
Total Unimodularity and Degeneracy-Aware
Dantzig-Wolfe Decomposition for Large-Capacity

Cell Transmission Model
Peng Wei and Dengfeng Sun

School of Aeronautics and Astronautics
Purdue University, West Lafayette, IN 47907, USA

Email: {weip, dsun}@purdue.edu

Abstract—In an earlier work, Sun and Bayen built a Large-
Capacity Cell Transmission Model for air traffic flow man-
agement. They formulated an integer programming problem
of minimizing the total travel time of flights in the National
Airspace System of the United States subject to sector capacity
constraints. The integer programming was relaxed to a linear
programming for computational efficiency. In this paper the
authors formulate the optimization problem in a standard linear
programming form. We analyze the total unimodular property
of the constraint matrix, and prove that the linear program-
ming relaxation generates an integral optimal solution for the
original integer programming. It is guaranteed to be optimal
and integral if solved by the simplex method. Furthermore, we
find the degeneracies for both feasible polyhedron and optimal
polyhedron. In order to speed up the computation, we present a
revised Dantzig-Wolfe Decomposition algorithm, which is shown
to preserve the total unimodularity of the constraint matrix and
successfully resolve the degeneracies.

I. INTRODUCTION

Optimization techniques have been developed to facili-
tate Traffic Flow Management (TFM). Current popular TFM
schemes mainly focus on ground delay and flight rerouting.
Odoni was the first to formulate the TFM problem to design
optimal strategies by assigning ground delays to flights [1].
Helme was among the first who included en route capacity
restrictions [2]. Lindsay proposed a disaggregate 0-1 program-
ming model for deciding ground and airborne holding under
airport and airspace capacity constraints [3]. Sridhar presented
an integrated three-step hierarchical method for determining
TFM plans consisting of detailed practical restrictions [4].

In [5] the authors presented a traffic flow model called the
Large-capacity Cell Transmission Model, in short CTM(L),
which is a variation of the model in [6]. They applied it to
a problem of minimizing the total travel time of all flights
in the NAS of the United States restricted by sector capacity
counts, which is an integer programming containing billions
of variables and constraints. It was then relaxed to a linear
programming (LP) for computational efficiency. However,
solving the linear programming by large scale commercial
software can possibly result in fractional optimal solutions
which can not be implemented as en route holding control
in practice directly. This is the major motivation of our work.

In this paper we study the solution space structure of
the problem and prove that there exists an integral optimal

solution in the linear programming relaxation, which is also
optimal for the original integer programming. The solution
is guaranteed to be integral when solved by the simplex
method. Moreover, we find the solution space degeneracies
inside the feasible polyhedron and the optimal polyhedron
of the problem. Therefore we propose the simplex based
Degeneracy-Aware Dantzig-Wolfe Decomposition to ensure
integral optimum, while achieving a faster computation speed
and sustaining the degeneracies.

The rest of this paper is organized as follows. The second
section introduces the CTM(L) model. The third section for-
mulates the integer programming problem in a standard linear
programming form and analyzes its total unimodularity. In the
fourth section, a small scale model is demonstrated and the
trade-off among different algorithms is discussed. In Sec. V we
develop the Degeneracy-Aware Dantzig-Wolfe Decomposition
algorithm. Sec. VI concludes the paper.

II. CTM(L) AND ITS MATHEMATICAL FORMULATION

A. Construction of the network

The network flow model is composed of nodes and links.
The nodes are created as the entry and exit points at the sector
boundaries. For any sectors s1, s2 and s3, if s1 and s2 share
a boundary and if s2 and s3 are neighbors, two directed links
are created: one from node v{s1,s2} to node v{s2,s3} and one
from node v{s3,s2} to node v{s2,s1}.

The expected travel time of a flight through a link is com-
puted from ASDI/ETMS data [7], which is used to determine
the length of the link. Each link is divided into several cells
as time interval units.

B. Dynamics

The CTM(L) model inspired by [6] and [8] is reduced to a
linear time-invariant dynamical system.

