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User friendly Box-Jenkins identification using

nonparametric noise models
J. Schoukens, Y. Rolain, G. Vandersteen, R. Pintelon

Abstract—The identification of SISO linear dynamic systems
in the presence of output noise disturbances is considered. A
’nonparametric’ Box-Jenkins approach is studied: the para-
metric noise model is replaced by a nonparametric model that
is obtained in a preprocessing step, and this without any user
interaction. The major advantage for the user is that i) one
method can be used to replace the classical ARX, ARMAX,
OE, and Box-Jenkins models; ii) no noise model order should
be selected. This makes the identification much easier to use for
a wider public; iii) a bias on the plant model does not create
a bias on the noise model. The disadvantage of the proposed
nonparametric approach is a small loss in efficiency with respect
to the optimal parametric choice. These results are illustrated
on a series of well selected problems.

Index Terms—system identification, non-parametric noise
models, Box-Jenkins

I. INTRODUCTION

I
N the classical time domain prediction error framework,

a parametric plant- and noise model is estimated simul-

taneously for the system given by

y (t) = G0 (q) u0 (t) + v (t) , (1)

where q−1 is the backward shift operator, and with v (t)
the disturbing noise modeled as filtered white noise: v (t) =
H0 (q) e (t). The plant and noise models are respectively

given by

G0 (q) = B0 (q) /A0 (q) ,

and

H0 (q) = C0 (q) /D0 (q) ,

with A0, B0, C0, D0 polynomials in q. During the identifi-

cation step, the noise model H (q, θ) acts as a parameter

dependent filter on the residuals in the least squares cost

function [2], [3]

VN (θ) =
1

N

N
∑

t=1

(

H−1 (q, θ) [y (t) − G (q, θ) u0 (t)]
)2

,

(2)

which adds a frequency weighting to the cost function. The

user has to select the model structure of both the plant model
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G (q, θ) and the noise model H (q, θ). The choice of the

noise model not only reflects the prior knowledge about the

system, it also affects the complexity of the optimization

problem to find the minimum of the cost function VN (θ).
For example, choosing H (q, θ) = 1/A (q, θ) expresses that

the plant and the noise models have the same poles, resulting

in an optimization problem that is linear-in-the-parameters.

This is called the ARX model. In the ARMAX model, there

is a larger flexibility in the noise model by adding also zeros

to the noise model: H (q, θ) = C (q, θ) /A (q, θ), Now, a

nonlinear optimization problem is faced to minimize the cost

function. For the output error model (OE), the disturbing

noise is assumed to be white: H (q, θ) = 1, and in the Box-

Jenkins model there is no relation between the plant and the

noise model [2], [3]. It is clear that the Box-Jenkins model

can cover the ARX, ARMAX, and OE situation, but it results

also in a more difficult optimization problem to be solved.

The user has to solve now a double model selection problem:

the order of both the plant- and the noise the model should

be selected.

The noise model structure selection problem can be

avoided if a good nonparametric noise model would be

available. It can be used as a parameter independent weight-

ing vector in the weighted least squares method. So only

the plant model order has to be retrieved by the user. The

numerical search procedure becomes also more robust so that

the risk to end in local minima is reduced.

This brings us to the contribution of this paper. When

dealing with system identification we can consider on the

one hand the classical prediction error framework that makes

use of parametric noise models. It results in optimal estimates

(consistent and efficient), provided that the user makes the

correct choices for the plant- and noise model structure

and order. However, if the user fails to do so, these highly

desirable properties are lost and (large) errors can be created.

On the other hand we have the nonparametric noise model

approach, where no user interaction at all is requested to

select the noise model-structure and -order. Only the plant

model structure selection should be addressed. This results

in a very user friendly modeling technique at a cost of a loss

in efficiency. However, the risk to end up with poor models

due to a bad user choice is strongly reduced. So there is a

possibility to trade optimal, but high risk methods, for good

(not optimal), but low risk methods. In this paper we will
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study both approaches and discuss the needed trade-off.

