). Two different 
cases are considered: the case where the input can be 
continuously adjusted and the case where the input is applied 
with zero order hold. Under the assumption of forward 
completeness and certain additional stabilizability 
assumptions, it is shown that sampled-data feedback laws 
with a predictor-based delay compensation can guarantee 
global asymptotic stability for the closed-loop system with 
no restrictions for the magnitude of the delays. Additionally, 
when the control is applied continuously and only the 
measurements are sampled, the sampling time can be 
arbitrarily long. 
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