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Abstract— In this paper, we present the adaptation of an
Optimal Bounding Ellipsoid (OBE) type algorithm for out-
put error systems with unknown but bounded disturbances.
Two identification algorithms are derived in a multi-input
multi-output context and the paper proposed stability and
convergence analysis. An iterative scheme is introduced and
simulation are performed, showing the excellent performance
of the proposed approach.

I. INTRODUCTION

All practical identification algorithms have to deal with

measurements corrupted by noise. In some cases (unknown

probability distribution of the disturbances, modeling inac-

curacy) the noise can’t be modeled as a stochastic process,

then the bounded noise assumption seems to be more ap-

propriate. In this context, the use of classical identification

schemes ([11]) is limited and in contrast Set Membership

Identification (SMI) algorithms are interesting alternative

approaches. Indeed these approaches are considered to be

more appropriate to handle the identification problem in

presence of bounded disturbances. Their principe consists in

the estimation of a feasible set of parameters which must

be consistent with the measurement data and the model

structure. Important contributions have been presented in

[13], [9], [14], [20], [10], [1] and [4]. Among the SMI

type methods, OBE type algorithms represent a very popular

class of recursive algorithms ([9], [5], [12], [3], [16], [6],

[7], [19], [15], [18], [2]). These methods have been mainly

motivated by a low computational complexity and robustness

to measurement noise.

To the best of our knowledge, most of the existing works

in the OBE algorithms literature aim at designing identifi-

cation algorithm adapted to equation error models: stability

and convergence properties are established in particular for

affine-in-parameters model. Less attention has been focused

on the output error systems with bounded disturbances ([8])

and our goal in this paper is to adapt an OBE algorithm to

this type of systems. The main contribution of this note is

the extension of some stability and convergence results ([3],

[19], [15], [18], [2]) to output error systems context and the

derivation of an algorithm which relaxes the stability and

convergence conditions.

The paper is organized as follows: in section II the model

structure is presented. In section III, some algorithms are

proposed and their convergence analysis are addressed. A

geometrical interpretation is also presented in this section.

Some simulation results are given in section IV. Finally,

section V concludes the paper.

II. PROBLEM FORMULATION

Consider a discrete-time multi-input multi-output stable

system of the form
{

yt=G(q)ut+vt

vT
t ∆−2

vt
vt≤1

(1)

where ut ∈ R
nu and yt ∈ R

ny are respectively the system

inputs and outputs vector. vt ∈ R
ny is an unknown and

bounded disturbing term (noise measurement, state distur-

bances, modeling inaccuracy, etc.) and ∆vt is a symmetric

positive definite known matrix which reflects a known upper

bound on vt .

The identification problem treated in this paper is stated

as: estimate the parameters of system (1) described by

G(q)=(A(q))−1B(q) (2)

where A(q) and B(q) are unknown matrix polynomials of

the form: {
A(q)=Iny+A1q−1+···+Ana q−na

B(q)=B0+B1q−1+···+Bnb
q−nb

with Ai ∈ R
ny×ny and diagonal, Bi ∈ R

ny×nu . Note that this

description of the behavior of the system may not be a

minimal realization.

This structure of the plant is called an output error model

structure. The vector of coefficients of the plant is

Θ∗=
(

A1 ··· Ana B0 ··· Bnb

)

and the one-step-ahead output predictor is defined bearing in

mind the optimal predictor structure (see [11]), namely

ŷt=yt−vt=Θ∗ϕt

with ϕT
t =
(

−ŷT
t−1 · · · −ŷT

t−na
uT

t · · · uT
t−nb

)
. This can

be rewritten as ŷt = φT
t θ ∗ (see [11]) with

{
θ∗=vect(Θ∗)

φt=ϕt⊗Iny

where vect(.) denotes the vectorization of a matrix, ⊗ the

Kronecker product and θ ∗ ∈ R
n is the unknown parameters

vector to be identified with n = (nany + (nb + 1)nu)ny the

number of parameters.