In Section II we first extend the prediction error framework

with a nonparametric noise model. Next, it is discussed

how a nonparametric noise model can be obtained without

user interaction from the data alone. Section III, studies

the properties of the nonparametric Box-Jenkins model. The

similarities and differences with earlier published results

on nonparametric Box-Jenkins identification is discussed

in Section IV. Next, a detailed comparison of ARX, OE,

Box-Jenkins and nonparametric Box-Jenkins identification is

made in Section V followed by the conclusions in Section

VI.

II. INTRODUCING A NONPARAMETRIC NOISE MODEL TO

THE PREDICTION ERROR FRAMEWORK

In this section we show very briefly how a nonparametric

noise model can be introduced in the classical prediction

error framework. We refer the interested reader also to [7],

[8], [9], [10].

A. Including a nonparametric noise model in the prediction

error framework

For finite data lengths, the model in (2) should be extended

with a transient term t (θ) to model the effects of the initial

conditions of the plant and noise model:

ṼN (θ) =
1

N

N
∑

t=1

(

H−1 (q, θ) [y (t) − G (q, θ)u0 (t) − t (θ)]
)2

.

(3)

The cost function (3) remains the same in the frequency

domain using Parseval’s theorem:

ṼN (θ) = 1
N

∑N/2
k=−N/2+1

(

H−1 (k, θ) [Y (k) − G (k, θ) U0 (k) − T (k, θ)]
)2

(4)

where e.g. G (k, θ) is the parametric plant model evaluated

at the frequency Ωk = ej2πk/N . The expressions (3) and (4)

are completely equivalent (excepted for the transients of the

noise filter H−1 (q, θ) that are neglected here for simplicity),

so that it is even not a problem to use the same symbol for

both expressions. Under these conditions, the time domain

or frequency domain implementation are only two different

ways to calculate the same result. The estimated plant model

will be exactly the same. The estimated term t (θ) and T (θ)
differ from each other because they have a slightly different

role. In the time domain, t (θ) models the initial transients.

In the frequency domain, T (θ) is an exact model for the

leakage errors that can be written in the time domain as a

transient at the beginning and the end of the measurement

[4].

If a good nonparametric noise model

σ̂2
v (k) ≈ σ2

e |H0 (k, θ0)|
2

(5)

is available, the cost function (4) can be replaced by

ṼN,nonpar (θ) =
1
N

∑N/2−1
k=−N/2

|Y (k)−G(k,θ)U0(k)−T (k,θ)|2

σ̂2
v
(k) ,

(6)

where only the plant model G (k, θ) and the transient term

T (k, θ) remain to be estimated. There is no interference any

more with the estimation of the plant model so that a single

model selection problem remains.

B. Estimation of a nonpararmetric noise model with the

local polynomial method

We will discuss two methods to estimate the nonparamet-

ric noise model, i) the classical windowing method, and ii)

the recently developed ’local polynomial method’.

Estimating the noise power spectrum using the windowing

method: The most popular method to estimate the frequency

response function G0 (k) and the variance σ2
v (k) is based

on the use of the estimated cross- and auto-spectrum of the

input and output [11], [13]: ŜY U (k), ŜU (k), ŜY (k), usually

estimated by making use of a Hanning window in order to

reduce the leakage errors. The estimated variance with the

Hanning window, σ̂2
v,H (k), is given by:

σ̂2
v,H (k) = ŜY (k) −

∣

∣

∣
ŜY U (k)

∣

∣

∣

2

/ŜU (k) . (7)

The disadvantages of this approach are that the original

record is split in M sub-records to calculate the cross- and

auto-spectrum estimates which leads to a loss in frequency

resolution [11] and increased leakage errors (bias contribu-

tions). It can be shown that [8], [9] for the Hanning window:

σ̂2
v,H (k) = σ2

v (k) + εH,1 + εH,2 + εH,3, (8)

with

i) εH,1 = σ2′

v (k) O
(

(M/N)
2
)

