
Reset Observers for Linear Time-Delay Systems. A Delay-Independent

Approach

D. Paesa, A. Baños, and C. Sagues

Abstract— A Reset observer (ReO) is a novel sort of observer
consisting of an integrator, and a reset law that resets the output
of the integrator depending on a predefined condition over its
input and/or output. The introduction of the reset element in the
adaptive laws can decrease the overshooting and settling time
of the estimation process without sacrificing the rising time.
Motivated by the interest in the design of state observers for
systems with time-delay, which is an issue that often appears in
process control, this paper contributes with the extension of the
ReO to the time-delay system framework. The time-independent
stability analysis of our proposal is addressed by means of
linear matrix inequalities (LMIs). Simulation results show the
potential benefit of the proposed reset observer compared with
traditional linear observers.

I. INTRODUCTION

State observers are recursive algorithms that play a key

role in many applications such as failure detection and re-

covery, monitoring and maintenance, or fault tolerant control.

Initially, the research on state observers was focused on linear

time invariant (LTI) systems [1], and afterwards on nonlinear

systems [2], and on time-delay systems as well [3]. All

those works are characterized by having only a proportional

feedback term of the output observation error, and are known

as proportional observers (POs). This proportional approach

ensures a bounded estimation of the state and the unknown

parameter, assuming a persistent excitation condition as well

as the lack of disturbances. The performance of proportional

observers can be improved by adding an integral term to

the adaptive laws, and the resultant observers are known as

proportional integral observers (PIOs) [4]. This additional

integral term can increase the steady state accuracy and

improve the robustness against modeling errors and dis-

turbances [5]. Although PIOs were initially introduced in

LTI systems for robustness improvement and loop transfer

recovery, their effectiveness have been also checked with

nonlinear system [6] and time-delay systems [7].

However, since the adaptive laws are still linear, they have

the inherent limitations of linear feedback control. Namely,

they cannot decrease the settling time and the overshoot of

the estimation process simultaneously. Therefore, a trade-

off between both requirements is needed. Nevertheless, this

fundamental limitation can be overcome by adding a reset

element. A simple reset element consists of an integrator and

a reset law that resets the output of the integrator as long as
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the reset condition holds. This reset element is commonly

referred to as the Clegg integrator after the work of Clegg

in 1958 [8], who proposed an integrator which was reset to

zero when its input is zero (zero crossing reset law). In 1974,

Horowitz generalized that initial work substituting the Clegg

integrator by a more general structure called the first order

reset element (FORE) [9]. During the last years, the research

on the stability analysis and stabilization for reset systems is

attracting the attention of many academics and engineers. A

main difference between the state-of-art reset control works

is the definition of the reset law: in [10] reset instants are

fixed and thus the stability analysis is much simpler; the

work [11] develops stability conditions for the zero crossing

reset law; in [12] stability conditions are obtained when the

reset is performed at those instants in which the input and

output of the reset element have different signs (sector reset

condition); finally in [13] a dwell-time stability condition

over reset instants is given that is applicable to any reset

law. It is important to note that all these definitions of

reset laws results in different reset systems dynamics, and

all of them have advantages and disadvantages in relation

to obtain stability and performance specifications in control

practice. It should be noted that although there are a relevant

number of stability results for the different types of reset law,

synthesising reset elements for optimal performance is still

an open issue.

Recently, stability analysis of reset control systems has

been also extended to time-delay systems for the case of

zero crossing reset law. There are two main approaches to

study the stability of time-delay systems, which depend on

whether the time-delay is included in the stability analysis or

not [14]. Regarding the stability of reset control systems, the

delay-dependent approach was addressed in [15], whereas

the delay-independent stability analysis was given in [16].

In both cases, stability conditions were given using a set of

LMI.

Although the research on reset elements is still an open

and challenging topic, this research has been mainly focused

on control issues. The first application of the reset elements

to the state observer framework is [17]. There, the authors

proposed a new sort of observer called reset observer (ReO).

A ReO is an state observer whose integral term has been

substituted for a reset element. The introduction of the reset

element in the adaptive laws can improve the performance

of the observer, as it is possible to decrease the overshoot

and settling time of the estimation process simultaneously.