A key observation is that the output predictor ŷt is not

linear in the system parameters. This will have a strong

impact on the form of the estimation algorithm.
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III. IDENTIFICATION ALGORITHMS

A. The OE-OBE (Output Error - OBE) algorithm.

Our aim in this paper is to design an iterative identification

algorithm for the system described by (1) and (2). Before

introducing the parameter adaptation algorithm, let us define

the well known a priori and a posteriori predictors as
{

ŷt/t−1=φ̂ T
t θ̂t−1

ŷt/t=φ̂ T
t θ̂t

θ̂t represents the estimation of the parameters vector at the

actual time t while φ̂t is an estimate of the prediction data

vector φt which is simply obtained by replacing the unknown

components ŷ(t− i) by their a posteriori estimates ŷ(t− i/t−
i): φ̂t = ϕ̂t ⊗ Iny with

ϕ̂T
t =
(

−ŷT
t−1/t−1

· · · −ŷT
t−na/t−na

uT
t · · · uT

t−nb

)

Here again, the predictor ŷt/t is not linear in θ̂t .

The estimated parameters vector has to maintain the output

error below a bound defined from the upper bound on the

disturbance vt . Generalization of some results performed in

[3], [19], [18] and [2], the following Output Error - OBE

algorithm provides such estimation:





θ̂t=θ̂t−1+Γt εt/t−1

Γt=Pt−1φ̂t σt(λ Iny+φ̂ T
t Pt−1φ̂t σt)

−1

Pt=
1
λ (In−Γt φ̂

T
t )Pt−1

εt/t−1=yt−φ̂ T
t θ̂t−1

(3)

where 0 < λ ≤ 1 is a design parameter forgetting factor that

will be used to monitor the parameter adaptation dynamics.

σt is a switching flag given by:

σt=






λ(φ̂ T
t Pt−1φ̂t)

−1
(
(εT

t/t−1
∆−2

t εt/t−1)1/2−1
)

if
(

εT
t/t−1

∆−2
t εt/t−1>1

)
and (φ̂ T

t Pt−1φ̂t>0)

0 otherwise

(4)

∆t is a user defined symmetric positive definite matrix whose

role will be specify below.

εt/t−1 is the a priori prediction error. From (3) the a

posteriori prediction error εt/t = yt − φ̂T
t θ̂t can be written

as:

εt/t=λ(λ Iny +φ̂ T
t Pt−1φ̂t σt)

−1
εt/t−1 (5)

Using the value of σt for σt 6= 0 (5) yields:

εT
t/t

∆−2
t εt/t=1

This clearly shows that the OE-OBE algorithm ensures the

following key property:

σt 6=0 =⇒ εT
t/t

∆−2
t εt/t=1

∆t is then a bound on the a posteriori adaptation error which

has to be specified taking into account the bound ∆vt .

Remark 1: From the expression (3) it is apparent that the

parameter adaptation is frozen when σt = 0. This occurs

whenever the a priori prediction error is less than the

threshold ∆t (i.e. the algorithm doesn’t have to update the

parameters vector) or the observation vector is no longer

persistently exciting (i.e. the algorithm doesn’t have enough

informations to realize an update).

Before providing a first result, let consider the following

observation on the a posteriori prediction error εt/t = yt − ŷt/t .

Bearing in mind structures of φT
t and φ̂T

t , εt/t becomes

εt/t=(A(q))−1φ̂ T
t θ̃t+vt (6)

with θ̃t = θ ∗− θ̂t .

This equation has the typical form encountered in pseudo-

linear regression. The stability analysis with an equation of

the form εt/t = φT
t θ̃t +vt has been already investigated in [3],

[19], [18] and [2]. The following result presents a stability

analysis for the form (6).

