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Abstract— We study the problem of asymptotically stabilizing
a switched linear control system using sampled and quantized
measurements of its state. The switching is assumed to be slow
enough in the sense of combined dwell time and average dwell
time, each individual mode is assumed to be stabilizable, and
the available data rate is assumed to be large enough. Our
encoding and control strategy is rooted in the one proposed
in our earlier work on non-switched systems, and in particular
the data-rate bound used here is the data-rate bound from that
earlier work maximized over the individual modes. The main
technical step that enables the extension to switched systems
concerns propagating over-approximations of reachable sets
through sampling intervals, during which the switching signal
is unknown.

I. INTRODUCTION

We consider an asymptotic stabilization problem in which

the information flow from the continuous-time plant to the

feedback controller is subject to a finite data-rate constraint,

i.e., state measurements undergo time sampling and finite-

alphabet encoding (quantization). Feedback control problems

with data-rate constraints have been an active research area

for some time now, as surveyed in [1] (several specifically

relevant works will be cited below). Besides multiple prac-

tical motivations, the questions of how much information

is really needed to solve a given control problem, or what

interesting control tasks can be performed with a given

amount of information, are quite fundamental from the

theoretical point of view. In this paper we report some results

in this direction for a new class of systems, namely, systems

that involve switching between several modes of operation.

Such switched systems have been a popular subject of study

in recent years, with research efforts focusing on various

analysis and synthesis properties; see, e.g., the books [2],

[3], the survey [4], and the many references therein. Control

problems with limited information, however, do not seem to

have received much attention so far in the context of switched

systems (with the exception of some work on quantized

Markov jump linear systems [5], [6], [7]), and the present

paper is intended to begin filling this gap. We contend that a

marriage of these two research areas is actually quite natural,

due to close similarities between some of the technical tools

that are being employed in them.

In order to understand how much information is needed—

and how this information should be used—to stabilize a

given system, we must understand how the uncertainty about

the system’s state evolves over time along its dynamics.
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In more precise terms, this means that we need to be

able to characterize propagation of reachable sets or their

suitable over-approximations. This is a crucial ingredient

in the available results on rate-constrained control of non-

switched systems (such as [8] which serves as the basis

for the present work), and the bulk of the effort required

to handle the switched system scenario is concentrated in

implementing this step and analyzing its consequences. If the

switching signal were precisely known to the controller, then

the problem of reachable set propagation would be just a se-

quence of corresponding problems for the individual modes,

and as such would pose very little extra difficulty. (This

would essentially correspond to the situation considered, in

a discrete-time stochastic setting, in [5].) On the other hand,

if the switching signal were completely unknown, then the

set of possible trajectories of the switched system would be

too large to hope for a reasonable (not overly conservative)

solution. To strike a balance between these two situations,

we assume here that we have a partial knowledge of the

switching signal; namely, we assume that the active mode

of the switched system is known at each sampling time, and

that the switching is subject to a fairly mild “slow-switching”

assumption (described by a combination of a dwell time

and an average dwell time). If in addition the allowed data

rate is large enough, then we can design a provably correct

communication and control strategy to stabilize the system.

We now outline in a bit more detail the sequence of

steps that we follow. In Section II we define the switched

linear system that we want to stabilize, explain what the

information structure is, and state the basic assumptions and

the main result. In Section III we describe the basic encoding

and control strategy which assumes that appropriate bounds

on reachable sets are available. Section IV is devoted to

generating such reachable set bounds. With these ingredients

in place, we complete the analysis through revealing a

cascade structure within the closed-loop system, constructing

a (mode-dependent) Lyapunov function which decreases in

the absence of switching if the data rate is large enough,

and invoking the average dwell-time assumption to establish

global asymptotic stability; this reasoning is sketched in

Section V. Sections VI and VII contain a short simulation

example and some concluding remarks.