This paper extends our previous work about ReO [17],

[18] to the time-delay system framework, using the ideas
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developed in [15]. The design of state observers for time-

delay systems has attracted the attention of many researchers

and practitioners, since time-delays often appear in many

control applications [19]. In this paper, we adopt a delay-

independent approach for the stability analysis. In addition,

we consider the two most popular reset conditions, that is,

the zero crossing reset condition (see for instance [11], [13],

[15], [16]), and the sector condition (see for instance [12]).

This paper is organized as follows. In Section II, the ReO

formulation for time-delay linear systems is presented. In

Section III, LMI-based stability conditions that guarantee

the convergence and stability of the estimation process for

both sort of ReOs are developed. Note that the delay-

independent stability result for the sector reset condition

has value by itself and can be also applied for stability

analysis of reset control systems. A simulation example is

presented in Section IV in order to test the performance of

our proposed ReO compared with traditional POs and PIOs.

Finally, concluding remarks are given in Section V.

Notation: In the following, we use the notation (x, y) =
[

xT yT
]T

. Given a state variable x(t) of a hybrid time-delay

system with resets, we will denote its time derivative with

respect to the time by ẋ(t), and the value of the state variable

after the resets, that is, the value of x(t + δ) with δ → 0+

by x(t+).

II. RESET OBSERVER FORMULATION

In this paper, we address the problem of the state estima-

tion of linear time-delay systems [3], which are described

by:

ẋ(t) = Ax(t) +Adx(t− h) +Bu(t) +Bww(t), t ≥ 0

x(t) = φ(t), t ∈ [−h, 0)

y(t) = Cx(t) (1)

where φ(t) is the continuous initial function, x(t) ∈ R
n is

the state vector, u(t) ∈ R is the input vector, w(t) ∈ R
n

is the disturbance vector, y(t) ∈ R is the output vector,

h is the constant known time delay , A ∈ R
n×n, Ad ∈

R
n×n, B ∈ R

n×1, Bw ∈ R
n×1, and C ∈ R

1×n are

known constant matrices. We consider single-input single-

output (SISO) systems only, since a suitable formulation of

reset elements for multiple-input multiple-output (MIMO)

systems is still an open research topic. Moreover, u(t) is

assumed persistently exciting, and the pair (A,C) is assumed

observable.

Now two different ReO formulations for time-delay sys-

tems such as (1) are presented. The difference lies in the reset

condition chosen. Firstly, we present a ReO based on the zero

crossing reset condition, that is, it is reset when the output

estimation error ỹ(t) = 0. Secondly, a ReO based on the

sector reset condition is presented, and in this case, it is reset

when the output estimation error and the integral estimation

error have different signs ỹ(t)ζ(t) ≤ 0. It should be noted

that both reset laws are not equivalent in general, and that

in principle they may give a difference performance over the

estimation error. The goal of this work is to give formal

stability conditions for both reset law, a formal analysis

of performance is still an open issue. However, it will be

illustrated how both definitions of reset laws may overcome

the performance of a linear observer. Therefore, it should

be noted that the sector reset condition allows a significant

relaxation of the stability conditions, and that for some

class of reset systems (like low-pass filters) the two reset

conditions are equivalent, and the resultant systems behave

in the same way except under some special initial conditions.

A. ReO Based on Zero Crossing Reset Condition

In this case, ReO dynamics are given by:

˙̂x(t) = Ax̂(t) +Adx̂(t− h) +Bu(t)
+ KP ỹ(t) +KIζ(t)

ζ̇(t) = Aζζ(t) +Bζ ỹ(t)
ŷ(t) = Cx̂(t)
τ̇(t) = 1























if η(t) /∈ M ∨ τ ≤ ρ, (2)

x̂(t+) = x̂(t)

ζ̂(t+) = Arζ(t)
ŷ(t+) = ŷ(t)
τ̇(t+) = 0















if η(t) ∈ M ∧ τ ≤ ρ, (3)

where η(t) = [x̃(t) ζ(t)]
T

, x̂(t) is the estimated state,

x̃(t) = x(t) − x̂(t) is the state error, KI and KP represent

the integral and proportional gain respectively and ỹ(t) =
y(t) − ŷ(t) is the output estimation error, ζ(t) is the reset

integral term, Aζ ∈ R and Bζ ∈ R are two tuning scalars

which regulate the transient response of ζ, and Ar is the

reset matrix. Specifically, we define Ar = 0, since the reset

integral term ζ is reset to zero when ζ(t) ∈ M.