The air traffic flow on link i can be depicted as Link Level
Model [5]:

xi(t+ 1) = Aixi(t) +Bi1ui(t) +Bi2fi(t),

y(t) = C̃′ixi(t)
(1)

where xi(t) = [x1i (t), ..., x
Ni
i (t)] is the state vector whose

elements represent the corresponding aircraft counts in each
cell of link i at time t, and Ni is the number of cells in link

2011 50th IEEE Conference on Decision and Control and
European Control Conference (CDC-ECC)
Orlando, FL, USA, December 12-15, 2011

U.S. Government work not protected by U.S.
copyright

8094

i. The forcing scalar input fi(t) denotes the entry count onto
link i during time t, and the vector ui(t) represents holding
control. The output y(t) is the aircraft count in a user-specified
set of cells at time t. C̃i is the user-specified index vector. Ai

is an Ni×Ni nilpotent matrix with 1’s on its super-diagonal.
Bi

2 = [1; 0; ...; 0] is the forcing vector with Ni elements, and
Bi

1 is the Ni×Ni holding pattern matrix, in which all non-zero
elements are 1 on the diagonal and −1 on the super-diagonal.

Based on the link level model, it is easy to build a Sector
Level Model by integrating all the links in a sector, e.g. the
matrices Ai of different links in Eq. (1) are put in diagonal
blocked matrix A and the vectors xi are cascaded as x.

The NAS-wide model can also be cast in the same proce-
dure. Further details about the CTM(L) are described in [5].

III. PROBLEM FORMULATION AND TOTALLY
UNIMODULAR PROPERTY

A. Integer Programming Formulation

1) Link Level Model: According to [5], for a single path
with N cells, the initial condition of the model is:

xk(0) = x0k, k = 0, 1, ..., N − 1 (2)

the boundary conditions are:

x0(0) = f(0) + x00,
x0(t) = f(t) + u0(t− 1), t = 1, 2, ..., T − 1

(3)

and the dynamics are:

xk(t) = xk−1(t− 1)− uk−1(t− 1) + uk(t− 1),
k = 1, 2, ..., N − 1, t = 1, 2, ..., T − 1

(4)

where T is the planning horizon.
We cascade all the xk(t) into a vector x in the sequence as

below:

x = [x0(0), ..., xN−1(0), x0(1), ..., xN−1(1),

..., x0(T − 1), ..., xN−1(T − 1)]′. (5)

Similarly, vector u is created of the same length NT as x:

u = [u0(0), ..., uN−1(T − 1)]′. (6)

We integrate both initial states (2) and boundary states (3)
into a vector f of length NT :

f = [f(0) + x0(0), x1(0), ..., xN−1(0),

f(1), 0, ..., 0, ..., f(T − 1), 0, ..., 0]′. (7)

Finally, an equality form is generated by combining
Eqs. (5) (6) (7):

x = Px+Qu+ f (8)

where matrices P and Q are both of dimension NT ×NT .
Matrix P is:

P(NT×NT) =



0 0 0 . . . 0 0
Po 0 0 . . . 0 0
0 Po 0 . . . 0 0
...

...
...

. . .
...

...
0 0 0 . . . 0 0
0 0 0 . . . Po 0

 , (9)

where 0 and Po are both N ×N matrices. Matrix Po is:

Po(N×N) =



0 0 0 . . . 0 0
1 0 0 . . . 0 0
0 1 0 . . . 0 0
...

...
...

. . .
...

...
0 0 0 . . . 0 0
0 0 0 . . . 1 0

 . (10)

Matrix Q is:

Q(NT×NT) =



0 0 0 . . . 0 0
Qo 0 0 . . . 0 0
0 Qo 0 . . . 0 0
...

...
...

. . .
...

...
0 0 0 . . . 0 0
0 0 0 . . . Qo 0

 , (11)

where 0 and Qo are both N ×N matrices. Matrix Qo is:

Qo(N×N) =



1 0 0 . . . 0 0
−1 1 0 . . . 0 0
0 −1 1 . . . 0 0
...

...
...

. . .
...

...
0 0 0 . . . 1 0
0 0 0 . . . −1 1

 . (12)

Considering both states x and holding controls u are un-
known variables, we transform Eq. (8) to:

[I − P,−Q]

[
x
u

]
= f, (13)

where [x;u] is a vector of variables. Eq. (13) is the physics dy-
namic constraint of the model. Restricted by practical physics
rules, the problem has another three constraints as follows.