: the interpolation er-

ror (σ2′

v (k) is the derivative of the power spectrum with

respect to the frequency evaluated at k). The Hanning-

method assumes that the noise variance is constant over 3

neighboring frequencies, resulting in an interpolation error

that is localized in frequency [7].

ii) εH,2 = G
′

0 (k) O
(

(M/N)
2
)

: the error due to a bad

separation of y0 (t) and v (t). This is due to estimation errors

on GHanning(k), and it is usually the dominating error,

especially for systems with fast varying dynamics.

iii) εH,3 = O
(

(M/N)
3
)

is the error due to the remaining

leakage after applying the Hanning window. As shown in

Figure 1, it does carry over errors from one frequency band

(for example with a high noise level) to another band (for ex-

ample with a low noise level). That effect makes the leakage

errors a much more disturbing problem in noise analysis than

the interpolation error. For example, the interpolation error

will be very small at zeros of the noise model, such that the

leakage error becomes dominant over the interpolation error.
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For slowly varying spectra, the interpolation error will be

small because σ2′

v (k) goes to zero [7].

leakage

interpolation

f

A
m
p
li
tu
d
e

Figure 1. Illustration of the different nature of the leakage error and the
interpolation error another).

Estimating the noise power spectrum using the local

polynomial method: Recently an alternative method, Ĝpoly

(the local polynomial method) is proposed that estimates the

frequency response function (FRF) and the power spectrum

of the noise with a much higher quality than the classical

windowing methods [11], at a cost of an increased computer

time (typical a factor 1000 independently of the record

length). But, given the actual available computer power,

records of a few thousands of data points are still processed

in a few seconds. The required calculation time grows

proportionally with the record length. The method starts from

the observation that

y (t) = G0 (q) u0 (t) + tG (t) + H0 (q) e (t) + tH (q) . (9)

or in the frequency domain (using the discrete Fourier

transform)

Y (k) = G0 (k) U0 (k) + TG (k) + H0 (qk) + TH (k)
= G0 (k) U0 (k) + H0 (qk) + T (k) .

(10)

The plant-, noise-, and transient models are smooth func-

tions of the frequency. Around a given frequency, they can

be locally approximated by a complex polynomial that is

estimated by solving a linear least squares problem at each

frequency [7]. This leads eventually to a high quality estimate

of the FRF Ĝpoly , the ’leakage corrected’ output

Ŷ (k) = Y (k) − T̂ (k) . (11)

The variance of the noise is estimated from the residuals of

the fit [7], [8]:

σ̂2
v,poly (k) = σ2

v (k) + εH,1 + εH,2 + εH,3. (12)

with

i) εH,1 = σ2′

v (k)O ((1/N)): the interpolation error. It

should be remarked that with the local polynomial method

a split of the data in sub-records is not required, so M = 1
which reduces all the error levels significantly. Compared to

the Hanning-method there is a loss of one order of magnitude

with respect to the decrease in N . However, as explained in

Figure 1, this error is not the dominating error term in most

practical situations [7].

ii) εH,2 = G
(3)
0 (k) O

(

(1/N)
6
)

: the error due to a bad

separation of y0 (t) and v (t). This was the dominating error

term in most situations for the Hanning method. Observe that

this term is strongly reduced by using the local polynomial

method, and it is one of the reasons that the latter becomes

superior compared to the Hanning approach in practice.

iii) εH,3 = O
(

(1/N)
4
)

is the error due to the remaining

leakage after applying the local polynomial method.

A detailed discussion of these results can be found in [8],

[9], [7].

Using the nonparametric noise model in the prediction

error framework: In this paper, we are mainly interested

in the leakage corrected output estimate Ŷ (k) (11) and

its variance estimate σ̂2
Y (k). This variance is estimated

completely similar to σ̂2
v,poly (k) using the local polynomial

method. This allows us to reformulate (13) in its final form:

ṼN,nonpar (θ) =

1
N

∑N/2−1
k=−N/2

|Ŷ (k)−G(k,θ)U0(k)|
2

σ̂2

Y
(k)

.