Therefore, to complete closed-loop system equations the

set M, that will be referred to as the reset surface, needs to be

defined. Another set, the after-reset surface MR, also plays

an important role in the definition of closed-loop system

solutions. Note that reset actions occur when the augmented

state error η(t) contacts the reset surface M at some instant

t, that is η(t) ∈ M, and then the reset term jumps to

Arη(t) ∈ MR. In general, the set MR will be defined as

MR = R(Ar) ∩ N (C) where R(X) and N (X) stands for

the image and null subspace of the linear operator given by

the matrix X , respectively. Thus, MR is the set of states

η(t) that belong both to the null space of C (and then the

output Cη(t) = 0), and to the image space of Ar (they

are after reset states). In addition, the set M is defined as

M = N (C)\MR.

To avoid Zeno solutions, the reset term dynamics (2)-

(3) includes temporal regularization. We use the notation

proposed by [12], based on including an auxiliary variable

τ which guarantees that the time interval between any two

consecutive resets is not higher than ρ ∈ R
+.
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B. ReO Based on Sector Reset Condition

In this case, ReO dynamics are described as follows:

˙̂x(t) = Ax̂(t) +Adx̂(t− h)
+ Bu(t) +KP ỹ(t) +KIζ(t)

ζ̇(t) = Aζζ(t) +Bζ ỹ(t)
ŷ(t) = Cx̂(t)
τ̇(t) = 1























if η(t) ∈ F ∨ τ ≤ ρ, (4)

x̂(t+) = x̂(t)

ζ̂(t+) = Arζ(t)
ŷ(t+) = ŷ(t)
τ̇(t+) = 0















if η(t) ∈ J ∧ τ ≤ ρ, (5)

As it was shown in [17], as long as the sector condition

is preferred the ReO can be regarded as a hybrid system

with a flow set F and a jump or reset set J . On one hand,

when η(t) ∈ F , that is, if ỹ(t) and ζ(t) have the same

sign, the ReO behaves as a proportional integral observer.

On the other hand, if η(t) ∈ J , that is, if ỹ(t) and ζ(t)
have different sign, the integral term is reset according to

the reset map Ar. According to these statements and since

ỹ(t) = Cx̃(t), the definition of both sets can be formalized

by using the following augmented representation:

F :=
{

η(t) : ηT (t)Mη(t) ≥ 0
}

, (6)

J :=
{

η(t) : ηT (t)Mη(t) ≤ 0
}

, (7)

where M = MT is defined as

M =

[

0 CT

C 0

]

. (8)

Since the ReO flows not only when ηT (t)Mη(t) ≥ 0
but also when τ ≤ ρ, the flow set F becomes slightly

inflated. That inflated flow set is formally defined as Fǫ :=
{

η(t) : ηT (t)Mη(t) + ǫηT (t)η(t)
}

where ǫ(ρ) ≥ 0 repre-

sents how the set is inflated [12]. Since ǫ → 0 as ρ → 0,

an arbitrarily small ρ can be chosen so that the effect of ǫ
is small enough to be neglected [21]. Given that Fǫ slightly

overflows into the jump set J , the following assumption is

needed to guarantee that the solution will be mapped to the

flow set F after each reset and, consequently, there are no

trajectories that keep flowing and jumping within J .

Assumption 1. The reset observer described by (4)-(5) is

such that η(t) ∈ J ⇒ AR η(t) ∈ F , where AR =
[

I 0
0 Ar

]

is the reset map.

It is important to note that this assumption is commonly

used in many of the reset system formulations based on the

sector reset condition, that are available in literature [12],

[21].

III. STABILITY AND CONVERGENCE ANALYSIS

In this section we state computable sufficient conditions

for quadratic stability of both ReOs presented in the previous

section applied to time-delay systems described by (1).

To this end, let us begin analyzing the corresponding

error system dynamics of both observers. Defining the state

estimation error as x̃(t) = x(t)− x̂(t), and by using the pre-

viously defined augmented state error η(t) = [x̃(t) ζ(t)]
T

,

η(t− h) = [x̃(t− h) ζ(t− h)]
T

, the error dynamics of the

ReO based on the reset condition are given by

η̇(t) = Aη η(t) +Aηd
η(t− h) +Bη w(t)

ỹ(t) = Cη η(t)

}

if η(t) /∈ M ∨ τ ≤ ρ, (9)

η(t+) = AR η(t)
ỹ(t+) = ỹ(t)