Hold Constraint: in each cell k at time t, the number of
aircraft to be held is less than the current aircraft counts:

u ≤ x. (14)

(14) is incorporated into Eq. (13) in an inequality form as the
Dynamics Constraint for a single path: I − P −Q

P − I Q
−I I

[x
u

]
≤

 f
−f
0

 . (15)

Non-negative Constraint: x and u should be non-negative:
x ≥ 0, u ≥ 0. (16)

Integral Constraint: x and u should be integer vectors:
x, u ∈ INT , (17)

where INT is the integer vector domain of dimension NT .
2) Decoupled Sector Level Model: For the dynamics con-

straint in Eq. (15) of each path i with Ni cells, we denote the
3NiT × 2NiT matrix as Ai, the 2NiT vector consisting of x
and u as xi, and the 3NiT vector on right side as fi. Thus
we obtain the decoupled all-path dynamics constraints by:

A1

A2

. . .
AM




x1

x2

...
xM

 ≤


f1
f2
...
fM

 (18)

where the matrix size is (3
∑M

i=1NiT) × (2
∑M

i=1NiT),
the x vector has a length 2

∑M
i=1NiT , and the length of

f is 3
∑M

i=1NiT . Eq. (18) describes the internal dynamics
constraints for each path. All paths are decoupled.

8095

3) Coupled Network Level Model: In practical air traffic
network, several paths usually pass through a same sector with
a count constraint. To be more precise, air traffic controllers
even set different count constraints to one sector at different
time periods, e.g. higher count during daytime and lower at
night. The Sector Count Constraint is given by:

M


x1

x2

...
xM

 ≤


ν1
ν2
...
νS

 (19)

where

νj = [νj(0); νj(1); ...; νj(T − 1)]. (20)

νj(t) is the sector count capacity for jth sector at time period
t. ν = [ν1; ν2; ...; νS] is TS×1 and x has a length 2

∑M
i=1NiT .

Matrix M has a dimension TS × 2
∑M

i=1NiT , mapping
aircraft counts from paths to sectors.
M consists of blocks like Mji mapping aircraft counts from

path i to sector j, explained as follows.

M =


M11 M12 . . . M1M

M21 M22 . . . M2M

...
...

. . .
...

MS1 MS2 . . . MSM

 , (21)

where the structure of block Mji is:

Mji =


s′ji 0′α . . . 0′α
0′α s′ji . . . 0′α
...

...
. . .

...
0β

0′α 0′α . . . s′ji

 := [M l
ji|0β]. (22)

Inside Mji, for each path i with Ni cells, we use a vector
sji of length Ni to denote which cells on path i lie in sector
j:

sji(k) =

{
1, if the kth cell of path i is in sector j;
0, otherwise. (23)

while 0′
α is a zero row vector and 0β is a T × NiT all-zero

matrix. The matrix M l
ji to the left of 0β is also T ×NiT .

The diagonal blocks consist of the same row vector s′ji
because the relationship that cell k in path i belongs to sector
j does not change with time.

We define M l
i as follow:

M l
i =


M l

1i

M l
2i

...
M l
Si

 . (24)

Another feature inside matrix M is that the sum of each
column in matrix M l

i is 1, because in each time t, the kth cell
of path i can only belong to one sector.

4) Integer Programming Formulation: We formulate the
optimization problem as follows. First we denote

A =



A1

A2

. . .
AM

M11 M12 . . . M1M

M21 M22 . . . M2M

...
...

. . .
...

MS1 MS2 . . . MSM


, b =



f1
f2
...
fM
ν1
ν2
...
νS


, (25)

and
c = [c1;01; c2;02; ...; cM ;0M], (26)

where ci is all-one and 0i is all-zero. c and x are both vectors
of length 2

∑M
i=1NiT .

From (16) and (17), we know x is required to be non-
negative and integral. According to the physics rules of (2),
(3) and (20), vector b is also integral.

In summary, the original problem is formulated as an integer
programming as follow:

min c′x
s.t. Ax ≤ b,

x ≥ 0, and x ∈ I2T
∑M
i=1 Ni

(27)

B. Standard Linear Programming Form and Total Unimodu-
larity

Solving the integer programming in formulation (27) is
extremely time consuming and sometimes impossible for a
large scale problem in air traffic management. The authors
in [5] relaxed (27) to a linear programming to achieve better
computational efficiency. It can be written in the Standard
Linear Programming Form [9]:

min c′x
s.t. Ax ≤ b,

x ≥ 0
(28)

which in general results in fractional solutions [5].
1) Total Unimodularity and Integral Optimum:
Theorem 1: If A is totally unimodular and the problem (28)

is feasible, there exists at least one integral optimum for
formulation (28), which can be found by the simplex method.