II. PROBLEM FORMULATION

A. Switched system

The system to be controlled is the switched linear control

system

ẋ = Aσx + Bσu, x(0) = x0 (1)
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where x ∈ R
n is the state, u ∈ R

m is the control input,

{(Ap, Bp) : p ∈ P} is a collection of matrix pairs defining

the individual control systems (“modes”) of the switched

system, P is a finite index set, and σ : [0,∞) → P is

a right-continuous, piecewise constant function called the

switching signal which specifies the active mode at each

time. The solution x(·) is absolutely continuous and satisfies

the differential equation away from the discontinuities of σ
(in particular, there are no state jumps). The switching signal

σ is fixed but not known to the controller a priori. The

discontinuities of σ (also called “switching times,” or just

“switches”) are denoted by t1, t2, . . . , and we let Nσ(t, s)
stand for the number of switches on an interval (s, t]. Our

first basic assumption is that the switching is not too fast, in

the following sense.

Assumption 1 (Slow Switching)

1) There exists a number τd > 0 (called a dwell time)

such that ti+1 − ti ≥ τd for all i;
2) There exist numbers τa > τd (called an average dwell

time) and N0 ≥ 1 such that

Nσ(t, s) ≤ N0 + (t − s)/τa ∀ t > s ≥ 0.

The concept of average dwell time was introduced in [9]

and has since then become standard. Note that without the

constraint that τa > τd, the average dwell-time condition

(item 2) would be implied by the dwell-time condition

(item 1). Switching signals satisfying Assumption 1 were

considered in [10], where they were called “hybrid dwell-

time” signals.

Our next basic assumption is stabilizability of all modes.

Assumption 2 (Stabilizability) For each p ∈ P the pair

(Ap, Bp) is stabilizable, i.e., there exists a state feedback

gain matrix Kp such that Ap + BpKp is Hurwitz.

In the sequel, we assume that a family of such stabilizing

gain matrices Kp, p ∈ P has been selected and fixed. We

understand that (at least some of) the open-loop matrices Ap,

p ∈ P are not Hurwitz.

B. Information structure

The task of the controller is to generate a control input

u(·) based on limited information about the state x(·) and

about the switching signal σ(·). The information to be

communicated to the controller is subject to the following

two constraints.

Sampling: State measurements are taken at times kτs, k =
0, 1, 2, . . . , where τs > 0 is a fixed sampling period.

Quantization: Each state measurement x(kτs) is encoded by

an integer from 0 to Nn, where N is an odd positive integer,

and sent to the controller. In addition, the value of σ(kτs) ∈
P is also sent to the controller.

As a consequence, data is transmitted to the controller at

the rate of (log2(N
n + 1) + log2 |P|)/τs bits per time unit,

where |P| is the number of elements in P . We assume the

data transmission to be noise-free and delay-free. We take

the sampling period τs to be no larger than the dwell time

from Assumption 1 (item 1):

τs ≤ τd. (2)

This guarantees that at most one switch occurs within each

sampling interval. Since the average dwell time τa in As-

sumption 1 (item 2) is larger than τd, we know that switches

actually occur less often than once every sampling period.

The reason for taking the integer N to be odd is to ensure that

our control strategy preserves the equilibrium at the origin.

Throughout the paper, we work with the ∞-norm ‖x‖∞ =
max{|xi| : 1 ≤ i ≤ n} on R

n and the corresponding

induced matrix norm ‖A‖∞ = max{∑n
j=1 |Aij | : 1 ≤ i ≤

n} on R
n×n, which we denote simply by ‖ · ‖. To formulate

our final basic assumption, we define

Λp := ‖eApτs‖, p ∈ P. (3)

Assumption 3 (Data Rate) Λp < N for all p ∈ P .

We can view the above inequality as a data-rate bound

because it requires N to be sufficiently large relative to τs,

thereby imposing (indirectly) a lower bound on the available

data rate. A very similar data-rate bound but for the case

of a single mode appears in [8], where it is shown to

be sufficient for stabilizing a non-switched linear system.

That bound is slightly conservative compared to known

bounds that characterize the minimal data rate necessary

for stabilization (see, e.g., [11], [12]). However, the control

scheme of [8] can be refined by tailoring it better to the

structure of the system matrix A, and then the data rate that

it requires will approach the minimal data rate (see also the

discussion in [13, Section V]). Therefore, it is fair to say that

Assumption 3 does not introduce a significant conservatism

beyond requiring that the data rate be sufficient to stabilize

each individual mode of the switched system (1).