(13)

So we are now in the situation that we have a free choice

between using the parametric- (4) or the nonparametric noise

model approach (13). In the latter expression U (k) , Ŷ (k),
(leakage + initial transient elimination) and σ̂2

G (k) (non-

parametric noise model) are used during the estimation. It

is on these choices that we will further elaborate in this

paper. In the rest of this paper we will call the nonparametric

noise model formulation (13) the nonparametric Box-Jenkins

approach because of the absence of a link between the plant-

and the noise model as it is in the parametric Box-Jenkins

model.

Remark: It is clear that in a second step it should also

be possible to use the knowledge from the estimated FRF

Ĝpoly to improve the generation of starting values for the

numerical minimization of the cost function, but that is out

of the scope of this paper.

III. PROPERTIES OF THE NONPARAMETRIC BOX-JENKINS

MODEL

In this section we discuss shortly the stochastic prop-

erties of the nonparametric Box-Jenkins estimate θ̂np (the

minimizer of (13)). It can be shown that the consistency

is not affected by replacing the parametric noise model by

a nonparametric one, while there will be a small loss in

efficiency with respect to the parametric noise model due

to the larger number of parameters to be estimated in the

nonparametric noise model. A detailed discussion is out of

the scope of this paper, but the proofs follow the same lines

as those given in [12]. The interested reader is referred to

that paper or the book [4]. Here we briefly explain the major

ideas.
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A. Consistency

The consistency follows from the observation that the

minimizer of the expected value of the cost function (13)

is the same as that of the parametric Box-Jenkins model (4).

The calculation of the expected value E
{

ṼN,nonpar (θ)
}

can be simplified because it can be shown that the numerator

and denominator in (13) are asymptotically (for N → ∞) in-

dependently distributed for Gaussian noise v (t). The precise

proof is out of the scope of this paper [15], but it is based

on the observation that the sample mean and the sample

variance of a Gaussian distributed stochastic are independent

variables. Hence

E
{

ṼN,nonpar (θ)
}

=
1

N

N/2−1
∑

k=−N/2

E

{

∣

∣

∣
Ẽ (k)

∣

∣

∣

2
}

E

{

1

σ̂2
v (k)

}

,

(14)

with Ẽ (k) = Ŷ (k) − G (k, θ) U0 (k). Define ndof as

the number of degrees of freedom in the χ2-distributed

variance estimate σ̂2
v (k). The expected value E

{

1/σ̂2
v (k)

}

is guaranteed to exist if ndof ≥ 2 (see Corollary 8.20 on

page 304 of [4]). This is controlled by the default settings of

the local polynomial method. The presence of a parameter

independent bias in the variance estimate does not affect the

consistency of θ̂np, it only affects the efficiency. Moreover,

this bias in (12) decreases towards zero for N → ∞.

To proof the convergence of the cost function (13) to its

expected value, ndof ≥ 4 is required because in this step

4thorder moments are used [12], [4].

B. Efficiency and distribution

The covariance matrix of θ̂np is shown to exist if ndof ≥
6. Convergence towards a normal distribution is assured if

ndof ≥ 7.

In [4] it is shown that there is a loss in efficiency with

respect to the situation with an exactly known nonparametric

noise model which is equal to

Eloss = (ndof − 2) / (ndof − 3) . (15)

C. Conclusion

Using the nonparametric noise model σ̂2
v (k), obtained

from the local polynomial method, in the nonparametric

Box-Jenkins estimate results in consistent estimates that are

asymptotically normal distributed. There is a slight loss in

efficiency that depends on the number of degrees of freedom

ndof . This value is controlled by the default settings in the

local polynomial method: the wider the local bandwidth used

to fit the local polynomial, the larger ndof will be, but at the

same time the risk for bias errors grows. In this paper we

used a default setting of ndof = 8 in all the simulations.

IV. COMPARISON WITH EARLIER RESULTS

Nonparametric noise models were used for the first time

in a Box-Jenkins identification approach in [14]. That paper

starts mainly from the cost function in (13), making use

of a parametric transient model, and a nonparametric noise

model. The noise model is estimated from the residuals

Y (k)−G (k, θ) U0 (k)−T (k, θ) in (13) as explained in [14].

