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Abstract— A complete analysis is presented of the radius
of convergence of the cascade connection of two analytic
nonlinear input-output systems represented as Fliess operators.
Such operators are described by convergent functional series,
which are indexed by words over a noncommutative alphabet.
Their generating series are therefore specified in terms of
noncommutative formal power series. Given growth conditions
on the coefficients of the generating series for the component
systems, the radius of convergence of the cascaded system is
computed.

I. INTRODUCTION

Most complex systems found in applications can be
viewed as a set of interconnected subsystems. This paper
focuses on the cascade connection of analytic nonlinear
input-output operators represented as Fliess operators [7],
[8]. Such operators are described by functional series indexed
by the set of words X∗ over the noncommutative alphabet
X = {x0, x1, . . . xm}. Their generating series are therefore
specified in terms of noncommutative formal power series,
the set of which is denoted by R

ℓ〈〈X〉〉. Specifically, one can
formally associate with any series c ∈ R

ℓ〈〈X〉〉 a causal m-
input, ℓ-output operator, Fc, in the following manner. Let p ≥
1 and t0 < t1 be given. For a Lebesgue measurable function
u : [t0, t1] → R

m, define ‖u‖p = max{‖ui‖p : 1 ≤ i ≤ m},
where ‖ui‖p is the usual Lp-norm for a measurable real-
valued function, ui, defined on [t0, t1]. Let Lm

p [t0, t1] denote
the set of all measurable functions defined on [t0, t1] having
a finite ‖ · ‖p norm and Bm

p (R)[t0, t1] := {u ∈ Lm
p [t0, t1] :

‖u‖p ≤ R}. Define iteratively for each η ∈ X∗ the map
Eη : Lm

1 [t0, t1] → C[t0, t1] by setting E∅[u] = 1 and letting

Exiη̄[u](t, t0) =

∫ t

t0

ui(τ)Eη̄[u](τ, t0) dτ,

where xi ∈ X , η̄ ∈ X∗, and u0 = 1. The input-output
operator corresponding to c is the Fliess operator

Fc[u](t) =
∑

η∈X∗

(c, η)Eη[u](t, t0),

where (c, η) ∈ R
ℓ, η ∈ X∗. If there exist real numbers

Kc,Mc > 0 such that

|(c, η)| ≤ KcM
|η|
c |η|!, η ∈ X∗, (1)

then Fc constitutes a well defined mapping from
Bm

p (R)[t0, t0 + T ] into Bℓ
q(S)[t0, t0 + T ] for sufficiently

small R, T > 0, where the numbers p, q ∈ [1,∞] are
conjugate exponents, i.e., 1/p + 1/q = 1 [11]. (Here
|z| := maxi |zi| when z ∈ R

ℓ.) The set of all such locally
convergent series is denoted by R

ℓ
LC〈〈X〉〉. In particular,

when p = 1, the series defining y = Fc[u] converges if

max{R, T} <
1

Mc(m + 1)
(2)
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Fig. 1. The cascade connection of two Fliess operators.

[2], [3]. Let π : R
ℓ
LC〈〈X〉〉 → R

+ ∪ {0} take each series
c to the smallest possible geometric growth constant Mc

satisfying (1). In this case, R
ℓ
LC〈〈X〉〉 can be partitioned

into equivalence classes, and the number 1/Mc(m + 1) will
be referred to as the radius of convergence for the class
π−1(Mc). This is in contrast to the usual situation where
a radius of convergence is assigned to individual series. In
practice, it is not difficult to estimate the minimal Mc for
many series, in which case, the radius of convergence for
π−1(Mc) provides an easily computed lower bound for the
radius of convergence of c in the usual sense. Finally, when
c satisfies the more stringent growth condition

|(c, η)| ≤ KcM
|η|
c , η ∈ X∗, (3)

then the series Fc defines an operator from the extended
space Lm

p,e(t0) into C[t0,∞) [11]. The set of all such

globally convergent series is designated by R
ℓ
GC〈〈X〉〉.