C. Main objective

The control objective is to asymptotically stabilize the sys-

tem defined in Section II-A while respecting the information

constraints described in Section II-B. More concretely, we

want to provide a constructive proof of the following result.

Theorem 1 (Main Result) Consider the switched linear

system (1) and let Assumptions 1–3 and the inequality (2)

hold. If the average dwell time τa is large enough, then

there exists an encoding and control strategy that yields the

following two properties:

Exponential convergence: There exist a number λ > 0 and

a function g : [0,∞) → (0,∞) such that for every initial

condition x0 and every time t ≥ 0 we have

‖x(t)‖ ≤ e−λtg(‖x0‖). (4)

Lyapunov stability: For each ε > 0 there is a δ > 0 such that

‖x0‖ < δ ⇒ ‖x(t)‖ < ε ∀ t ≥ 0. (5)

A precise lower bound on the average dwell time τa will

be derived in the course of the proof (see the formula (25)
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in Section V-C). As for the function g in the exponential

convergence property, from the proof it will be clear that

g(r) does not go to 0 as r → 0 and that, in general, g
grows faster than any linear function at infinity (see the

formula (28) in Section V-D and the discussion at the end of

Section IV-C). For this reason, Lyapunov stability needs to

be established separately, and the two properties (exponential

convergence and Lyapunov stability) combined still do not

give the standard global exponential stability, but just global

asymptotic stability with an exponential convergence rate.

The control strategy that we will develop to prove The-

orem 1 is a dynamic one: it involves an additional state

denoted by x̂. Theorem 1 only discusses the behavior of

the state x, which is the main quantity of interest, but it can

be deduced from the proof that the controller state x̂ satisfies

analogous bounds.

III. BASIC ENCODING AND CONTROL STRATEGY

In this section we outline our encoding and control strat-

egy, assuming for now that the state x satisfies known bounds

at the sampling times. The problem of generating such state

bounds is solved in the next section.

First, suppose that at some sampling time k0τs we have

‖x(k0τs)‖ ≤ Ek0

where Ek0
> 0 is a number known to the controller. (In Sec-

tion IV-C we will show how such a bound can be generated

for an arbitrary initial state x0, by using a “zooming-out”

procedure.) At the first such sampling time our controller is

initialized. The encoder works by partitioning the hypercube

{x ∈ R
n : ‖x‖ ≤ Ek0

} into Nn equal hypercubic boxes,

N per each dimension, and numbering them from 1 to Nn

in some specific way. It then records the number of the box

that contains1 x(k0τs) and sends it to the controller, along

with the value of σ(k0τs). We assume that the controller

knows the box numbering system used by the encoder,

so it can decode the box number. It lets ck0
∈ R

n be

the center of the box containing x(k0τs). We then have

‖x(k0τs) − ck0
‖ ≤ Ek0

/N. For t ∈ [k0τs, (k0 + 1)τs), the

control is set to u(t) = Kσ(k0τs)x̂(t) where x̂ is defined to

be the solution of

˙̂x =(Aσ(k0τs)+Bσ(k0τs)Kσ(k0τs))x̂ =Aσ(k0τs)x̂+Bσ(k0τs)u

with the boundary condition x̂(k0τs) = ck0
.

At a general sampling time kτs, k ≥ k0 + 1, suppose that

a point x∗
k ∈ R

n and a number Ek > 0 are known such that

‖x(kτs) − x∗
k‖ ≤ Ek. (6)

Of course the encoder has precise knowledge of x; the

quantities x∗
k and Ek have to be obtainable on the de-

coder/controller side, based on the knowledge of the system

matrices (but not the switching signal) and previously re-

ceived measurements. We explain later how such x∗
k and Ek

can be generated. The encoder also computes x∗
k and Ek in

the same way, to ensure that the encoder and the decoder are

1In case x(k0τs) lies on the boundary of several boxes, either one of
these boxes can be chosen.

synchronized. The encoding is then done as follows. Partition

the hypercube {x ∈ R
n : ‖x − x∗

k‖ ≤ Ek} into Nn equal

hypercubic boxes, N per each dimension. Send the number

of the box to the controller, along with the value of σ(kτs).
On the decoder/controller side, let ck be the center of the

box containing x(kτs). This gives

‖x(kτs) − ck‖ ≤ Ek/N, (7)