Result 1: Consider the class of systems defined in section

II and the OE-OBE algorithm given by (3) and (4). Assume

that

• A(q) is such that

‖Iny−A(q)‖
1

< 1 (7)

where ‖.‖1 is the l1 induced norm;

• ∆t is such that:

δt/min≥
‖A(q)‖1

1−‖Iny−A(q)‖
1

δvt/min (8)

where δt/min is the minimal singular value of ∆t and

δvt/min the minimal singular value of ∆vt .

then for all initial conditions

•

|θ̃t |
2
≤γ1 |θ̃0|

2 (9)

with γ1 =
λmax(P−1

0 )
λmin(P−1

0 )
.

where λmax

(
P−1

0

)
and λmin

(
P−1

0

)
are respectively the maxi-

mum and the minimum eigenvalues of P−1
0 .

If, furthermore, {φ̂t} is a persistently exciting sequence of

order oe ≥ n, i.e there exist α > 0 and β > 0 such that for

all t

αIn ≤ ∑
oe−1
i=0 φ̂t+iσt+iφ̂

T
t+i ≤ β In (10)

Then the following properties hold:

• for all t ≥ oe + 1

|θ̃t |
2
≤ γ2 λ t |θ̃0|

2 (11)

with γ2=






λmax(P−1
0 )

α

(
λ−oe−1

λ−1−1

)
if λ<1

λmax(P−1
0 )

α if λ=1

.

• For λ < 1 one has

limt→∞ εT
t/t−1

∆−2
t εt/t−1 ≤ 1 (12)

�

Proof:

• Consider the following Lyapounov function:

Vt=θ̃ T
t P−1

t θ̃t
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In a first time we are going to show that Vt ≤ λVt−1 if

conditions (7) and (8) hold. From (3) and (5) we have:

θ̃t−1=θ̃t+Pt−1φ̂t
σt
λ

εt/t

then

Vt−1=θ̃ T
t P−1

t−1θ̃t+
2
λ

θ̃ T
t φ̂t σt εt/t+

1

λ2 εT
t/t

σt φ̂
T
t Pt−1φ̂t σt εt/t

After a few lines of calculation we show that Vt=λVt−1+qt with

qt = θ̃ T
t φ̂t σt φ̂

T
t θ̃t −2θ̃ T

t φ̂tσtεt/t

−
1
λ εT

t/t
σt φ̂

T
t Pt−1φ̂tσtεt/t

• If σt = 0, then qt = 0 and

Vt=λVt−1

• Let consider the case where σt 6= 0 and let define bt =
φ̂T

t θ̃t . After a few lines of calculation we show that qt ≤ 0

provided that:
(

εt/t−bt

)T

∆−2
t

(
εt/t−bt

)
≤1 (13)

εt/t is such that εt/t = (A(q))−1bt + vt , thus Condition (13)

becomes:
((

Iny−A(q)

)
εt/t+A(q)vt

)T((
Iny−A(q)

)
εt/t+A(q)vt

)
≤δ 2

t/min

where δt/min is the minimal singular value of ∆t . From

triangular inequality, one obtains the following condition:

(
((Iny−A(q))εt/t)

T
((Iny−A(q))εt/t)

)1/2

+((A(q)vt)
T (A(q)vt))

1/2
≤δt/min

(14)

Let define ‖.‖1 the l1 induced norm and suppose condition

(7) to be true. Equation (14) holds if:

‖Iny−A(q)‖
1
(εT

t/t
εt/t)

1/2+‖A(q)‖1(vT
t vt)

1/2≤δt/min (15)

We know that εT
t/t

∆−2
t εt/t ≤ 1 and vT

t ∆−2
vt

vt ≤ 1. It can be

easily shown that inequality (15) holds if:

‖Iny−A(q)‖
1
δt/min+‖A(q)‖1δvt /min≤δt/min

where δvt/min is the minimal singular value of ∆vt . Finally

one obtains the following inequality:

δt/min≥
‖A(q)‖1

1−‖Iny−A(q)‖
1

δvt /min

ensuring qt ≤ 0 and then Vt ≤ λVt−1.