The cascade connection of two Fliess operators as depicted
in Fig. 1 always produces another input-output system with
a Fliess operator representation [4], [5]. It was shown by
Gray and Li in [9] that local convergence is preserved under
composition, while global convergence in general is not
preserved. For example, rational systems, which are always
globally convergent, need not produce another rational sys-
tem when cascaded [4], [5]. No claim was made in [9] that
the growth constants derived there for the cascade connection
constituted the radius of convergence, and, in fact, certain
examples presented therein strongly suggested otherwise.
Recent work, however, on self-excited feedback connected
Fliess operators has produced some powerful new techniques
for computing the radius of convergence of interconnected
systems [10]. It will be shown in this paper that these
methods can be applied to the cascade connection.

The remainder of the paper is organized as follows. In the
next section, some mathematical preliminaries are presented
to better frame the problem and establish the notation. In
Section III the radius of convergence is computed for the
case when the subsystems are both locally convergent. The
global case is addressed in the subsequent section.

II. PRELIMINARIES

A. Formal Power Series

A finite nonempty set of noncommuting symbols X =
{x0, x1, . . . , xm} is called an alphabet. Each element of X
is called a letter, and any finite sequence of letters from
X , η = xi1 · · ·xik

, is called a word over X . The length

2011 50th IEEE Conference on Decision and Control and
European Control Conference (CDC-ECC)
Orlando, FL, USA, December 12-15, 2011

978-1-61284-799-3/11/$26.00 ©2011 IEEE 3830



of η, |η|, is the number of letters in η, while |η|xi
is the

number of times the letter xi appears in η. The set of all
words with length k is denoted by Xk. The set of all words
including the empty word, ∅, is written as X∗. It forms a
monoid under catenation. Any mapping c : X∗ → R

ℓ is
called a formal power series. The value of c at η ∈ X∗ is
written as (c, η). Typically, c is represented as the formal
sum c =

∑

η∈X∗(c, η) η. The notation c ≤ d means that the

component series satisfy (ci, η) ≤ (di, η) for all η ∈ X∗

and i = 1, 2, . . . , ℓ. The collection of all formal power series
over X , R

ℓ〈〈X〉〉, forms an associative R-algebra under the
catenation product and a commutative R-algebra under the
shuffle product, denoted here by ⊔⊔ .

B. The Composition Product

To describe the generating series of the cascade connected
system Fc ◦ Fd, define the following family of mappings
associated with d ∈ R

m〈〈X〉〉

Dxi
: R〈〈X〉〉 → R〈〈X〉〉 : e 7→ x0(di ⊔⊔ e),

where i = 0, 1, . . . ,m and d0 := 1. Assume D∅ is the
identity map on R〈〈X〉〉. Such maps can be composed
in an obvious way so that Dxixj

:= Dxi
Dxj

provides
an R-algebra which is isomorphic to the usual R-algebra
on R〈〈X〉〉 under the catenation product. The composition
product of a word η ∈ X∗ and a series d ∈ R

m〈〈X〉〉 is
defined as

(xik
xik−1

· · ·xi1
︸ ︷︷ ︸

η

) ◦ d = Dxik
Dxik−1

· · ·Dxi1
(1) = Dη(1).

For any c ∈ R
ℓ〈〈X〉〉 the definition is extended linearly as

c ◦ d =
∑

η∈X∗

(c, η)Dη(1).

It was shown in [4], [5] that for any c ∈ R
ℓ〈〈X〉〉 and d ∈

R
m〈〈X〉〉, the identity Fc◦Fd = Fc◦d is satisfied. It is known

in general that the composition product distributes to the left
over the shuffle product. The following theorem states that
local convergence is preserved under composition.

Theorem 1: [9] Suppose c ∈ R
ℓ
LC〈〈X〉〉 and d ∈

R
m
LC〈〈X〉〉 with growth constants Kc,Mc > 0 and

Kd,Md > 0, respectively. Then c ◦ d ∈ R
ℓ
LC〈〈X〉〉.

Specifically,

|(c ◦ d, ν)| ≤ Kc((φ(mKd) + 1)M)|ν|(|ν| + 1)!, ν ∈ X∗,

where φ(x) := x/2+
√

x2/4 + x and M = max{Mc,Md}.

In light of (2) and the theorem above, a lower bound on
the radius of convergence for y = Fc◦d[u] is 1/(φ(mKd) +
1)M(m + 1). No example has been presented to date for
which the radius of convergence corresponds exactly to this
bound.