‖ck − x∗
k‖ ≤ Ek(N − 1)/N. (8)

Note that the formula (8) is also valid for k = k0 if we set

x∗
k0

:= 0, a convention that we follow in the sequel. For

t ∈ [kτs, (k + 1)τs) define the control, along the same lines

as before, by

u(t) = Kσ(kτs)x̂(t)

where x̂ is the solution of

˙̂x = (Aσ(kτs) + Bσ(kτs)Kσ(kτs))x̂ = Aσ(kτs)x̂ + Bσ(kτs)u
(9)

with the boundary condition

x̂(kτs) = ck. (10)

The above procedure is to be repeated for each subsequent

value of k. Note that x̂ is, in general, discontinuous (only

right-continuous) at the sampling times, and we will use the

notation x̂(kτ−
s ) := limtրkτs

x̂(t). In the earlier work [8],

x∗
k was obtained directly from x̂ via x∗

k := x̂(kτ−
s ). On

sampling intervals containing a switch this construction no

longer works, and the task of defining x∗
k as well as Ek

becomes more challenging.

IV. GENERATING STATE BOUNDS:

OVER-APPROXIMATIONS OF REACHABLE SETS

Proceeding inductively, we start with known x∗
k and Ek

satisfying (6), where k ≥ k0, and show how to find x∗
k+1

and Ek+1 such that

‖x((k + 1)τs) − x∗
k+1‖ ≤ Ek+1. (11)

Generation of Ek0
is addressed at the end of the section.

A. Sampling interval with no switch

We first consider the simpler case when σ(kτs) = σ((k +
1)τs) = p ∈ P . By (2) we know that no switch has occurred

on (kτs, (k + 1)τs], since two switches would have been

impossible. So, we know that on the whole interval [kτs, (k+
1)τs] mode p is active. We can then proceed as in [8]. It

is clear from (1) and (9) that the error e := x − x̂ satisfies

ė = Ape on [kτs, (k+1)τs), and we know from (10) and (7)

that ‖e(kτs)‖ ≤ Ek/N , hence

‖e((k + 1)τ−
s )‖ ≤ ΛpEk/N =: Ek+1 (12)

where Λp was defined in (3). It remains to let

x∗
k+1 := x̂((k + 1)τ−

s ) = e(Ap+BpKp)τsck (13)

and recall that x is continuous to see that (11) indeed holds.
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B. Sampling interval with a switch

Suppose now that σ(kτs) = p and σ((k + 1)τs) = q 
= p.

Then the controller knows, again by (2), that exactly one

switch from mode p to mode q has occurred somewhere on

the interval (kτs, (k + 1)τs], but it does not know exactly

where. This case is more challenging. Let the (unknown)

time of the switch from p to q be kτs + t̄, where t̄ ∈ (0, τs].

1) Analysis before the switch: On [kτs, kτs + t̄) mode p
is active, and we can derive as before that ‖x(kτs + t̄) −
x̂(kτs + t̄)‖ ≤ ‖eAp t̄‖Ek/N. But x̂(kτs + t̄) is unknown, so

we need to describe a set that contains it. Choose an arbitrary

t′ ∈ [0, τs] (which may vary with k). By (9) and (10) we

have2

x̂(kτs + t′) = e(Ap+BpKp)t′ck (14)

and x̂(kτs + t̄) = e(Ap+BpKp)(t̄−t′)x̂(kτs + t′), hence

‖x̂(kτs + t̄) − x̂(kτs + t′)‖ ≤ ‖e(Ap+BpKp)(t̄−t′) −
I‖‖e(Ap+BpKp)t′‖‖ck‖. We also have from (8) that

‖ck‖ ≤ ‖x∗
k‖ + Ek(N − 1)/N. (15)

By the triangle inequality, we obtain

‖x(kτs + t̄) − x̂(kτs + t′)‖
≤ ‖e(Ap+BpKp)(t̄−t′) − I‖‖e(Ap+BpKp)t′‖
× (‖x∗

k‖ + Ek(N − 1)/N) + ‖eAp t̄‖Ek/N =: Dk+1(t̄).