• Henceforth we know that in each cases (σt = 0 or σt 6= 0)

one has Vt ≤ λVt−1 (if conditions (7) and (8) are satisfied).

This gives:

Vt≤λ tV0

For lack of space we do not present the proof of the results

(9), (11) and (12). These demonstrations are based on the

previous result.

Remark 2: The conditions (7) and (8) are only sufficient

conditions and since they are conservative we have observed

the algorithm to work well in some cases where these

conditions are not satisfied. In general, more poles are slow

more the condition (7) might not be verified, this leads to an

increased risk of instability of the algorithm.

Remark 3: The ability to seek the true parameters vector

depends on the threshold ∆t , thus its specification proves

to be particularly crucial. If ∆t is too large, the OE-OBE

algorithm will be stable but the update will be frozen too

early. If ∆t is too small, stability conditions will not be

satisfied. Actually the choice of the threshold depends on

the system throughout the matrix A(q) (which is an unknown

object) and the disturbances effects throughout the weighting

matrix ∆vt . A dichotomy-based procedure could be used

to get an appropriate value for ∆t using all the a priori

knowledge on the system. In subsection III-C a modified

algorithm will be proposed to relax conditions (7) and (8).

B. Geometrical interpretation.

In order to provide some useful insights on the parameters

estimation algorithm, let us define for each time t:

• the observation set St

St=

{
θ∈R

n,

(
yt−φ̂ T

t θ

)T

∆−2
t

(
yt−φ̂ T

t θ

)
≤1

}

• the ellipsoid Et−1

Et−1={θ∈R
n,(θ−θ̂t−1)T P−1

t−1(θ−θ̂t−1)≤ρ2
t−1}

where ρ2
t−1 is a scalar such that θ ∗ belongs to the

ellipsoid Et−1.

Given (yt , φ̂t), St is the set of all possible θ which are

consistent with the chosen threshold ∆t . An essential property

of that observation set is given in the following result.

Result 2: If condition (7) and (8) in result 1 hold then

θ ∗ ∈ St (16)

�

Proof: If θ ∗ ∈ St then it means that

(
yt−φ̂ T

t θ∗

)T

∆−2
t

(
yt−φ̂ T

t θ∗

)
≤1 (17)

yt is such that yt = φT
t θ ∗ + vt , thus (17) is true if:

(
(φt−φ̂t)

T θ∗+vt

)T

∆−2
t

(
(φt−φ̂t)

T θ∗+vt

)
≤1

Bearing in mind structures of φt and φ̂t this can be rewritten

as:
((

Iny−A(q)

)
εt/t+A(q)vt

)T

∆−2
t

((
Iny−A(q)

)
εt/t+A(q)vt

)
≤1

In the proof of result 1 it is shown that this last relation is

satisfied provided condition (7) and (8) hold.

The following result provides a geometrical interpretation

of the adaptation algorithm. It shows that the parameters

vector θ̂t estimated at the actual time t is included in both the

subset St and the ellipsoid Et−1. Generally, (St

⋂
Et−1) is

not a regular convex set, the result provides another ellipsoid

7202



St

Et

Et−1

Fig. 1. 2-Dimensional example: (St ∩Et−1) ⊂ Et

Et which contains the intersection (St

⋂
Et−1) (figure 1) and

the parameters vector θ ∗ too.