Finally, in much of the analysis to follow, the subset of
R

ℓ〈〈X〉〉 described below will be useful.

Definition 1: [6], [7] A series c ∈ R
ℓ〈〈X〉〉 is said to be

exchangeable if for arbitrary η, ξ ∈ X∗

|η|xi
= |ξ|xi

, i = 0, 1, . . . ,m ⇒ (c, η) = (c, ξ).

Theorem 2: [10] If c ∈ R
ℓ〈〈X〉〉 is an exchangeable

series and d ∈ R
m〈〈X〉〉 is arbitrary then the composition

product can be written in the form

c ◦ d =

∞∑

k=0

∑

r0,...,rm≥0

r0+···+rm=k

(c, xr0

0 · · ·xrm
m )·

Dr0

x0
(1) ⊔⊔ · · · ⊔⊔ Drm

xm
(1).

III. LOCALLY CONVERGENT SUBSYSTEMS

The goal of this section is to calculate the smallest possible
geometric growth constant for the cascade connection of two
locally convergent Fliess operators, thereby producing the
radius of convergence for the interconnection. The following
theorem is a prerequisite for proving the main theorem of
this section.

Theorem 3: Let X = {x0, x1, . . . , xm}. Let c̄ ∈
R

ℓ
LC〈〈X〉〉 and d̄ ∈ R

m
LC〈〈X〉〉, where each component of

(c̄, η) ∈ R
ℓ is KcM

|η|
c |η|!, η ∈ X∗ with Kc,Mc > 0, and

likewise, each component of (d̄, η) ∈ R
m is KdM

|η|
d |η|!,

η ∈ X∗ with Kd,Md > 0. If b̄ = c̄ ◦ d̄, then the sequence
(b̄i, x

k
0), k ≥ 0 has the exponential generating function1

f(x0) :=

∞∑

k=0

(b̄i, x
k
0)

xk
0

k!

=
Kc

1 − Mcx0 + (mKdMc/Md) ln(1 − Mdx0)

for any i = 1, 2, . . . , ℓ. Moreover, the smallest possible
geometric growth constant for b̄ is

Mb̄ =
Md

1 − mKdW
(

1
mKd

exp
(

Mc−Md

mKdMc

)) ,

where W denotes the Lambert W -function, namely, the
inverse of the function

g(W ) = W exp(W )

[1].

Proof: There is no loss of generality in assuming ℓ = 1. First
observe that c̄ is exchangeable, and thus, from Theorem 2 it
follows that

b̄ =

∞∑

k=0

KcM
k
c

∑

r0,...,rm≥0

r0+···+rm=k

k!
x ⊔⊔ r0

0

r0!
⊔⊔ . . . ⊔⊔

(xm ◦ d̄) ⊔⊔ rm

rm!

=

∞∑

k=0

Kc

(
Mc(x0 + mx0d̄1)

) ⊔⊔ k
.

(Note that d̄1 = · · · = d̄m.) Shuffling both sides of this
equation by Mc(x0 + mx0d̄1) yields

b̄ ⊔⊔ Mc(x0 + mx0d̄1) =

∞∑

k=0

Kc(Mc(x0 + mx0d̄1))
⊔⊔ k+1.

Adding Kc to both sides gives

b̄ = Kc + Mc[b̄ ⊔⊔ (x0 + mx0d̄1)]. (4)

1The sequence (b̄i, x
k
0
), k ≥ 0 and f are related by the formal Laplace-

Borel transform as explained in [12].
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By inspection, (b̄, ∅) = Kc, (b̄, x0) = KcMc(1 + mKd) and
(b̄, xi) = 0 for i = 1, 2, . . . ,m. Let (b̄, νn) := max{(b̄, ν) :
ν ∈ Xn}. For any ν ∈ Xn, n ≥ 2 it follows from (4) that

(b̄, ν)

= Mc

n∑

i=0

∑

η∈Xi

ξ∈Xn−i

(b̄, η)(x0 + mx0d̄1, ξ)(η ⊔⊔ ξ, ν)

= Mc

n−1∑

i=0

∑

η∈Xi

ξ∈Xn−i

(b̄, η)(x0 + mx0d̄1, ξ)(η ⊔⊔ ξ, ν)