Proof: According to Hoffman and Kruskal’s theorem
in [10], if A in formulation (28) is Totally Unimodular with the
fact that vector b is integral, the feasible polyhedron {x|Ax ≤
b, x ≥ 0} defined by constraints in (28) is integral. Recall
that the simplex method generates its optimal solution by
pivoting from one extreme point to an adjacent one around the
feasible polyhedron and the extreme points are the vertice of
the feasible polyhedron, the simplex method always generates
an integral optimal solution.

TABLE I: Elementary Row (Column) Operations

1. exchanging two rows (columns);

2. multiplying a row (column) by -1;

3. adding a row (column) to another row (column).

8096

It is evident that when the optimal solution to (28) is
integral, the solution is also an optimal solution to (27). So
the key point is to prove A is totally unimodular.

Lemma 1: If matrix A is full row (column) rank, the total
unimodularity of A is preserved under three elementary row
(column) operations listed in Table I.

Lemma 1 is observed by combining both Theorem 19.5 and
(43)(ii) in [10].

2) Total Unimodularity of Matrix A:
Theorem 2: A in (28) is totally unimodular.

Proof:
We start with performing elementary column operations

inside each blocked column of matrix A as shown in (25).
Through a series of elementary column operations, we have
transformed the matrix A in (25) into (29).



I 0
−I 0
0 I

I 0
−I 0
0 I

. . .
I 0
−I 0
0 I

L11 R11 L12 R12 . . . L1M R1M

L21 R21 L22 R22 . . . L2M R2M

...
...

...
...

...
...

...
LS1 RS1 LS2 RS2 . . . LSM RSM



. (29)

Therefore, the upper part of (29) tells that the matrix (29)
after the elementary column operations is full column rank. We
know that the elementary column operations do not change
the column rank of a matrix, so the matrix A before these
operations is also full column rank. Thus according to Lemma
1, the elementary column operations we have performed can
preserve the total unimodularity of matrix A. The problem
becomes to prove (29) is totally unimodular.

Moreover, based on (43)(v) of [10], if the lower part of (29)
is totally unimodular, then the whole matrix (29) is also totally
unimodular. Now we need to show (30) is totally unimodular.


L11 R11 L12 R12 . . . L1M R1M

L21 R21 L22 R22 . . . L2M R2M

...
...

...
...

...
...

...
LS1 RS1 LS2 RS2 . . . LSM RSM

 , (30)

where Lji is a lower triangle blocked matrix with every non-
zero block as s′ji and the non-zero block t′ji fills the lower
triangle positions of matrix Rji except the main diagonal.

Lji =



s′ji 0 0 . . . 0 0
s′ji s′ji 0 . . . 0 0
s′ji s′ji s′ji . . . 0 0

...
...

...
. . .

...
...

s′ji s′ji s′ji . . . s′ji 0
s′ji s′ji s′ji . . . s′ji s′ji


, (31)

Rji =



0 0 0 . . . 0 0
t′ji 0 0 . . . 0 0
t′ji t′ji 0 . . . 0 0
...

...
...

. . .
...

...
t′ji t′ji t′ji . . . 0 0
t′ji t′ji t′ji . . . t′ji 0


. (32)

In (30) we assume that every sector contains at least one
cell from some certain path. If there is a sector containing no
cells, the corresponding blocked row can be deleted by (43)(v)
in [10]. In this case we actually do not need to include this
sector in our model.

We perform elementary row operations to (30) and get (33):
L̃11 R̃11 L̃12 R̃12 . . . L̃1M R̃1M

L̃21 R̃21 L̃22 R̃22 . . . L̃2M R̃2M

...
...

...
...

...
...