2) Analysis after the switch: On the interval [kτs + t̄, (k+
1)τs), the closed-loop dynamics are

(

ẋ
˙̂x

)

=

(

Aq BqKp

0 Ap + BpKp

)(

x
x̂

)

. (16)

Letting z :=

(

x
x̂

)

, Āpq :=

(

Aq BqKp

0 Ap + BpKp

)

, we can

write (16) more compactly as ż = Āpqz. The previous anal-

ysis shows that

∥

∥

∥
z(kτs + t̄) −

(

x̂(kτs + t′)
x̂(kτs + t′)

)

∥

∥

∥
≤ Dk+1(t̄)

(noting the property ‖(aT , bT )T ‖ ≤ max{‖a‖, ‖b‖} of the

∞-norm). Consider the auxiliary system copy (on R
2n)

˙̄z = Āpq z̄, z̄(0) =

(

x̂(kτs + t′)
x̂(kτs + t′)

)

.

We have ‖z((k+1)τ−
s )−z̄(τs− t̄)‖ ≤ ‖eĀpq(τs−t̄)‖Dk+1(t̄).

We now need to generate a bound for the unknown z̄(τs− t̄).
Similarly to what we did before, pick a t′′ ∈ [0, τs]. Then

z̄(t′′) = eĀpqt′′ z̄(0), z̄(τs − t̄) = eĀpq(τs−t̄−t′′)z̄(t′′), and

‖z̄(τs − t̄) − z̄(t′′)‖ ≤ ‖eĀpq(τs−t̄−t′′) − I‖‖z̄(t′′)‖
≤ ‖eĀpq(τs−t̄−t′′) − I‖‖eĀpqt′′‖‖x̂(kτs + t′)‖
≤ ‖eĀpq(τs−t̄−t′′) − I‖‖eĀpqt′′‖‖e(Ap+BpKp)t′‖
× (‖x∗

k‖ + Ek(N − 1)/N)

2In case either kτs + t
′ or kτs + t̄ equals (k + 1)τs, the value of x̂ at

that time should be replaced by the left limit x̂(kτs + t
′−) or x̂(kτs + t̄

−),
respectively.

where we used (14) and (15) in the last step. By the triangle

inequality,

‖z((k + 1)τ−
s ) − z̄(t′′)‖ ≤ ‖eĀpq(τs−t̄−t′′) − I‖

× ‖eĀpqt′′‖‖e(Ap+BpKp)t′‖
(

‖x∗
k‖ + Ek(N − 1)/N

)

+ ‖eĀpq(τs−t̄)‖Dk+1(t̄) =: Ek+1(t̄).

To eliminate the dependence on the unknown t̄, we take the

maximum over t̄:

Ek+1 := max
0≤t̄≤τs

Ek+1(t̄) = max
0≤t̄≤τs

{

‖eĀpq(τs−t̄−t′′) − I‖

× ‖eĀpqt′′‖‖e(Ap+BpKp)t′‖
(

‖x∗
k‖ + Ek(N − 1)/N

)

+ ‖eĀpq(τs−t̄)‖
(

‖e(Ap+BpKp)(t̄−t′) − I‖‖e(Ap+BpKp)t′‖

×
(

‖x∗
k‖ + Ek(N − 1)/N

)

+ ‖eAp t̄‖Ek/N
)}

.

We can use the inequalities

‖M − I‖ ≤ ‖M‖ + 1, ‖eAs‖ ≤ e‖A‖s (17)

to obtain a more conservative upper bound which is more

useful for computations. This formula further simplifies if we

set t′ = t′′ = 0, but the original expression for Ek+1 is not

necessarily minimized with this choice of t′ and t′′. Finally,

x∗
k+1 is defined by projecting z̄(t′′) onto the x-component:

x∗
k+1 : =

(

In×n 0n×n

)

z̄(t′′)

=
(

In×n 0n×n

)

eĀpqt′′
(

x̂(kτs + t′)
x̂(kτs + t′)

)

(18)

=
(

In×n 0n×n

)

eĀpqt′′
(

In×n

In×n

)

e(Ap+BpKp)t′ck.