≤ Mc

n−1∑

i=0

(b̄, νi)
∑

η∈Xi

x0ξ′∈Xn−i

(x0 + mx0d̄1, x0ξ
′) (η ⊔⊔ x0ξ

′, ν)

= Mc

n−2∑

i=0

(b̄, νi)
∑

η∈Xi

ξ′∈Xn−i−1

(1 + md̄1, ξ
′)(η ⊔⊔ x0ξ

′, ν)+

Mc(b̄, νn−1)
∑

η∈Xn−1

(1 + md̄1, ∅)(η ⊔⊔ x0, ν).

In the first summation directly above, note that |ξ′| ≥ 1, and
thus, (1 + md̄1, ξ

′) = m(d̄1, ξ
′). Consequently,

(b̄, ν) ≤ Mc

n−2∑

i=0

(b̄, νi) mKdM
(n−i−1)
d (n − i − 1)!·

∑

η∈Xi

ξ′∈Xn−i−1

(η ⊔⊔ x0ξ
′, ν) + (b̄, νn−1)Mc(1 + mKd)·

∑

η∈Xn−1

(η ⊔⊔ x0, ν)

≤ Mc

n−2∑

i=0

(b̄, νi) mKdM
(n−i−1)
d (n − i − 1)!·

∑

η∈Xi

ξ∈Xn−i

(η ⊔⊔ ξ, ν) + (b̄, νn−1)Mc(1 + mKd)·

∑

η∈Xn−1

ξ∈X

(η ⊔⊔ ξ, ν)

= Mc

n−2∑

i=0

(b̄, νi) mKdM
(n−i−1)
d (n − i − 1)!

(
n

i

)

+

(b̄, νn−1)Mc(1 + mKd)n.

Note that the inequality above still holds when the left-hand
side is replaced with (b̄, νn). Now let an, n ≥ 0 be the
sequence satisfying the recurrence relation

an = Mc

n−2∑

i=0

aimKdM
(n−i−1)
d (n − i − 1)!

(
n

i

)

+

an−1Mc(1 + mKd)n, n ≥ 2,

where a0 = Kc and a1 = KcMc(1 + mKd). Since the
relation above involves only positive terms, it follows that
(b̄, νn) ≤ an, ∀n ≥ 0. It is easily verified that the sequence
an, n ≥ 0 has the exponential generating function

f(x0) =
Kc

1 − Mcx0 + (mKdMc/Md) ln(1 − Mdx0)
. (5)

When all the growth constants and m are unity, an, n ≥
0 is the integer sequence number A052820 in the Online
Encyclopedia of Integer Sequences (OEIS) [13].

Next it will be shown that (c̄ ◦ d̄, xn
0 ) = an, n ≥ 0. It is

sufficient to show that the zero-input response of the cascade
system represented by the Fliess operator Fc̄◦d̄ is equal to f .
The generating series for v1 = Fd̄1

[0] is

cv1
= d̄1 ◦ 0 =

∞∑

k=0

KdM
k
d k! xk

0 ,

and thus,

v1(t) =

∞∑

k=0

KdM
k
d tk =

Kd

1 − Mdt
.

Now from (4) observe

c̄ ◦ d̄ = Kc + (c̄ ◦ d̄) ⊔⊔ Mc(x0 + mx0d̄1).

Note that x0d̄1 has the exponential generating function
∫ t

0
v1(τ) dτ . Therefore,

y(t) = Fc̄[v](t) = Fc̄[Fd̄[0]](t) = Fc̄◦d̄[0](t)

= Kc + y(t)Mc

(

t + m

∫ t

0

v1(τ) dτ

)

=
Kc

1 − Mc

(

t + m
∫ t

0
v1(τ) dτ

)

=
Kc

1 − Mct + (mKdMc/Md) ln(1 − Mdt)

= f(t).

This proves that for every n ≥ 0

(b̄, ν) ≤ (b̄, νn) ≤ an = (b̄, xn
0 ), ν ∈ Xn.