Result 3: Consider the class of systems defined in section

II and the OE-OBE algorithm given by (3) and (4). Assume

(7), (8) and

θ∗∈Et−1 (18)

then for all initial conditions

• An outer bounding ellipsoid of (St ∩Et−1) is given by

the following ellipsoid Et :

Et={θ∈R
n,(θ−θ̂t)

T P−1
t (θ−θ̂t)≤ρ2

t } (19)

with

ρ2
t = λ ρ2

t−1+
εT
t/t−1

σt εt/t−1

εT
t/t−1

∆−2
t εt/t−1

−λ εT
t/t−1

(
λ Iny +φ̂ T

t Pt−1φ̂t σt

)−1

σt εt/t−1

•

θ∗∈Et (20)

Moreover if condition (10) in result 1 holds then we have:

• For λ < 1, there exists an ellipsoid E such that

limt→∞ Et = E (21)

�

Proof:

• Let θ such that θ ∈ Et−1 then we have:

λ (θ−θ̂t−1)
T P−1

t−1(θ−θ̂t−1)≤λ ρ2
t−1 (22)

• θ is such that θ ∈ St , it follows:

(
yt−φ̂ T

t θ

)T

∆−2
t

(
yt−φ̂ T

t θ

)
≤1

If σt = 0, then
(

yt−φ̂ T
t θ

)T

σt

(
yt−φ̂ T

t θ

)
≤

εT
t/t−1

σt εt/t−1

εT
t/t−1

∆−2
t εt/t−1

. For σt 6= 0

one gets for all (yt − φ̂T
t θ ):

(
yt−φ̂ T

t θ

)T(
∆−2

t

(
yt−φ̂ T

t θ

)T

σt

(
yt−φ̂ T

t θ

)
−σt

)(
yt−φ̂ T

t θ

)
≤0

It follows:
(

yt−φ̂ T
t θ

)T

σt

(
yt−φ̂ T

t θ

)
≤

εT
t/t−1

σt εt/t−1

εT
t/t−1

∆−2
t εt/t−1

(23)

• Therefore if θ ∈ (St ∩Et−1), then it comes from (22)

and (23):

λ (θ−θ̂t−1)
T P−1

t−1(θ−θ̂t−1)+

(
yt−φ̂ T

t θ

)T

σt

(
yt−φ̂ T

t θ

)

≤λ ρ2
t−1+

εT
t/t−1

σt εt/t−1

εT
t/t−1

∆−2
t εt/t−1

(24)

After a few lines of calculation this gives

(θ−θ̂t)
T P−1

t (θ−θ̂t)

≤λ ρ2
t−1+

εT
t/t−1

σt εt/t−1

εT
t/t−1

∆−2
t εt/t−1

−λ εT
t/t−1

(
λ Iny +φ̂ T

t Pt−1φ̂t σt

)−1

σt εt/t−1

This corresponds to the ellipsoid Et described by equation

(19).

• From result 2 we have θ ∗ ∈ St Together with (18) it

gives: θ ∗ ∈ (St ∩Et−1) ⊂ Et .

• Et is described by Et={θ∈R
n,(θ−θ̂t)

T P−1
t (θ−θ̂t)≤ρ2

t }. From

(12) in result 1 limt→∞ σt = 0, thus for t ≫ 1 θ̂t=θ̂t−1, P−1
t =λ P−1

t−1

and ρ2
t =λ ρ2

t−1 and Et becomes

Et={θ∈R
n,(θ−θ̂t−1)

T P−1
t−1(θ−θ̂t−1)≤ρ2

t−1}=Et−1

This shows convergence on Et and concludes the proof.

Remark 4: This result is a generalization to the output

error systems framework and the MIMO case of some results

established in the linear prediction framework and SISO case.

More precisely, if nu = ny = 1 and A(q) = 1, then our result

is equivalent to results in [19] and [15].

C. The F-OE-OBE (Filtered - OE-OBE) algorithm.

In a number of case it may be interesting to remove the

condition (7) required for stability. This needs a modification

of the parameter adaptation algorithm. In [8] an estimation

algorithm adapted to output error systems is derived from the

substitution of the observation set St by an extended obser-

vation set S ′
t ⊃ St . However this leads to a conservative

algorithm.

Here we use an adaptation filter so as to relax stability

condition. Let first define the a priori and a posteriori

adaptation errors as
{

ηt/t−1=εt/t−1+(F(q)−Iny)εt/t

ηt/t=F(q)εt/t

where F(q) is the adaptation filter designed by the user.

