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Abstract— A new design of a fault tolerant control (FTC)-
based an adaptive, fixed-structure PI controller, with constraints
on the state vector for nonlinear discrete-time system subject to
stochastic non-Gaussian disturbance is studied. The objective
of the reliable control algorithm scheme is to design a control
signal such that the actual probability density function (PDF)
of the system is made as close as possible to a desired PDF, and
make the tracking performance converge to zero, not only when
all components are functional but also in case of admissible
faults. A Linear Matrix Inequality (LMI)-based FTC method
is presented to ensure that the fault can be estimated and
compensated for. A radial basis function (RBF) neural network
is used to approximate the output PDF of the system. Thus, the
aim of the output PDF control will be a RBF weight control with
an adaptive tuning of the basis function parameters. The key
issue here is to divide the control horizon into a number of equal
time intervals called batches. Within each interval, there are a
fixed number of sample points. The design procedure is divided
into two main algorithms, within each batch, and between any
two adjacent batches. A P-type ILC law is employed to tune the
parameters of the RBF neural network so that the PDF tracking
error decreases along with the batches. Sufficient conditions for
the proposed fault tolerance are expressed as LMIs. An analysis
of the ILC convergence is carried out. Finally, the effectiveness
of the proposed method is demonstrated with an illustrated
example.

I. INTRODUCTION

There are many stochastic systems in practice whose

outputs are the PDF of the system output[1], rather than the

actual output values. For such cases, the measured output

PDFs can be used as an output for the feedback control. Such

types of stochastic systems are called Stochastic Distribution

Control (SDC) systems [1]. Practical examples of SDC

systems in industrial applications include: Combustion flame

distribution processes [2],and the wet-end of paper-making

[1]. SDC was originally developed by Professor Hong Wang

in 1996, when he considered a number of challenging paper

machine modelling and control problems [1]. The process

and the control were presented in a PDF form. As such, the

purpose of the controller design was to obtain the PDF of

the controller so that the closed-loop PDF would follow the

pre-specified PDF. Since then, rapid developments have been
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made and introduced in different control applications [3].

The most exciting PDF control approaches are based on the

B-spline model. Moreover, multi-layer perception (MLP)

neural network models have been applied to the shape

control for the output PDFs [4]. Recently, a RBFNN has

been used to approximate the output PDF of the system [5].

In this work, we have used RBFs instead of B-Splines which

help generalize the output PDF expression and overcome

the problems with B-spline-based functional approximations.

Due to the high demand for reliability and safe operation,

many FTC methods were developed in the past four decades,

which have the capability of detecting the occurrence of

faults and maintaining the performance of the system in the

presence of faults at a prescribed level [6].In most cases,

the literatures on the FTC algorithms for stochastic systems

have been presented under the assumption that the random

variables or the noise in the stochastic system are subject

to Gaussian distribution [7]. In [8], a nonlinear adaptive

observer-based fault diagnosis alorithm has been presented

for the SDC systems that are based on the rational square-

root B-spline approximation model. When faults occur in

the system, the controller was redesigned. This method is

suffering from the complexity of modelling of stochastic

distribution control. As such, there is a need to develop FTC

methods that can be applied to general stochastic systems

subject to arbitrary variables distribution, and reduced the

complexity of SDC modelling.

II. FAULT TOLERANT CONTROL

A. Problem Formulation

Similar to [9], consider uk(i) ∈ Rr is the input of

a discrete-time dynamic stochastic system at the ith time

instant within the kth batch , y ∈ [a, b] is the output. At

sample time k, y can be described by its PDF γk(y, uk(i)).
Assuming that [a, b] is known and the probability density

function is continuous and bounded within each iteration.

The well-known RBF neural networks can be used to ap-

proximate the square root of the output PDF as

√

γ(y, uk(i)) =
n
∑

l=1

νl,k (uk (i)) rl,k (y) (1)

where γ(y, uk(i)) is the output PDF measured at the ith

time instant within the kth batch. Also νl,k(i) is the lth

weight element of the RBFNN in the ith (i = 1, 2, ....,m)
sample time within the kth batch, and rl,k(y) denotes the lth

(l = 1, 2, ...., n) RBF activation function within kth batch.