Since f is analytic at the origin, the smallest geometric
growth constant is determined by the location of any sin-
gularity nearest to the origin in the complex plane, say x′

0
[15, Theorem 2.4.3]. Specifically, Mb̄ = 1/|x′

0|, where it is
easily verified from (5) that x′

0 is the positive real number

x′
0 =

1

Md

[

1 − mKdW

(
1

mKd

exp

(
Mc − Md

mKdMc

))]

.

This proves the theorem.

It is known that if u is analytic with generating series
cu, then y = Fc[u] is also analytic [14], and its generating
series is given by cy = c ◦ cu [9], [12]. In this situation, the
following corollary is useful for estimating a lower bound
on the interval of convergence for the output.

Corollary 1: Let X = {x0, x1, . . . , xm} and X0 = {x0}.
Let c̄ ∈ R

ℓ
LC〈〈X〉〉 and c̄u ∈ R

m
LC [[X0]], where each

component of (c̄, η) ∈ R
ℓ is KcM

|η|
c |η|!, η ∈ X∗ with

Kc,Mc > 0, and likewise, each component of (c̄u, xn
0 ) ∈

R
m is Kcu

Mn
cu

n!, n ≥ 0 with Kcu
,Mcu

> 0. If c̄y = c̄◦ c̄u,

then the sequence (c̄yi
, xk

0), k ≥ 0, has the exponential
generating function

f(x0) =
Kc

1 − Mcx0 + (mKcu
Mc/Mcu

) ln(1 − Mcu
x0)
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for any i = 1, 2, . . . , ℓ. Moreover, the smallest possible
geometric growth constant for c̄y is

Mc̄y
=

Mcu

1 − mKcu
W

(
1

mKcu
exp

(
Mc−Mcu

mKcu Mc

)) .

The following lemma is also needed to prove the main
result.

Lemma 1: Let X = {x0, x1, . . . , xm} and c, d ∈ R
ℓ〈〈X〉〉

such that |ci| ≤ di, i = 1, 2, . . . , ℓ, where |ci| :=
∑

η∈X∗ |(ci, η)| η. For ξ ∈ X∗ it follows that |ξ ◦ c| ≤ ξ ◦d.

Proof: The proof is by induction on k = |ξ| − |ξ|x0
. Let

ξ0 = xn0

0 and ξk = xnk

0 xik
x

nk−1

0 · · ·xi1x
n0

0 for k > 0, where
1 ≤ ij ≤ m. For k = 0, the claim is trivial since

ξ0 ◦ c = xn0

0 ◦ c = xn0

0 = xn0

0 ◦ d = ξ0 ◦ d.

Assume now that |(ξk ◦ c, η)| ≤ (ξk ◦ d, η) up to some fixed
k ≥ 0. Observe that

ξk+1 ◦ c = x
nk+1+1
0 (cik+1

⊔⊔ (ξk ◦ c))

(ξk+1 ◦ c, η) = (cik+1
⊔⊔ (ξk ◦ c), x

−(nk+1+1)
0 (η))

=
n∑

j=0

∑

α∈Xj

β∈Xn−j

(cik+1
, α)(ξk ◦ c, β)·

(α ⊔⊔ β, x
−(nk+1+1)
0 (η)),

where x−i
0 (·) denotes the left-shift operator x−1

0 (·) applied i

times, and n := |x
−(nk+1+1)
0 (η)| ≥ 0. Therefore,

|(ξk+1 ◦ c, η)| ≤
n∑

j=0

∑

α∈Xj

β∈Xn−j

∣
∣(cik+1

, α)
∣
∣ |(ξk ◦ c, β)| ·

(α ⊔⊔ β, x
−(nk+1+1)
0 (η))

≤
n∑

j=0

∑

α∈Xj

β∈Xn−j

(dik+1
, α)(ξk ◦ d, β)·

(α ⊔⊔ β, x
−(nk+1+1)
0 (η))

= (ξk+1 ◦ d, η).

Thus, the inequality holds for all k ≥ 0, and the lemma is
proved.

Finally, the main result of this subsection is presented.
Theorem 4: Let X = {x0, x1, . . . , xm}. Let c ∈

R
ℓ
LC〈〈X〉〉 and d ∈ R

m
LC〈〈X〉〉 with growth constants

Kc,Mc > 0 and Kd,Md > 0, respectively. If b = c ◦ d
then

|(b, ν)| ≤ KbM
|ν|
b |ν|!, ν ∈ X∗ (6)

for some Kb > 0, where

Mb =
Md

1 − mKdW
(

1
mKd

exp
(

Mc−Md

mKdMc

)) .