These definitions allow us to propose a filtered parameter

adaptation algorithm by simply substituting in (3) and (4):

• εt/t−1 by ηt/t−1 and εt/t by ηt/t ;

• yt by yF
t such that F(q)yF

t = yt and φ̂t by φ̂F
t such that

F(q)φ̂F
t = φ̂t .

The idea is to compensate the effect of A(q) in (7) and (8).

Taking into account these adjustments, the two following

equations sets summarize the proposed Filtered OE-OBE

algorithm:





θ̂t=θ̂t−1+Γt ηt/t−1

Γt=Pt−1φ̂ F
t σt

(
λ Iny +φ̂ F

T

t Pt−1φ̂ F
t σt

)−1

Pt=
1
λ

(
In−Γt φ̂ F

T

t

)
Pt−1

εt/t−1=yF
t −φ̂ F

T

t θ̂t−1

(25)
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with

σt=






λ

(
φ̂ F

T

t Pt−1φ̂ F
t

)−1(
(ηT

t/t−1
∆−2

t ηt/t−1)1/2−1
)

if
(

ηT
t/t−1

∆−2
t ηt/t−1>1

)
and

(
φ̂ F

T

t Pt−1φ̂ F
t>0

)

0 otherwise

(26)

It can easily be established that the following key property

holds: σt 6= 0 =⇒ ηT
t/t

∆−2
t ηt/t=1 bearing in mind that ∆t is a

now a bound on the a posteriori adaptation error ηt/t .

Here the equation of the a posteriori prediction error is:

εt/t=(A(q))−1φ̂ F
T

t θ̃t+(F(q))−1vt

which gives ηt/t = F(q)(A(q))−1φ̂F
T

t θ̃t + vt . Using this last

equation, the following result presents an analysis of the

proposed F-OE-OBE algorithm.

Result 4: Consider the class of systems defined in section

II and the F-OE-OBE algorithm given by (25) and (26).

Assume that

• F(q) is such that

F(q)=Iny +F1q−1+···+Fn f
q
−n f (27)

with Fi ∈ R
ny×ny and diagonal.

• A(q) is such that

‖Iny−A(q)(F(q))−1‖
1

< 1 (28)

where ‖.‖1 is the l1 induced norm;

• ∆t is such that:

δt/min≥
‖A(q)(F(q))−1‖

1

1−‖Iny−A(q)(F(q))−1‖
1

δvt/min (29)

then for all initial conditions

•

|θ̃t |
2
≤γ1 |θ̃0|

2 (30)

If, furthermore, {φ̂F
t} is a persistently exciting sequence

of order oe ≥ n, then the following properties hold:

• for all t ≥ oe + 1

|θ̃t |
2
≤ γ2 λ t |θ̃0|

2 (31)

• For λ < 1 one has

limt→∞ ηT
t/t−1

∆−2
t ηt/t−1 ≤ 1 (32)

�

Proof: The proof is similar to the proof of result 1.

It can be notice, of course, that the ideal filter F(q) is

F(q) = A(q). Thus, conditions (28) and (29) are much milder

than conditions (7) and (8) if a reasonable estimated model

is available. This remark is the corner stone of an iterative

scheme proposed here. The strategy is the following:

1) Choose a high threshold ∆t and apply the OE-OBE

algorithm to get Ĝ(q);
2) Given this first estimation, design a filter F(q) = Â(q)

and choose a lower ∆t ;

3) Apply the F-OE-OBE algorithm to get a new Ĝ(q);
4) Repeat steps 2 and 3 until convergence of step 3.

In the next section we illustrate this iterative scheme with

simulation studies.