...
L̃S1 R̃S1 L̃S2 R̃S2 . . . L̃SM R̃SM

 , (33)

in which matrices L̃ji and R̃ji are:

L̃ji =



s′ji
s′ji

s′ji
. . .

s′ji
s′ji


, (34)

R̃ji =



0
t′ji 0

t′ji 0

. . .
. . .
t′ji 0

t′ji 0


. (35)

As we have assumed previously there must be at least one
1 appearing at certain cell of s′ji in every row of a certain L̃ji
of each blocked row. As we have shown at the end of III-A3,
if L̃i is defined as:

L̃i =


L̃1i

L̃2i

...
L̃Si

 . (36)

the sum of each column in L̃i is 1, which means the 1
appearing at a certain cell of s′ji can not be represented by
other rows, in other words, every row is independent. Since
(33) is full row rank, the elementary row operations we have
performed also preserve the total unimodularity. Our next
concern is whether (33) is totally unimodular.

Since the column sum of every L̃i is 1, according to (43)(v)
in [10], the problem is equivalent to proving (37) is totally
unimodular. 

R̃11 R̃12 . . . R̃1M

R̃21 R̃22 . . . R̃2M

...
...

...
...

R̃S1 R̃S2 . . . R̃SM

 , (37)

In our model we notice that a path consists at most one link
in a sector. Thus there can be only one consecutive 1’s series

8097

in sji. In fact, even if there are multiple consecutive 1’s series
in sji, our proof still holds.
t′ji in (32) and (35) records what kind of 0-1 changes

at which cells in corresponding s′ji. For example, if s′ji =
[0, 0, 1, 1, 1, 0], the corresponding t′ji = [0,−1, 0, 0, 1, 0]. −1
at the 2nd cell of t′ji means a change from 0 to 1 between
the 2nd cell and the 3rd cell in s′ji. 1 at the 5th cell of t′ji
represents a change from 1 to 0 between the 5th cell and the
6th cell in s′ji. Note that there is always a hiden 0 to the right
of s′ji. That means if the last cell of s′ji is 1, it is considered
as a change from 1 to 0. So there will be a 1 at the last cell
in the corresponding t′ji.

Consider the ith blocked column of matrix in (37), it
describes all the 0-1 changing information of Ni cells of the
ith path in all S sectors. When there is a −1 at a certain cell of
a certain t′ji in a certain row, there must be one and only one
1 at the same cell in a different row. Because when there is a
change from 0 to 1 at a certain cell of sji, which means the
path starts to enter sector j at this cell, there must be one and
only one change from 1 to 0 in another ski, which means the
ith path leaves the previous sector k right before sector j at this
cell. It is also true vice versa. Based on (43)(v) in [10], after
deleting all-zero columns in (37) at which cells no 0-1 change
happens and the last column of each blocked column in (37),
where there is only one non-zero item 1 in a certain row, the
modified matrix (37) only contains the columns having exactly
one 1/−1 pair.

According to (18) of [10], the matrix whose each column
contains exactly one 1 and exactly one −1 is totally unimod-
ular.

In summary, since all the operations we have performed
can preserve the total unimodularity of a matrix, and the final
transformed matrix has been proved to be totall unimodular,
the original matrix A is totally unimodular.

Since matrix A is totally unimodular and vector b is
integral, there must exist an integral optimum both for LP
relaxation (28) and for the integer programming in (27) when
(28) is feasible.

IV. WHY INTERIOR-POINT METHOD HAS FRACTIONAL
SOLUTION?

The major reason is because of the optimal degeneracy of
the LP relaxation. The optimal degeneracy means that there
are multiple optimal extreme point solutions in this problem.
These optimal extreme points will form an Optimal Polyhedron
which is the subset of the Feasible Polyhedron defined by the
constraints.

Generally Pfs is the feasible polyhedron defined by con-
straints while the optimal polyhedron Popt is resulted by degen-
eracy of multiple optimal extreme points. Any solution in Popt

is a linear combination of the optimal extreme point solutions
and can be written as

∑|opt|
i ρi · opti, with

∑|opt|
i ρi = 1,

where |opt| is the number of optimal extreme point solutions.
Although every optimal vertex solution opti is integral

because of total unimodularity, the linear combination of them

can not be guaranteed integral. There are fractional optimal
solutions inside Popt. Since the interior-point method starts
inside Pfs and walks toward the edges of Pfs instead of the
vertices, an inner point of the subset Popt is usually achieved.
That is why the interior-point method gives out fractional
optimum in [5].