}

if η(t) ∈ M ∧ τ ≤ ρ, (10)

and the error dynamics of the ReO based on the sector

condition are as follows

η̇(t) = Aη η(t) +Aηd
η(t− h) +Bη w(t)

ỹ(t) = Cη η(t)

}

if η(t) ∈ F ∨ τ ≤ ρ, (11)

η(t+) = AR η(t)
ỹ(t+) = ỹ(t)

}

if η(t) ∈ J ∧ τ ≤ ρ, (12)

where in both cases

Aη =

[

A−KPC −KI

BζC Aζ

]

, (13)

Aηd
=

[

Ad 0
0 0

]

, (14)

Bη =

[

Bw

0

]

, (15)

Cη =
[

C 0
]

. (16)

A. Asymptotic stability of ReOs Based on Zero Crossing

Reset Condition

In this case the stability analysis follows directly from

Propositions 1-2 in [16] where quadratic stability of time-

delay reset systems subject to the zero crossing reset con-

dition is addressed. As long as the same reset condition is

used, those results can be particularized for the stability of

ReOs as follows.

Proposition 1. For given Aη , Aηd
, Bη and AR the aug-

mented error dynamics shown in (9)-(10) with Bw = 0 is

quadratically stable, if for any matrix Θ with ImΘ = KerC
there exist some matrix P = PT > 0, Q = QT > 0 subject

to
[

AT
η P + PAη +Q PAηd

AT
ηd
P −Q

]

< 0,

ΘT (AT
RPAR − P )Θ ≤ 0, (17)
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which is a linear matrix inequality problem in the variables

P , Q.

Proof. It is quite similar to the proof shown in Proposition

3 in [16]. Firstly, let us introduce the Lyapunov-Krasovskii

functional [14], that is defined as:

V (ηt) = ηT (t)Pη(t) +

∫ 0

−h

ηT (t+ θ)Qη(t+ θ)dθ, (18)

for some symmetric and positive definite matrices P , Q with

size n× n. Notice that V (ηt) ≥ 0, and that V (ηt) = 0 only

if ηt(θ) = 0 ∈ R
n, for each θ ∈ [−h, 0].

Then, to prove the quadratic stability of our proposed

ReOs based on the zero crossing reset condition, we have

to check that:

d
dt
V (ηt) < 0 η(t) /∈ M

V (ηt+)− V (ηt) ≤ 0 η(t) ∈ M
(19)

Note that these inequalities are the standard stability

requirements for reset systems, and they guarantee that there

exists a common Lyapunov function that decreases when the

reset system is flowing, and does not grow when the reset

system is within the reset region.

Then, let us take derivative of (18) to obtain

d

dt
V (ηt) = η̇(t)TPη(t) + η(t)TP η̇(t)

+ η(t)TQη(t)− η(t− h)TQη(t− h)

=
(

η(t)TAT
η + η(t− h)TAT

ηd

)

Pη(t)

+ η(t)TP (Aηη(t) +Aηd
η(t− h))

+ η(t)TQη(t)− η(t− h)TQη(t− h), (20)

and using the first term of (19), (20) can be rearranged as

an equivalent LMI problem in the variables P,Q > 0
[

AT
η P + PAη +Q PAηd

AT
ηd
P −Q

]

< 0, (21)

which is the first inequality of (17).

It remains to prove the second term of (19). Since the

reset action is only active when η(t) ∈ M, and thus does

not affect the delay buffer η(t+ θ) for any θ ∈ [−h, 0) then

the integral part of the Lyapunov functional (20) does not

contribute to the jump, thus the reset jump in second term

of (19) results in that

V (ηt+)− V (ηt) = ΘT (AT
RPAR − P )Θ ≤ 0 (22)

for every η(t) ∈ M = KerC, which is the second inequality

of (17) and completes the proof.

B. Asymptotic stability of ReOs Based on Sector Reset

Condition

In this case the quadratic stability is addressed in similar

way than [17], although in this time the standard quadratic

Lyapunov function candidate must be substituted for the

previously presented Lyapunov-Krasovskii functional.

Proposition 2. For given Aη , Aηd
, Bη and AR the aug-

mented error dynamics shown in (11)-(12) with Bw = 0 is

quadratically stable, if there exist some matrix P = PT > 0,

Q = QT > 0 and scalars τF ≥ 0 and τJ ≥ 0 subject to
[

AT
η P + PAη +Q+ τF (M + ǫI) PAηd

AT
ηd
P −Q

]

< 0,

AT
RPAR − P − τJM ≤ 0, (23)

which is a linear matrix inequality problem in the variables

P , Q, τF and τJ .