Assume n and k represent the number of RBFs and the
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batch length, respectively. The RBF activation functions are

expressed as follows [5].

rl,k(y) = exp

(

−
(yj − µl,k)

2

2σ2

l,k

)

(2)

where µl,k, σl,k are the centres and widths of the RBF basis

functions within kth batch, respectively.

Different from [10], [11], the output PDF described in (1)

can be re-written as the following vector form.

√

γ(y, uk(i)) =
[

Rk(y) rn,k(y)
]

[

Vk(i)
νn,k(i)

]

(3)

where

Rk(y) = [r1,k(y), r2,k(y), ...., rn−1,k(y)]

Vk(i) = [νl,k(i), ν2,k(i), ...., νn−1,k(i)]
T .

Since, γ(y, uk(i)) is a probability density function, it must

satisfy the following integral constraint [1].

∫ b

a

(γ(y, uk(i)))dy =

∫ b

a

(
√

γ(y, uk(i)))
2dy = 1 (4)

By substituting γ(y, uk(i)) with (3) and solving the equation

for νn,k(i) similar to [1], [12], it can be shown that the

following state constraint shall be satisfied within each batch

to guarantee that the measured γ(y, uk(i)) is a probability

density function [1].

V T
k (i)Qab,kVk(i) ≤ 1 (5)

where

Qab,k = b1,k − b−1

3,kb
T
2,kb2,k

b1,k =
∫ b

a
RT

k (y)Rk(y)dy

b2,k =
∫ b

a
rn,k(y)Rk(y)dy

b3,k =
∫ b

a
r2n,k(y)dy

It has been proven in [1] that Qab,k is always positive

definite. When (5) holds, it can be seen that νn,k can be

represented as a known nonlinear function of Vk called

h(V (k)). Thus the output PDF described in (1) can be re-

written as follows.
√

γ(y, uk(i)) = Rk(y)Vk(i) + rn,k(y)h(V (k)) (6)

In (6), the nonlinear function h(V (k)) should satisfy the

following Lipschitz condition

‖h(V1,k(i))− h(V2,k(i))‖ ≤ ‖Ū1(V1,k(i)− V2,k(i))‖ (7)

where Ū1 is a known matrix.

Thus the dynamic model between the output PDF and the

RBF neural network weight vectors in the presence of the

actuator fault will be established as follows.

Vk(i+ 1) = AkVk(i) +Bkuk(i) +Gg(Vk(i)) +DFk(i)
√

γ(y, uk(i)) = Rk(y)Vk(i) + rn,k(y)h(Vk(i))
(8)

Similar to [10], the nonlinear dynamics of the model in (8)

is supposed to satisfy the following Lipschitz condition.

‖g (V1,k (i))− g (V2,k (i)) ‖ ≤ ‖Ū2(V1,k(i)− V2,k(i))‖ (9)

where Ū2 is a known matrix.

B. Fault Detection

In order to detect the fault based on the changes of PDFs,

the following nonlinear observer is considered:

x̂(k + 1) = Ax̂(k) +Bu(k) +Gg(x̂(k)) + Lǫ(k)

ǫ(t) =

∫ b

a

µ(y)(
√

γ(y, u(k, F ))−
√

γ̂(y, u(k)))dy

√

γ̂(y, u(k)) = R(y)Ex̂(k) + h(Ex̂(k))rn(y)

(10)

where x̂(k) ∈ Rn is the estimated state, L ∈ Rn×p is

the filter gain to be determined. Residual ǫ(k) is formulated

as an integral of the difference between the measured

PDFs and the estimated ones, where, µ(y) ∈ Rp×1 is a

pre-specified weighting vector.

C. Fault Diagnosis

Once the fault is detected, the fault value must be esti-

mated. For this purpose, the following observer is considered:

x̂(k + 1) = Ax̂(k) +Bu(k) +Gg(x̂(k)) + Lǫ(k) +DF̂ (k)
√

γ̂(y, u(k)) = R(y)Ex̂(k) + rn(y)h(Ex̂(k))

F̂ (k + 1) = −Υ1F̂ (k) + Υ2ǫ(k)
(11)

where F̂ (k) is the estimation of F (k). Υ1 > 0 and Υ2

are the learning operators to be determined together with L

by the diagnosis algorithm. Apart from fault detection and

diagnosis strategy, the controller design will be as follows.