V. A REVISED DANTZIG-WOLFE DECOMPOSITION
PARADIGM ON LARGE SCALE STUDY

We decide to choose simplex method for large scale cases
of TFM problems. In order to speed up it by taking advantage
of A’s sparsity and Block-Angular Structure [9], we exploit
Dantzig-Wolfe Decomposition (DWD) [11]. Based on the
simplex method [9], the DWD guarantees an integral optimum.

A. Rearrangement for Dantzig-Wolfe Decomposition

Formulation (25) is rearranged into a required form for
DWD. We group blocks M1i,M2i, ...,MSi in column i into
a single block called Mi for i = 1, 2, ...,M , and switch the
positions of Mi’s and the dynamics constraints Ai’s. The new
constraint matrix ADW and vector bDW are:

ADW =


M1 M2 . . . MM

A1

A2

. . .
AM

 , bDW =


ν
f1
f2
...
fM

 , (38)

where the grouped sector counts capacity is ν = [ν1; ν2; ...; νS].
The cost vector cDW in (26) can be written as:

cDW = [cDW1 ; cDW2 ; ...; cDWM], (39)

where cDWi
= [ci;0i], with ci and 0i from (26).

This problem can be solved by DWD, which transforms the
original problem into the Master Problem [9].

B. Classical Dantzig-Wolfe Decomposition Algorithm

For the ith subproblem as below:

min c′DWi
xi

s.t. Aixi ≤ fi
(40)

there are Vi extreme points x(j)i , j = 1, 2, ..., Vi. Also we
define Pij =Mix

(j)
i and cij = c′DWi

x
(j)
i .

The cMP, AMP, bMP of the master problem [9] are:

cMP = [c11...c1V1c21...c2V2 ...cM1...cMVM]′,

AMP =


P1 P2 . . . PM
1′γ1

1′γ2
. . .

1′γM

 , bMP =


ν
1
1
...
1

 , (41)

where Pi = [Pi1, ..., PiVi] and 1′
γi = [1, ..., 1] with Vi all 1’s.

A revised simplex method is used in performing the calcu-
lations in DWD [11]. In the revised simplex method, there is
a vector of “prices” [π′, π̃′], where π is of length TS and π̃
is of M . Each item of the price vector is associated with one
constraint in formulation (41).

8098

Starting from an initial basis, an iterative DWD process
begins, where the master problem transfers the updated price
vector to the original subproblems while the subproblems
provide the entering base which has the minimum negative
reduced cost. At the same time, a column will be deleted by
simplex rule. Since we have a new basis, we can update the
price vector and transfer it to subproblems again. The iteration
will be terminated until there is no negative reduced cost.

C. Degeneracy-Aware DW Decomposition Algorithm
Although DWD is a general solution for block angular

structure problems, it can not be applied in this problem
because two degeneracies exist. They are Feasible Degeneracy
and Optimal Degeneracy. A new algorithm, which is called
Degeneracy-Aware Dantzig-Wolfe Decomposition (DADWD),
is developed in this paper to deal with the two degeneracies.

1) Feasible Degeneracy: Back in Eq. (18), the subproblem
variable xi has length 2NiT , where some variables are depen-
dent on others, e.g. the first NiT states of x are determined by
the last NiT holding controls u through the dynamics in (4).
The number of independent variables is then reduced to NiT .
Moreover, the first Ni states of x at time 0 are the initial
conditions, which do not contribute to variable space rank.
The last Ni holding controls at time T − 1 do not affect the
solution because they only determine the states x out of our
planning horizon. Therefore, in a subproblem (40), the variable
space rank of xi is compressed into Ni(T − 1).

For each subproblem we treat states x as variables and
holding controls u as correlated variables. Since the first Ni

states at time 0 are predetermined by initial condition, a series
of truncations are needed to delete the rows or columns in
Ai, Mi, fi and ν associated with the first Ni states of x. The
truncated Âi, M̂i, f̂i and ν̂ with lower dimensions are input
to the DADWD algorithm .

After the truncations, the number of basis for the master
problem is S(T −1)+M . The Initial Basis Generation (IBG)
is activated. For each path, hold the count of the first cell
inside sector i at time t and let other flows hop to their next
cells. That will give out S(T − 1) basis because the holding
controls at time T − 1 have no effect. The remaining M basis
are filled by columns of holding control at time T−1 cascaded
with ei, which is a M length vector where the ith element is
1 and others are 0.