Furthermore, no smaller geometric growth constant can sat-
isfy (6).
Proof: Since |d| ≤ d̄, it follows from Lemma 1 that for any
ν ∈ X∗

|(b, ν)| ≤
∑

η∈X∗

|(c, η)||(η ◦ d, ν)|

≤
∑

η∈X∗

KcM
|η|
c |η|! (η ◦ d̄, ν)

= (b̄i, ν),

where b̄ = c̄ ◦ d̄ and i = 1, 2, . . . , ℓ. In light of Theorem 3,

(b̄i, ν) is asymptotically bounded by M
|ν|
b |ν|!. Thus, some

Kb > 0 can always be introduced such that

(b̄i, ν) ≤ KbM
|ν|
b |ν|!, ν ∈ X∗.

Furthermore, (b̄i, x
n
0 ) is growing exactly at this rate. Thus,

no smaller geometric growth constant is possible, and the
theorem is proved.

Example 1: Let X = {x0, x1} and c, d ∈ R〈〈X〉〉 such
that M = Mc = Md. Then

Mb =
M

1 − KdW (1/Kd)
=

(
3

2
+ Kd + O

(
1

Kd

))

M

≈ KdM

when Kd ≫ 1. This is consistent with Theorem 1. On the
other hand, if Kd = 1 then Mb = (1 − W (1))−1M =
2.3102M , which is less than the estimate (φg + 1)M =
2.6180M given by Theorem 1.

Example 2: Suppose X = {x0, x1} and b̄ = c̄ ◦ d̄ with

c̄ =
∑

η∈X∗ KcM
|η|
c |η|! η and d̄ =

∑

η∈X∗ KdM
|η|
d |η|! η.

The output of the cascaded system as shown in Fig. 1 is
described by the state space system

ż1 =
Mc

Kc

z2
1(1 + z2), z1(0) = Kc

ż2 =
Md

Kd

z2
2(1 + u), z2(0) = Kd

y = z1.

A MATLAB generated zero-input response is shown in Fig. 2
when Kc = 1, Mc = 2, Kd = 3 and Md = 4. As expected
from Theorem 3, the finite escape time of the output is tesc =
1/Mb = 0.1028. The output responses corresponding to the
analytic inputs u1(t) = 1/(1 − t) and u2(t) = 1/(1 − t2),
each having growth constants Kcu

= Mcu
= 1, are also

shown in the figure. Their respective finite escape times are
tesc = 0.08321 and tesc = 0.08377. Here u1 has the shortest
escape time since all the coefficients of its generating series
are growing at the maximum rate, while u2 has all its odd
coefficients equal to zero. By Corollary 1, any finite escape
time for the output corresponding to any analytic input with
the given growth constants Kcu

,Mcu
must be at least as

large as T = 1/Mc̄y
= 0.05073.

IV. GLOBALLY CONVERGENT SUBSYSTEMS

The goal of this section is to calculate the smallest possible
geometric growth constant for the cascade connection of
two globally convergent Fliess operators, thus producing the
radius of convergence for the interconnection. The following
two theorems are essential for proving the main theorem.

Theorem 5: Let X = {x0, x1, . . . , xm}. Let c̄ ∈
R

ℓ
GC〈〈X〉〉 and d̄ ∈ R

m
GC〈〈X〉〉, where each component of

(c̄, η) ∈ R
ℓ is KcM

|η|
c , η ∈ X∗ with Kc,Mc > 0, and

likewise, each component of (d̄, η) ∈ R
m is KdM

|η|
d , η ∈
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Fig. 2. Output responses of the cascade system Fc̄◦d̄ to various analytic
inputs in Example 2.

X∗ with Kd,Md > 0. If b̄ = c̄ ◦ d̄, then (b̄i, ν) ≤ (b̄i, x
|ν|
0 ),

ν ∈ X∗, and the sequence (b̄i, x
k
0), k ≥ 0 has the exponential

generating function

f(x0) = Kc exp

(
mKd exp(Mdx0) + Mdx0 − mKd

Md/Mc

)

for any i = 1, 2, . . . , ℓ.