D. Controller Design

A generalized PI controller with tuneable coefficients is

considered as adaptive controller in this work as follows

ξk(i) = ξk(i− 1) + Tsek(i− 1)

uk(i) = KP,k.ek(i) +KI,kξk(i) (12)

where ek(i) = Vg − Vk(i) represents the dynamical weight

tracking error, and Ts is the sampling time. Substituting (12)

in (8) yields the following closed-loop system for the weight

control loop with the kth batch:

Mk(i+1) = ĀkMk(i)+B̄kVg+Ḡg(Mk(i))+D̄Fk(i) (13)

where

Mk(i) =

[

Vk(i)
ξk(i)

]

, Āk =





Ak −BkKP,k BkKI,k

−TsI I





B̄k =





BkKP,k

TsI



 , Ḡ =





G 0

0 0



 , D̄ =





D

0





,
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g(Mk(i)) =





g(Vk(i))

0





Denote

Ãk =

[

Ak 0
−TsI I

]

, B̃k =

[

Bk

0

]

The following theorem represents the solvability conditions

of the general PI controller

Theorem 1. Within the kth batch, for the parameter λ, if

there exit matrices P > 0, and R satisfying the following

LMIs for any initial condition M(0) satisfying constraint

(5)

Ψ̃k =





















−Pk 0 0 0 0 NT
1

NT
2

0 −λ2I 0 0 0 ḠT 0
0 0 M6 ΥT

1
NT

3
D̄T 0

0 0 Υ1 I −ΥT
2

0 0
0 0 N3 −Υ2 N4 0 0
N1 Ḡ D̄ 0 0 −Pk 0
N2 0 0 0 0 0 −I





















< 0

(14)

and

2α̃‖Qab‖‖B̄kVg‖
2 ≤ λmin(Pk) (15)

where

N1 = ÃkPk + B̃kR,N2 = λŪ2Pk

N3 = −ΥT
2
Υ1, N4 = ΥT

2
Υ2

then, the closed loop system is stable with limk→∞ e (i) = 0,

and the controller parameters can be calculated by using

[

KP KI

]

= RP−1

Proof : For this purpose, the following Lyapunov function

is considered.

Φ3 (i) = MT
k (i)P−1Mk(i) + F̄T

k (i)F̄k(i)

+ λ2

i−1
∑

j=1

[

‖Ū2Mk(i)‖
2 − ‖g(Mk(i))‖

2
] (16)

where F̄ (k) = F (k)− F̂ (k)
It can be verfied that

∆Φ3 = Φ3(Mk(i+ 1), i+ 1)− Φ3(Mk(i), i)

= M̃T
k (i)Ψ̃1,kM̃k(i) + 2M̃k(i)Ñ

T
k P−1

k B̄kVg

+ V T
g B̄TP−1B̄Vg

(17)

where

Ψ̃1,k =













Ñk1 QT
1

QT
2

0 0
Q1 Q3 QT

4
0 0

Q2 Q4 Ñk,2 ΥT
1

−ΥT
1
Υ2

0 0 Υ1 I −ΥT
2

0 0 −ΥT
2
Υ1 −Υ2 ΥT

2
Υ2













Ñk = [ĀT
k , Ḡ

T
k , D̄

T
k , 0, 0]

Ñk,1 = ĀT
k P

−1

k Āk − P−1

k + λ2ŪT
2
Ū2

Ñk,2 = D̄T
k P

−1

k D̄k − I +ΥT
1
Υ1

Q1 = ḠTP−T
k Āk

Q2 = D̄T
k P

−T
k Āk

Q3 = ḠTP−1

k Ḡ− λ2I

Q4 = D̄T
k P

−T
k Ḡ

and

M̃T
k (i) = [MT

k (i), gT (Mk(i)), F̄
T
k ,∆FT (k), ǫ(k)]

By using the well-know Schur complement formula, (17)

can be as follows.

Ψ̃2,k =

















Q5 0 0 0 0 ĀT
k

0 −λ2I 0 0 0 ḠT

0 0 M6 ΥT
1

NT
3

D̄T

0 0 Υ1 I −ΥT
2

0
0 0 N3 −Υ2 N4 0
Āk Ḡ D̄ 0 0 −Pk

















< 0

(18)

where Q5 = −P−1

k + λ2ŪT
2
Ū2.