2) Optimal Degeneracy: We find multiple optima in
Sec. IV. Multiple optima inside each subproblem make it
difficult to apply the classical DWD.

Multiple optima are discussed in the classical simplex
method. However, most algorithms enumerating multiple op-
tima are NP-hard [12]. Therefore a conjugate gradient projec-
tion method is implemented to find all extreme point optima
for each subproblem. The algorithm of [13] is referred as
Feasible Direction Method (FDM) in this paper.

In summary, the final DADWD is given in Algorithm 1.

VI. CONCLUSION

In this paper, CTM(L) is introduced and an integer pro-
gramming optimization problem is formulated. We prove that

Algorithm 1 Degeneracy-Aware DW Decomposition
1: Initialization and Truncation
2: Run Initial Basis Generation
3: while TRUE do
4: Solve the Master Problem
5: Update the price vector based on current basis
6: for i = 1 to M do
7: Plug π and π̃ into each subproblem i
8: Find multiple optima of subproblem i by FDM [13]
9: if the reduced cost of the optimal solutions < 0 then

10: Add the corresponding columns into basis
11: end if
12: end for
13: if no negative reduced cost appeared then
14: Stop
15: end if
16: end while

there exists an integral optimal solution for the associated
LP relaxation because of its total unimodularity and this
solution is also optimal for the integer programming. We
demonstrate that the simplex method guarantees the integral
optimum and propose the revised simplex based Degeneracy-
Aware Dantzig-Wolfe Decomposition algorithm which takes
advantage of matrix A’s special block structure to speed
up the computation while handling the feasible degeneracy
and optimal degeneracy together. The new algorithm can be
considered as a potential framework for parallel computation
in the practical large scale models.

REFERENCES

[1] A. Odoni, “The flow management problem in air traffic control,” in Flow
Control of Congested Networks. Berlin, Germany: Springer Verlag,
1987.

[2] M. Helme, “Reducing air traffic delay in a space-time network,” in IEEE
International Conference on Systems, Man and Cybernetics, vol. 1, 1992,
pp. 236–242.

[3] K. Lindsay, E. Boyd, and R. Burlingame, “Traffic flow management
modeling with the time assignment model,” Air Traffic Control Quar-
terly, vol. 1, no. 3, pp. 255–276, 1993.

[4] B. Sridhar, G. Chatterji, S. Grabbe, and K. Sheth, “Integration of
traffic flow management decisions,” in AIAA Conference on Guidance,
Navigation, and Control Conference and Exhibit, Monterey, CA, August
2002.

[5] D. Sun and A. Bayen, “Multicommodity eulerian-lagrangian large-
capacity cell transmission model for en route traffic,” AIAA Journal of
Guidance, Control, and Dynamics, vol. 31, no. 2, pp. 616–628, 2008.

[6] P. Menon, G. Sweriduk, and K. Bilimoria, “A new approach to mod-
eling, analysis and control of air traffic flow,” in Proceedings of AIAA
Guidance, Navigation and Control Conference, Monterey, CA, 2002.

[7] A. Bayen, R. Raffard, and C. Tomlin, “Adjoint-based control of a new
eulerian network model of air traffic flow,” IEEE Trans. Control Syst.
Technol., vol. 14, no. 5, pp. 804–818, 2006.

[8] C. Daganzo, “The cell transmission model: a dynamic representation of
highway traffic consistent with the hydrodynamic theory,” Transporta-
tion Research, vol. 28B, no. 4, pp. 269–287, 1994.

[9] V. Chvatal, Linear Programming. W. H. Freeman, 1983.
[10] A. Schrijver, Theory of Linear and Integer Programming. Wiley, 1998.
[11] G. Dantzig and P. Wolfe, “The decomposition algorithm for linear

programs,” Econometrica, vol. 29, no. 4, pp. 767–778, 1961.
[12] H. Arsham, “Tools for modeling validation process: The dark side of

lp,” Educational Multimedia, Tech. Rep., 1994.
[13] S. Tantawy, “Using feasible direction to find all alternative extreme opti

al points for linear programming problem,” Journal of Mathematics and
Statistics, vol. 3, no. 3, pp. 109–111, 2007.

8099