Proof. In this case, to prove the quadratic stability of the

ReO based on the sector reset condition, we have to check

that:

d
dt
V (ηt) < 0 η(t) ∈ Fǫ

V (ηt+)− V (ηt) ≤ 0 η(t) ∈ J
(24)

where V is the Lyapunov-Krasovskii functional (18) and
d
dt
V (ηt) is as it is defined in (20).

Since Fǫ :=
{

η(t) : ηT (t)M η(t) + ǫηT (t)η(t) ≥ 0
}

and

employing the S-procedure [22], the first term of (24) is

equivalent to the existence of τF ≥ 0 such that

d

dt
V (ηt) < −τF η

T (t)(M + ǫI)η(t) (25)

Rearranging terms of equations (25) and (20), the first

term of (24) holds if the following inequality is satisfied

η(t)T
(

AT
η P + PAη +Q+ (M + ǫI)

)

η(t)

+ η(t− h)TAT
ηd
Pη(t) + η(t)TPAηd

η(t− h)

− η(t− h)TQη(t− h) < 0, (26)

which can be rearranged as an equivalent LMI problem in

the variables P,Q > 0 and τF ≥ 0
[

AT
η P + PAη +Q+ (M + ǫI) PAηd

AT
ηd
P −Q

]

< 0,(27)

which is the first inequality of (23) and consequently, proves

the first equation of (24).

Similarly, employing again the S-procedure, the second

term of (24) holds if there exists τJ ≥ 0 such that

V (ηt+)− V (ηt) ≤ ηT (t)τJMη(t), (28)

which is equivalent to

η(t)TAT
RPARη(t)− ηT (t)Pη(t)− η(t)T τJMη(t) ≤ 0. (29)

Rearranging terms, (29) can be also rewritten as an equiv-

alent LMI problem in the variables P > 0 and τJ ≥ 0 as

follows

AT
RPAR − P − τJM ≤ 0, (30)

which is analogous to the second inequality of (23) and

proves the second equation of (24) and, as a consequence,

completes the proof of the proposition.

Remark 1. For stability purposes, we have to prove that
d
dt
V (ηt) is negative in any region wherein the state η(t) can

flow, and that ∆V (ηt) ≤ 0 for any region wherein the state

η(t) is reset. In particular, since F ⊆ Fǫ,
d
dt
V (ηt) must be

proven for all η(t) ∈ Fǫ. If we only check d
dt
V (ηt) when
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η(t) ∈ F , we cannot guarantee that the Lyapunov function

is decreasing when the state η(t) overflows into the adjacent

reset region because of the temporal regularization. For this

reason, we have to check d
dt
V (ηt) for all η(t) ∈ Fǫ, and

∆V (ηt) ≤ 0 for all η(t) ∈ J .

IV. SIMULATION RESULTS

In this section, an example is presented in order to show

the effectiveness of our proposed ReOs. To this end, we

compare the simulation results obtained by a ReO based

on the zero crossing reset condition, and a ReO based on

the sector reset condition with a PO and with a PIO. On the

one hand, the PO will be tuned to minimize the overshooting

and, as a consequence, it provides a smooth response. On the

other hand, the PIO will be designed to minimize the rising

time, and hence, it gives an oscillating and faster response.

The next simulation example will show that our proposed

ReOs can achieve both requirements (i.e. a smooth and quick

response) simultaneously. These simulation results have been

obtained by using Simulink with the ode3 solver.

Let us consider the following time-delay system:
[

ẋ1(t)
ẋ2(t)

]

=

[

−2 0.1
0.1 −0.9

] [

x1(t)
x2(t)

]

+

[

−0.75 0
−0.75 −0.75

] [

x1(t− h)
x2(t− h)

]

+

[

0.5
2.5

]

u(t) +

[

0.5
0.5

]

w(t)

y(t) =
[

1 0
]

[

x1(t)
x2(t)

]

(31)

with x(t = 0) = x(t = h) = [1,−1]T , u(t) = sin(5t), and

h = 0.2 sec. The aim is to develop an state observer for

the system described by (31) which satisfies that the state

estimation error tends to zero without overshooting.

Additionally, let us outline the tuning parameter for each

observer (i.e. PO, PIO, ReO). Notice that when it is possible,

the tuning parameters are equal for each observer in order to

make the results more comparable. Since the tuning process

of each observer involves several parameters, let us outline

how all these tuning parameters have been determined.