By pre-multiplying Ψ̃2,k by diag
(

PT
k , I, I, I, I, I

)

and post

multiplying it by diag (Pk, I, I, I, I, I), and applying the

well-know Schur complement formula, the condition for

stability will be as follows.

Ψ̃3,k





















−Pk 0 0 0 0 QT
6

QT
7

0 −λ2I 0 0 0 ḠT 0
0 0 M6 ΥT

1
NT

3
D̄T 0

0 0 Υ1 I −ΥT
2

0 0
0 0 N3 −Υ2 N4 0 0
Q6 Ḡ D̄ 0 0 −Pk 0
Q7 0 0 0 0 0 −I





















< 0

(19)

where Q6 = ĀkPk, Q7 = λŪ2Pk

By substituting matrices Ã and B̃ into Ψ̃3, Ψ̃ can be

obtained.

If (14) holds, a positive scalar α̃ exists so that Ψ̃ ≤ −α̃I .

Along with (13) it can be verified that

∆Φ3 ≤ −α̃‖M̃k‖
2 + 2‖M̃k‖‖ÑT

k P−1B̄Vg‖ (20)

+ ‖Vg‖
2‖B̄TP−1B̄‖

It is obvious that the right- hand side of inequality is a second

order degree polynomial with respect to ‖M̃k‖. Denote

σ̃ = V T
g B̄TP−1B̄Vg (21)

Thus, it can be shown that ∆Φ3 ≤ 0 holds if

|M̃k‖ ≥ α̃−1

(

‖ÑT
k P−1B̄Vg‖+

√

‖ÑT
k P−1B̄Vg‖2 + α̃σ̃

)

(22)
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which implies

‖M̃k‖ ≤ max
{

‖ ˜Mk(1)‖,

α̃−1

(

‖ÑT
k P−1B̄Vg‖+

√

‖ÑT
k P−1B̄Vg‖2 + α̃σ̃

)

}

(23)

This confirm that the closed-loop system is bounded and

internally stable.

Based on (13) and(16) it can be shown that

∆Φ3 = Φ3(Mk(i+ 1), i+ 1)− Φ3(Mk(i), i)

= M̃T
k (i)(ĀT

k P
−1

k S̄k − P−1

k )M̃k(i)

+ 2M̃k(i)Ñ
T
k P−1

k B̄kVg + V T
g B̄TP−1B̄Vg

(24)

It can be verified that (ĀT
k P

−1

k S̄k−P−1

k ) < −α̃−1I as long

as (ĀT
k P

−1

k S̄k−P−1

k ) < 0 is guaranteed by (14) Thus it can

be seen that

∆Φ3 ≤ −α̃−1‖M̃k(i)‖
2 + 2M̃k(i)Ñ

T
k P−1

k B̄kVg

+ V T
g B̄TP−1B̄Vg

≤ −α̃−1‖M̃k(i)‖
2 − (P

−1/2
k ÑT

k M̃k(i)

− P
−1/2
k B̄kVg)

T (P
−1/2
k ÑT

k M̃k(i)− P
−1/2
k B̄kVg)

+ 2V T
g ÑT

k P−1

k B̄kVg

≤ −α̃−1‖M̃k(i)‖
2 + 2λmax(P

−1)‖B̄kVg‖
2

(25)

Denote

β̃ = 2λmax(P
−1)‖B̄kVg‖

2

Then it can be shown that ∆Φ3 < 0 holds if

‖M̃k(i)‖
2 > α̃β̃

From the constraint (5) it can be seen that

V T
k (i)QabVk(i) < ‖Vk(i))‖

2‖Qab‖

≤ ‖M̃k(i)‖
2‖Qab‖

≤ α̃β̃‖Qab‖ ≤ 1

(26)

Thus, the constraint in (15) can be guaranteed by the

obtained results from (25) and (26) To discuss the system

tracking performance, suppose that ϕ̃1(i) and ϕ̃2(i) are

two trajectories of the nonlinear closed-loop system (13)

corresponding to fixed initial conditions and fault, and Vg

is the input. Denote the error between the two trajectories

χ(i) = ϕ̃1(i)− ϕ̃2(i) with χ(1) = 0. Then, the dynamic of

χ(i+ 1) can be presented as follows.