Remark 5: Note that if F(q) ≃ A(q) it is possible to

choose ∆t = ∆vt . In that case, from (32) we have

limt→∞ θ̂t=θ̂

where θ̂ is such that ηT
t ∆−2

vt
ηt ≤ 1 with ηt = F(q)εt =

F(q)

(
yF

t − φ̂F
T

t θ̂

)
= yt − φ̂T

t θ̂ . Then the contribution of the

filter F(q) is twofold: it relaxes stability condition of the

algorithm and it allows the estimation of a model Ĝ(q) such

that:

(yt−Ĝ(q)ut)
T

∆−2
vt (yt−Ĝ(q)ut)≤1 (33)

which is coherent with (1).

IV. NUMERICAL EXAMPLE

Numerical data have been generated according to (1). The

system is the following two inputs/two outputs system:





A(q)=

(
1 0

0 1

)
+

(
−1.6 0

0 −1

)
q−1+

(
0.6175 0

0 0.41

)
q−2

B(q)=

(
0.0175 0.014

0.082 0.41

)
+

(
0 −0.0168

0 0

)
q−1

The two inputs u1
t and u2

t are uncorrelated random binary

sequences of length N = 2000. The noise components v1
t

and v2
t are generated as in [17] in the following manner:

(
v1

t

v2
t

)
= ∆vt

(
1
2 (e1

t +sin(πt/10))
1
2 (e2

t +cos(πt/15))

)

where e1
t and e2

t are white noises uniformly distributed in

[−1;1] and ∆vt =

(
0.15 0

0 0.25

)
.

It can easily be shown that condition (7) in result 1 is

not satisfied in this example. However three identification

procedures have been tested:

• Procedure 1: the development of (1) and (2) gives

A(q)yt=B(q)ut+A(q)vt=B(q)ut+v′t

The first identification procedure consists in identifying

this ARX model using linear OBE algorithm proposed

in [2] and [3].

• Procedure 2: even if condition (7) is not satisfied, we

can try to use the OE-OBE algorithm to identify the

system. This is the second identification procedure.

• Procedure 3: this third identification procedure is our

iterative scheme. This scheme uses the F-OE-OBE

algorithm and has been applied over 20 iterations.

For each procedure we have adjusted the threshold ∆t so

as to have the lowest threshold and in the same time a kind

of stability on the N available data. This has lead to the

following choices:

• Procedure 1: ∆t = ∆vt .

• Procedure 2: ∆t = 2∆vt .
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• Procedure 3: ∆t : we have chosen a decreasing threshold.

At iteration i we choose ∆
(i)
t =

(
∆

(ini)
t −∆

( f in)
t

)
e−i+∆

( f in)
t with

∆
(ini)
t = 5∆vt and ∆

( f in)
t = ∆vt .

The simulation results for procedure 1, 2 and 3 are shown

in Fig. 2. In this figure only the sixth component of θ ∗ and

its estimations appear. The other components have similar

behavior. Fig. 3 presents the improvement of the estimated

vector at the end of each iteration in the iterative scheme. It

is clear that the iterative scheme proposed in this paper works

well. It increases estimation quality compared with the first

estimated model and compared with the other procedures.

Fig. 4 presents thresholds ±∆vt and the output errors yt −
Ĝ(q)ut for each final model (final model for procedure 1,

final model for procedure 2 and final model for procedure

3 at the 20th iteration). It appears that the model obtained

with the iterative scheme using the F-OE-OBE is the only

one satisfying (33).

V. CONCLUSION

In this paper we have considered the identification problem

of an output error system with bounded disturbances. Two
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Fig. 4. Output errors and threshold ∆vt

identification algorithms which belong to the class of OBE

type algorithm are presented. Sufficient conditions for stabil-

ity and convergence of the first algorithm (conditions related

to a condition on the system) have been established. These

conditions can be relaxed by introducing an adaptation filter

which gives the second algorithm. This second algorithm

has been used in an iterative scheme which has lead to

a significant improvement of the estimation. In terms of

future research, it seems necessary to refine the process for

achieving relaxation F(q) ≃ A(q). We also believe that the

results developed in the paper can be extended to the closed

loop identification problem.
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