C. Generating an initial state bound Ek0

Initially, set the control to u ≡ 0. At time 0, choose an

arbitrary E0 > 0 and partition the hypercube {x ∈ R
n :

‖x‖ ≤ E0} into Nn equal hypercubic boxes, N per each

dimension. If x0 belongs to one of these boxes, then send

the number of the box to the controller. Otherwise send

0 (the “overflow” symbol). Choose an increasing sequence

E1, E2, . . . that grows fast enough to dominate the rate of

growth of the open-loop dynamics. For example, we can pick

a small ε > 0 and let

Ek := e(2+ε) maxp∈P ‖Ap‖kτsE0, k = 1, 2, . . . (19)

There are other options but for concreteness we assume that

the specific “zooming-out” sequence (19) is implemented.

Repeat the above encoding procedure at each step. (As long

as the quantization symbol is 0, there is no need to send the

value of σ to the controller.) Then we claim that there will

be a time k0τs such that, for the corresponding value Ek0
,

the symbol received by the controller will not be 0. At this

time, the encoding strategy of Section III can be initialized.

To see why the above claim is true, consider a sampling

interval [kτs, (k + 1)τs] on which u ≡ 0. If σ ≡ p ∈ P on

this interval, then the dynamics are ẋ = Apx from which it

follows that ‖x(t)‖ ≤ Λ̄p‖x(kτs)‖ on this interval, where

Λ̄p := max
0≤s≤τs

‖eAps‖. (20)
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If, on the other hand, the sampling interval contains a switch

from mode p to another mode q, then the dynamics become

ẋ = Aqx after the switch and a (conservative) bound is now

‖x(t)‖ ≤ Λ̄qΛ̄p‖x(kτs)‖ for t ∈ [kτs, (k + 1)τs]. Iterating,

we obtain that ‖x(t)‖ ≤ maxp∈P Λ̄2k
p ‖x0‖ on [0, kτs] as

long as u ≡ 0 there. Since Λ̄p ≤ e‖Ap‖τs , the values of Ek

in (19) grow faster than the largest values that ‖x(t)‖ can

attain on the intervals [(k − 1)τs, kτs] under zero control.

It follows that k0 is indeed well defined and there exist

functions η : [0,∞) → Z≥0 and γ : [0,∞) → (0,∞) such

that

k0 ≤ η(‖x0‖), Ek0
≤ γ(‖x0‖), (21)

‖x(t)‖ ≤ γ(‖x0‖) ∀ t ∈ [0, k0τs]. (22)

Both functions depend on the initial choice of E0. Note

that we can pick them so that η(r) = 0 and γ(r) = E0

for all r ≤ E0. For large values of its argument, γ(·)
is in general super-linear. In fact, we can calculate that

γ(r) is of the order of r2/E0, and η(r) is of the order of

(maxp∈P ‖Ap‖τs)
−1 log(r/E0), for large values of r.

V. STABILITY ANALYSIS

In this section we prove that the encoding and control

strategy developed in Sections III and IV fulfills the proper-

ties listed in Theorem 1. Due to the length limitations, the

calculations are only sketched here.

A. Sampling interval with no switch

Consider an interval [kτs, (k + 1)τs], k ≥ k0 on which

σ ≡ p ∈ P , as in Section IV-A. Rewrite (13) as x∗
k+1 =

e(Ap+BpKp)τs(x∗
k + ∆k) = Spx

∗
k + Sp∆k where

∆k := ck − x∗
k, Sp := e(Ap+BpKp)τs . (23)

We know from (8) that

‖∆k‖ ≤ Ek(N − 1)/N (24)

and we know that Sp is Schur stable because Ap + BpKp

is Hurwitz. Also, (12) and Assumption 3 give us Ek+1 =
ΛpEk/N < Ek. We see that, as long as there are no

switches, Ek decays exponentially and x∗
k evolves according

to an exponentially stable discrete-time linear system whose

input ∆k is bounded in terms of Ek. It is then well known

that the overall “cascade” system describing the joint evolu-

tion of x∗
k and Ek is exponentially stable. We now formalize

this fact by constructing a Lyapunov function in the form

of a weighted sum of a quadratic form in x∗
k and E2

k , along

standard lines. This Lyapunov function will depend on p, the

currently active mode. Let Pp = PT
p > 0 and Qp = QT

p > 0
be such that

ST
p PpSp − Sp = −Qp < 0.