Proof: As in the local case, there is no loss of generality in
assuming ℓ = 1. Using Theorem 2, observe that

b̄ =

∞∑

k=0

KcM
k
c

k!

∑

r0,...,rm≥0

r0+···+rm=k

k!
x ⊔⊔ r0

0

r0!
⊔⊔ · · · ⊔⊔

(xm ◦ d̄) ⊔⊔ rm

rm!

= Kc

∞∑

k=0

(
Mc(x0 + mx0d̄1)

) ⊔⊔ k

k!
.

Therefore, (b̄, ∅) = Kc and

x−1
0 (b̄)

= Kc

∞∑

k=1

(
Mc(x0 + mx0d̄1)

) ⊔⊔ k−1

(k − 1)!
⊔⊔ Mc(1 + md̄1)

= b̄ ⊔⊔ Mc(1 + md̄1). (7)

By inspection,

(x−1
0 (b̄), ∅) = KcMc(1 + mKd)

(x−1
0 (b̄), x0) = KcMcmKdMd + Kc(Mc(1 + mKd))

2

(x−1
0 (b̄), xi) = KcMcmKdMd, i = 1, 2, . . . ,m.

For any ν ∈ Xn, n ≥ 2, it follows that

(x−1
0 (b̄), ν)

= Mc

n∑

i=0

∑

η∈Xi

ξ∈Xn−i

(b̄, η)(1 + md̄1, ξ)(η ⊔⊔ ξ, ν)

= Mc

n−1∑

i=1

∑

x0η′∈Xi

ξ∈Xn−i

(b̄, x0η
′)(1 + md̄1, ξ)(x0η

′
⊔⊔ ξ, ν)+

Mc

∑

x0η′∈Xn

(b̄, x0η
′)(1 + md̄1, ∅)(x0η

′, ν)+

Mc

∑

ξ∈Xn

(b̄, ∅)(1 + md̄1, ξ)(ξ, ν)

= Mc

n−1∑

i=1

∑

η′∈Xi−1

ξ∈Xn−i

(x−1
0 (b̄), η′)(1 + md̄1, ξ)(x0η

′
⊔⊔ ξ, ν)+

Mc

∑

η′∈Xn−1

(x−1
0 (b̄), η′)(1 + md̄1, ∅)(x0η

′, ν)+

Mc(b̄, ∅)m(d̄1, ν).

Therefore,

(x−1
0 (b̄), ν)

≤ Mc

n−1∑

i=1

(x−1
0 (b̄), ηi−1)mKdM

n−i
d

∑

η∈Xi

ξ∈Xn−i

(η ⊔⊔ ξ, ν)+

(x−1
0 (b̄), ηn−1)Mc(1 + mKd) + KcMcmKdM

n
d

= Mc

n−1∑

i=1

(x−1
0 (b̄), ηi−1)mKdM

n−i
d

(
n

i

)

+

(x−1
0 (b̄), ηn−1)Mc(1 + mKd) + KcMcmKdM

n
d .

Similar to the analysis in the previous section, let an, n ≥ 0
be the sequence satisfying the recurrence relation

an = Mc

n−1∑

i=1

ai−1mKdM
n−i
d

(
n

i

)

+

an−1Mc(1 + mKd) + KcMcmKdM
n
d , n ≥ 2,

where a0 = KcMc(1 + mKd) and a1 = KcMcmKdMd +
Kc(Mc(1 + mKd))

2. It follows that (x−1
0 (b̄), νn) ≤

an, ∀n ≥ 0, and thus, (b̄, νn) ≤ bn, ∀n ≥ 0, where
bn = an−1 and b0 = Kc. It is easily verified that the
sequence bn, n ≥ 0 has the exponential generating function

f(x0) = Kc exp

(
mKd exp(Mdx0) + Mdx0 − mKd

Md/Mc

)

.

When all the growth constants and m are unity, bn, n ≥ 0 is
the integer sequence number A000110 (shifted one position
to the left) in the OEIS. These integers are called the Bell
numbers.