It resulted in noise estimates with errors of order O
(

N−1
)

.

So there are two major differences compared to the method

that is presented in this paper: i) In this paper also the plant

transient is eliminated in the nonparametric preprocessing

step, while in [14] a parametric plant- and transient-model

are estimated. In the initial step of [14], the transient is put

equal to zero. Hence the initial noise model is also prone to

the unmodeled transient errors during the initialization. ii)

The errors of the nonparametric noise model that is obtained

from the local polynomial method are smaller than those

obtained with the method in [14]. For these reasons it is clear

that the new method that is presented in this paper will be

more robust (no parametric transient model needed, a better

initial noise model is available to initialize the identification)

and more efficient (a better nonparametric noise model is

used).

V. SIMULATION RESULTS

Two simulations were defined: the first one identifies a

2nd order system, while the second simulation deals with

a 6thorder system. Three different noise filters are used: i)

ARX-simulation H0 = 0.1/A0; ii) OE-simulation: H0 =
0.1; iii) Box-Jenkins-simulation: H0 = 0.1 × C0/D0. The

variance of the driving white noise is set equal to unity in

all cases.

In each simulation we consider 100 realizations.

The excitation is filtered Gaussian noise, generated

with the following filter coefficients: bGen=[0.5276 1.5829

1.5829 0.5276 ] and aGen=[1.0000 1.7600 1.1829 0.2781].

These can be calculated with the Matlab instruction:

[bGen,aGen]=butter(3,2*fMax) with fMax=0.4. The zero

mean driving white noise has unite variance.

The simulation length is 5500 points. The first 500 data

points are not used in order to eliminate the initial transients

of the simulation. This makes sure that the simulations do

not always start with a system that is initially at rest.

Each data set is processed using the ARX-, OE-, Box-

Jenkins-, and nonparametric Box-Jenkins method and for

each of these the corresponding root mean square error is

calculated as a function of the frequency. The simulations

are done with a disturbing noise power level ranging from

1% to 30% of the undisturbed output power. The parameters

of the local polynomial method were set such that ndof =8.

The results are discussed below.
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A. 2ndorder system

The system G0 is given by the filter coefficients

b0=[0.1943 0.3885 0.1943] and a0 = [1.0000 0.7125

0.7449], generated with the Matlab instruction

[b0,a0]=cheby1(2,10,2*fMax*0.9).

The noise in the Box-Jenkins-simulation is generated with

c0=[0.1084 0.2169 0.1084], and d0=[1.0000 -0.8773 0.3111].

Figure 2 shows besides G0 we also the power spec-

trum of the disturbing noise, and the ERMS (k) =

rms
(

Ĝ (k) − G0 (k)
)

for the different methods. From these

results we learn that in each simulation the ARX, OE, and

Box-Jenkins model are the best model for their respective

simulation. This is expected from the theory, because these

are the respective maximum likelihood solutions. However, it

can also be seen that the nonparametric Box-Jenkins model

is each time very close to this best result. This is again in

agreement with the conclusions of the previous section. In

this case the loss is well below 2 dB (20% on the standard

deviation) which is in the order of magnitude given by (15)

that predicts a loss of 10% on the standard deviation. This

can be further reduced by increasing the bandwidth of the

Local Polynomial method to increase ndof .

This figure also shows that the use of wrong prior infor-

mation can result in a very large increase of the rms-error.

Especially the middle and right plot show a large increase

of the error for the ARX-model with 40 dB or more (factor

100). Also the OE-model loses up to 10 dB in the right plot.

Conclusion: this simulation illustrates that the ARX and

OE are optimal when the underlying assumptions are met.

However these models are very sensitive to the validity of

these assumptions. Box-Jenkins does very well in each of

these simulations. It is very close (or equal) to the best

solution. The nonparametric Box-Jenkins model is a robust

alternative for the use of parametric noise models. In these

three very different situations it produces results that are

very close to the optimal solution, and this without any user

interaction to tune the noise model to the specific situation.