We let λ and λ denote the smallest and the largest eigen-

value of a matrix, respectively. Proceeding similarly to [14,

Example 3.4] and then using (24), we can show that

(x∗
k+1)

T Ppx
∗
k+1 − (x∗

k)T Ppx
∗
k

≤ −1

2
λ(Qp)‖x∗

k‖2 +
(

2n2‖ST
p PpSp‖2/λ(Qp)

+ n‖ST
p PpSp‖

)

E2
k((N − 1)/N)2 =:−α1,p‖x∗

k‖2 + β1,pE
2
k.

We now define

Vp(x
∗
k, Ek) := (x∗

k)T Ppx
∗
k + ρpE

2
k

where ρp is a positive constant large enough to satisfy

(β1,p/ρp) + (Λp/N)2 < 1 (such a ρp exists because the

second fraction is less than 1 by Assumption 3). By the

previous calculations, Vp(x
∗
k+1, Ek+1) ≤ νpVp(x

∗
k, Ek) ≤

νVp(x
∗
k, Ek) where ν := maxp∈P νp and

νp := max
{

1−α1,p/(nλ(Pp)), (β1,p/ρp)+(Λp/N)2
}

< 1.

B. Sampling interval with a switch

Next, consider an interval [kτs, (k + 1)τs], k ≥ k0 which

contains a switch from mode p to mode q, as in Section IV-

B. We know from (18) that x∗
k+1 = Hpqck = Hpq(x

∗
k +∆k)

where Hpq is a matrix defined by

Hpq :=
(

In×n 0n×n

)

eĀpqt′′
(

In×n

In×n

)

e(Ap+BpKp)t′

(note that Hpq = I if t′ = t′′ = 0) and ∆k is defined

in (23) and satisfies (24). This gives ‖x∗
k+1‖ ≤ hpq(‖x∗

k‖ +
Ek(N − 1)/N) where hpq := ‖Hpq‖. We also have from

Section IV-B that Ek+1 ≤ α2,pq‖x∗
k‖ + β2,pqEk, where

α2,pq :=
(

e‖Āpq‖max{t′′,τs−t′′}+ 1
)

‖eĀpqt′′‖‖e(Ap+BpKp)t′‖
+ e‖Āpq‖τs

(

e‖Ap+BpKp‖max{t′,τs−t′} + 1
)

‖e(Ap+BpKp)t′‖

(this simplifies if t′ = t′′ = 0) and β2,pq :=
(

α2,pq(N − 1) + e‖Āpq‖τse‖Ap‖τs

)

/N. Therefore,

Vq(x
∗
k+1, Ek+1) ≤ µpqVp(x

∗
k, Ek) ≤ µVp(x

∗
k, Ek) where

µ := maxp,q∈P µpq and

µpq := max
{

(2nλ(Pq)h
2 + 2ρqα

2
2,pq)/λ(Pp),

(2nλ(Pq)h
2/ρp)((N − 1)/N)2 + 2ρqβ

2
2,pq/ρp

}

.

C. Combined bound for sampling times

We now invoke Assumption 1, whose item 2 (the average

dwell-time property) implies that Nσ(k0τs, kτs) ≤ N0 +
(k − k0)/m for every m such that τa ≥ mτs. We want

to derive a lower bound on m that guarantees convergence.

We know from (2) that Nσ(k0τs, kτs) equals the number

of intervals of the form (ℓτs, (ℓ + 1)τs], k0 ≤ ℓ ≤ k − 1
which contain a switch (among the total number k − k0 of

such intervals). Combining the conclusions of Sections V-A

and V-B, we have the following bound for all k ≥ k0:

Vσ(kτs)(x
∗
k, Ek) ≤

(µ

ν

)N0(

µ1/mν(m−1)/m
)k−k0

ρσ(k0τs)E
2
k0

(since x∗
k0

= 0). We want to ensure that µ1/mν(m−1)/m < 1,
which is equivalent to m > 1 + log µ/log (1/ν). Thus if