Next it will be shown that (c̄ ◦ d̄, xn
0 ) = bn, n ≥ 0. It is

sufficient to show that the zero-input response of the cascade
system represented by the Fliess operator Fc̄◦d̄ is equal to f .
The generating series for v1 = Fd̄1

[0] is

cv1
= d̄1 ◦ 0 =

∞∑

k=0

KdM
k
d xk

0 ,

and thus,

v1(t) =
∞∑

k=0

KdM
k
d

tk

k!
= Kd exp(Mdt).

From (7) and the fact that x−1
i (b̄) = 0, i = 1, 2, . . . ,m, it

follows that

y′(t) = Mcy(t)(1 + mKd exp(Mdt)), y(0) = Kc.
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Solving this differential equation yields

y(t) = Kc exp

(
mKd exp(Mdt) + Mdt − mKd

Md/Mc

)

.

Thus, for every n ≥ 0

(b̄, ν) ≤ (b̄, νn) ≤ bn = (b̄, xn
0 ), ν ∈ Xn,

and the theorem is proved.

Theorem 6: Let X = {x0, x1, . . . , xm}. Let c ∈
R

ℓ
GC〈〈X〉〉 and d ∈ R

m
GC〈〈X〉〉 with growth constants

Kc,Mc > 0 and Kd,Md > 0, respectively. Assume c̄ and d̄
are defined as in Theorem 5. If b = c ◦ d and b̄ = c̄ ◦ d̄ then

|(b, ν)| ≤ (b̄i, x
|ν|
0 ), ν ∈ X∗, i = 1, 2, . . . , ℓ,

where the sequence (b̄i, x
k
0), k ≥ 0 has the exponential

generating function

f(x0) = Kc exp

(
mKd exp(Mdx0) + Mdx0 − mKd

Md/Mc

)

.

Proof: Again from Lemma 1, it follows that for any ν ∈ X∗

|(b, ν)| ≤
∑

η∈X∗

|(c, η)||(η ◦ d, ν)|

≤
∑

η∈X∗

KcM
|η|
c (η ◦ d̄, ν)

= (b̄i, ν).

By Theorem 5, (b̄i, ν) is bounded by (b̄i, x
|ν|
0 ), which has the

exponential generating function f(x0). Thus, the theorem is
proved.

It is worth noting that the Bell numbers (without any left
shift), Bn, have the exponential generating function eex−1.
Their asymptotic behavior is

Bn ∼ n− 1
2 (λ(n))n+ 1

2 eλ(n)−n−1,

where λ(n) = n/W (n). Thus, the Lambert W-function ap-
pears to also play a role in the global problem. More impor-
tantly, since the double exponential appearing in Theorem 5
has no finite singularities, as appeared in the local analysis
in Section III, the following main result is immediate.

Theorem 7: The cascade connection of two globally con-
vergent Fliess operators has a radius of convergence equal to
infinity. Therefore, the output of such a system is always well
defined over any finite interval of time when u ∈ Lm

1,e(t0).
It is important to understand that this theorem is not

saying that the composite system has a globally convergent
generating series in the sense of (3). If this were the case,
then it would be possible to bound y(t) = Fc◦d[0] by a
single exponential function rather than a double exponential
function (see [11, Theorem 3.1]). Thus, the fastest possible
growth rate for the coefficients of a cascade connection
involving components with globally convergent generating
series falls somewhere strictly in between the local growth
condition (1) and the global growth condition (3).

Example 3: Suppose X = {x0, x1} and b̄ = c̄◦d̄ with c̄ =
∑

η∈X∗ KcM
|η|
c η and d̄ =

∑

η∈X∗ KdM
|η|
d η. The cascaded

system is described by the state space realization

ż1 = Mcz1(1 + z2), z1(0) = Kc

ż2 = Mdz2(1 + u), z2(0) = Kd

y = z1.

A MATLAB generated zero-input response of this system is
shown on a double logarithmic scale in Fig. 3 when Kc =
Mc = Kd = Md = 1. As expected from Theorem 5, this
plot asymptotically approaches that of ỹ(t) = t as t → ∞.
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Fig. 3. Zero-input response of the cascade system Fc̄◦d̄ in Example 3 on
a double logarithmic scale and the function ỹ(t) = t (dashed line).
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