B. 6th order system

The settings in this simulation are similar to the previous

ones, but the system is now given by b0 = [0.0040 0.0241

0.0604 0.0805 0.0604 0.0241 0.0040], and a0 =[1.0000

0.9468 1.7955 0.8304 1.7347 0.8808 0.9558], generated

using the instruction [b0,a0]=cheby1(6,30,2*fMax*0.9).

The results are shown in Figure 3. We can draw the same

conclusions as before, but here an additional aspect becomes

visible: the OE and the parametric Box-Jenkins estimates

suffer from local minima in this simulation while this is not

the case for the nonparametric Box-Jenkins approach. The

latter became now the best method in the OE and the Box-

Jenkins simulations. Since the ARX-estimation is linear-in-

the-parameters, is does not suffer from local minima, and

it remains the best solution on the ARX-simulation, closely

followed by the parametric- and nonparametric Box-Jenkins

estimates.

C. Avoiding local minima

The previous section indicated that the parametric Box-

Jenkins results were prone to local minima that result in

poor estimates. This claim can be supported by verifying

if the problem can be reduced by using improved initial

estimates. In a first step, only the plant model is initialized

using the results from the nonparametric Box-Jenkins model.

The noise model was initialized at H (q, θ) = 1. In a second

step, also an improved initialization for the noise model was

used: the residuals e (t) = y (t) − G
(

q, θ̂npBJ

)

u0 (t) are

identified using an ARMA-model and these parameters are

then used for the initialization of the noise model. The results

in Figure 4 show that the loss due to initialization problems is

already strongly reduced by the improved plant initialization.

Only around the second resonance there is still a loss with

respect to the nonparametric Box-Jenkins. When also the

noise model is properly initialized, we retrieve the expected

result: the parametric Box-Jenkins model is slightly better

than the nonparametric Box-Jenkins result at all frequencies.
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Figure 4. Avoiding local mininima in Box-Jenkins identification using
improved starting values. Black line: G0; red line: rms-error nonparametric
Box-Jenkins; dotted blue: rms-error parametric Box-Jenkins; blue line: rms-
error parametric Box-Jenkins, plant model initialized from the nonparamet-
ric method and initial noise model H = 1; green line: rms-error parametric
Box-Jenkins, plant model initialized from the nonparametric Box-Jenkins,
noise model: initialized from an ARMA-model fitted on the time domain
residuals.

VI. CONCLUSIONS

We introduced a nonparametric Box-Jenkins model and

compared it to ARX, OE, and Box-Jenkins identification.

The major advantages of the nonparametric Box-Jenkins

method are: i) its robustness to assumptions about the

noise model structure and noise model order; ii) its user

friendliness: no user decisions are required with respect to
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Figure 2. Comparison of ARX, OE, and Box-Jenkins with the nonparametric Box-Jenkins on a simple system. Bold line: G0; Gray line: power spectrum
disturbing noise; - -: rms-error ARX; rms-error ...: OE; —: rms-error Box-Jenkins; red line: rms-error nonparametric Box-Jenkins.
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Figure 3. Comparison of ARX, OE, and Box-Jenkins with the nonparametric Box-Jenkins on a complex system. Bold line: G0; Gray line: power
spectrum disturbing noise; - -: rms-error ARX; ...: rms-error OE; —: rms-error Box-Jenkins; red line: rms-error nonparametric Box-Jenkins.

the noise model. The user is not requested to choose a noise

model structure so that there is no risk of imposing wrong

prior information. iii) Only the plant model order should be

selected, there is no noise model order to be selected.

The nonparametric Box-Jenkins method turns out to be

very close to the optimum for a wide range of situations.

The price to be paid for this robust behavior is a slight loss

in uncertainty of about 20% on the standard deviation. The

study also reveals that the initialization process of the OE-

and the Box-Jenkins model is critical, especially for more

complex systems. Without a robust initialization procedure,

these methods do not reach their global minimum and all

optimal properties as obtained from the theory are lost.
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