τa > (1 + log µ/log (1/ν))τs (25)

then there exists a θ ∈ (0, 1) such that Vσ(kτs)(x
∗
k, Ek) ≤

(µ/ν)N0θk−k0(maxp∈P ρp)E
2
k0

. This leads to

‖x∗
k‖ ≤

(µ

ν

)N0/2

θ(k−k0)/2

√

maxp∈P ρp

minp∈P λ(Pp)
Ek0

, (26)
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Ek ≤
(µ

ν

)N0/2

θ(k−k0)/2

√

maxp∈P ρp

minp∈P ρp
Ek0

. (27)

Recalling that, by (6), ‖x(kτs)‖ ≤ ‖x∗
k‖ + Ek for all k, we

obtain an exponential decay bound for ‖x(kτs)‖ given by

the sum of the right-hand sides of (26) and (27).

D. Intersample bound

Here we modify relevant calculations from Section IV

to derive bounds that are simpler (in particular, we work

with t′ = t′′ = 0) and more conservative, but apply

to the whole sampling intervals and not just to the sam-

pling times. Consider an interval [kτs, (k + 1)τs] with

a possible switch at a time kτs + t̄ in its interior.

On this interval we obtain ‖x(t)‖ ≤ ‖ck‖ + ‖x(t) −
ck‖ ≤ ‖x∗

k‖ + Ek(N − 1)/N + Ēk+1 = α3,pq‖x∗
k‖ +

β3,pqEk, where α3,pq := 1 + max0≤s≤τs
‖eĀpqs −

I‖ + max0≤s≤τs
‖eĀpqs‖ max0≤s≤τs

‖e(Ap+BpKp)s − I‖
and β3,pq :=

(

α3,pq(N − 1) + max0≤s≤τs
‖eĀpqs‖

×max0≤s≤τs
‖eAps‖

)

/N. As before, we can use the in-

equalities (17) to derive more conservative but more com-

putationally friendly upper bounds. Invoking the earlier

bounds (26) and (27), we conclude that for all t ∈ [kτs, (k+
1)τs), k ≥ k0 we have ‖x(t)‖ ≤ c̄θ(k−k0)/2Ek0

where

c̄ : =
(µ

ν

)N0/2(

max
p,q∈P

α3,pq

√

max
p∈P

ρp/min
p∈P

λ(Pp)

+ max
p,q∈P

β3,pq

√

max
p∈P

ρp/min
p∈P

ρp

)

.

We can now establish a continuous-time exponential decay

bound: rewriting the previous bound as

‖x(t)‖ ≤ c̄θ
1
2

(

⌊ t
τs

⌋ − k0

)

Ek0
≤ c̄

(

1/
√

θ
)1+k0

θ
t

2τs Ek0

and recalling (21) and (22), we finally arrive at the de-

sired exponential convergence property (4) with λ :=
(1/(2τs)) log (1/θ) and

g(r) := c̄
(

1/
√

θ
)1+η(r)

γ(r). (28)

E. Lyapunov stability

The proof of Lyapunov stability proceeds along the lines

of [8], [15], and we omit it.

VI. SIMULATION EXAMPLE

We simulated the above control strategy with the following

data: P = {1, 2}, A1 =

(

1 0
0 −1

)

, B1 =

(

1
0

)

, K1 =

(

−2 0
)

, A2 =

(

0 1
−1 0

)

, B2 =

(

0
1

)

, K2 =
(

0 −1
)

,

x0 = (2, 2)T , E0 = 0.5, τs = 0.5, N = 5 (Assumption 3 is

satisfied), τd = 1.05, τa = 7.55, and N0 = 5. Figure 1 plots a

typical behavior of x1 (in solid red) and x̂1 (in dashed green)

versus time; switches are marked by blue circles. Observe

the initial “zooming-out” phase and the nonsmooth behavior

of x when x̂ experiences a jump (causing a jump in u).

For this example, the theoretical lower bound on the average

dwell time from the formula (25) is about 85.5 which is, not

surprisingly, quite conservative.

VII. CONCLUSIONS

We presented a result on sampled-data quantized state

feedback stabilization of switched linear systems. We believe

there is room for improving it by relaxing the slow-switching

assumption, by refining the reachable set bounds, and by

allowing state jumps. We also envision developing similar

results for nonlinear dynamics, state-dependent switching,

and output feedback.
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Fig. 1. Simulation example
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