Firstly, we have designed the PO in such a manner that its

rising time is around 1.5 seconds without overshooting. After

that, to design the oscillating PIO we have increased the KI

gain until its rising time is roughly equal to 0.5 seconds, that

implies an oscillating estimation process. Finally, to make the

results more comparable, the ReOs have the same KI and

KP than the oscillating PIO.

Specifically, the parameters of the PO are x̂(t = 0) =
x̂(t = h) = [0, 0]T , KP = [0.05,−1]T , whereas the tuning

parameters of the oscillating PIO are x̂(t = 0) = x̂(t = h) =
[0, 0]T , z(t = 0) = z(t = h) = 0, Az = −0.5, Bz = 1,

KP = [0.05,−1]T , and KI = [16,−20]T . For a further

discussion on the structure of PIOs and PIOs the reader is

referred to [6] and [17]. On the other hand, both ReOs for

the system (31) have the same tuning parameters. Namely,

x̂(t = 0) = x̂(t = h) = [0, 0]T , ζ(t = 0) = ζ(t = h) = 0,

Aζ = −0.5, Bζ = 1, KP = [0.05,−1]T , KI = [16,−20]T ,

Ar = 0, ǫ = 0. Notice that the KP and KI gains of the

ReOs are equal to the gains of the oscillating PIO. Finally,

it is worth mentioning that the stability of both ReOs can be

easily checked with the propositions given in Section III.

To analyze the effect of the disturbance w(t) on the

performance of our proposal, let us consider that the system

(31) is noise-free, and thus, w(t) = 0. In this case, the state

estimation error x̃(t) = [x̃1(t), x̃2(t)]
T of all the observers

is shown in Fig. 1. It is evident that our proposed ReOs have

a better performance compared with traditional PIOs, since

it has a response as quick as the oscillating PIO but without

overshooting. Notice that if we decrease the integral gain KI

of the oscillating PIO to avoid overshooting it will behave as

the conservative PIO and, thus, its rising time will be higher

than the obtained by ReOs. On the other hand, if we increase

the integral gain KI of the conservative PIO to reduce its

rising time, it will behave as the oscillating PIO and, as a

consequence, its response will be oscillating.
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Fig. 1. State estimation error x̃(t) obtained for each observer when the
system is noise-free. Dotted lines have been obtained by using the propor-
tional observer. Dashed lines have been obtained by using the oscillating
proportional integral observer. Thin solid lines have been obtained by using
the ReO based on the zero crossing reset condition. Thick solid lines have
been obtained by using the ReO based on the sector reset condition. Note
that the behavior of both ReOs is exactly the same.

In this case both reset conditions are equivalent, however

the differences appear when the initial state of the integral

term ζ is not zero. To see this, Figs. 2-3 show the behavior

of the previously presented ReOs when ζ(t = 0) = ζ(t =
h) = 2 and ζ(t = 0) = ζ(t = h) = −0.15 respectively, and

w(t) = sin(15t). These results underline the key role played

by the reset condition in the behavior of reset systems, and

that depending on the initial conditions of the system, some

reset conditions can behave better than others. However, it

is not clear which one is generally the best. It remains for
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future research to answer this challenging question.
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Fig. 2. State estimation error x̃(t) obtained for each observer when the
system is noise-corrupted. Thin solid lines have been obtained by using the
ReO based on the zero crossing reset condition. Thick solid lines have been
obtained by using the ReO based on the sector reset condition. Note that
ζ(t = 0) = ζ(t = h) = 2.
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Fig. 3. State estimation error x̃(t) obtained for each observer when the
system is noise-corrupted. Thin solid lines have been obtained by using the
ReO based on the zero crossing reset condition. Thick solid lines have been
obtained by using the ReO based on the sector reset condition. Note that
ζ(t = 0) = ζ(t = h) = −0.15.

V. CONCLUSION

This paper has extended our previously developed ReO

[17] to the time-delay system framework. The two most

popular reset conditions have been considered. Stability

analysis independent of the time delay has been given for

both cases.

Reset elements can decrease the overshoot and settling

time of the estimation process without sacrificing the rising

time for some kind of systems. Simulation results have been

given to underline their potential benefits. Independently of

the reset condition chosen, the proposed ReOs introduce

improvements even in the presence of disturbances.
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