χ(i+ 1) = Ākχ(i) + Ḡ [g(ϕ̃1)− g(ϕ̃2)] (27)

The following Lyapunov function will be considered

Φ4 (χ(i), ϕ̃1(i), ϕ̃2(i), i) = χT (i)P−1χ(i) (28)

+λ2
∑i−1

j=1

[

‖Uχ(i)‖2 − ‖g(ϕ̃1(i))− g(ϕ̃2(i))‖
2
]

It can be verIfied that

∆Φ4 = χ̃T (i)Ψ̃4,kχ̃(i) < −α̃|χ̃(i)‖ (29)

where

χ̃(i) = [χT (i), g(ϕ̃1)− g(ϕ̃2)]

Ψ̃4,k =

[

ĀT
k P

−1

k Āk − P−1

k + λ2ŪT
2
Ū2 ĀT

k P
−1

k Ḡk

ḠT
k P

−T
k Āk ḠT

k P
−1

k Ḡk − λ2I

]

This means that the closed loop system is exponentially

stable around χ = 0 neighborhood. Thus, the tracking

performance of the system has been satisfied.

III. TUNING OF RADIAL BASIS FUNCTION

Similar to [9], the following P-type ILC law will be used to

tune the basis function parameters (RBF centres and widths)

between any two batches

µl,k = µl,k−1 + ΛµEk−1

σl,k = σl,k−1 + ΛσEk−1

(30)

where the performance indices of the (k − 1)th batch will

be as follows.

Ek−1 = [Jk−1(1), Jk−1(2), ...., Jk−1(m)]T

where m represents the total number of time instants within a

batch. Jk−1(i) is the performance at the ith sampling instant

of the (k − 1)th batch, it can be expressed as follows.

Jk−1(i) =
∫ b

a

(

√

γ (y, uk (i))−
√

g (y)

)2

dy

In addition, the learning parameters in (30) are defined as

Λµ = αµ[λ1, λ2, ..., λm]

Λσ = ασ[λ̄1, λ̄2, ..., λ̄m]
(31)

where λ, λ̄ are the learning elements, and αµ, ασ are the

learning rates to be determined.

IV. CONVERGENCE ANALYSIS

Similar to [9], the learning vectors in (31) should be

selected carefully to ensure the convergence of the ILC-based

tuning algorithm between batches. Therefore, the closed loop

performance should satisfy the following condition between

batches
Fk

Fk−1

=

∑m
i=1

Jk(i)
∑m

i=1
Jk−1(i)

≤ 1 (32)

where

Fk =

m
∑

i=1

Jk(i) (33)

where Fk is the measure of the overall closed loop perfor-

mance within the kth batch. Since Jk(i) is non-negative, it

can be verified that

∆Fk = Fk − Fk−1 ≤ 0 (34)

The conditions of convergence have been discussed in [5],

which can be summarized as follows:
m
∑

i=1

∫ b

a

[(

√

γk−1,i(y)−
√

g(y)

)

∆
√

γk−1,i(y)

]

dy ≤ 0

(35)
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Fig. 1. Desired output PDF
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Fig. 2. Fault and its estimation under the filter

together with

∆Rl,k−1(y) =
yj − µk−1

σ2

k−1

Rl,k−1(y)ΛµEk−1

+
(yj − µk−1)

2

σ3

k−1

Rl,k−1(y)ΛµEk−1

(36)

and

∆
√

γk−1,i(y) =
√

γk−1,i(y)−
√

γk−2,i(y)

=
n
∑

l=1

Vl(i)∆Rl,k−1(y)
(37)

where

∆Rl,k−1(y) = Rl,k−1(y)−Rl,k−2(y)

∆µk = µk − µk−1

∆σk = σk − σk−1

(38)

V. AN ILLUSTRATED EXAMPLE

For a stochastic system with non-Gaussian process, it is

supposed that the output PDF can be formulated by using

three-layer neural network with three radial basis activation

functions with the following initial conditions over its defi-

nition interval[0, 2].
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Fig. 3. 2D plot of measured and desired PDF, k=2

µ1 = 0.5, µ2 = 1.0, µ3 = 1.5

σ1 = σ2 = σ3 = 0.2

The weight vector behaves dynamically with the following

parameters:

A =

[

−0.45 0.03
0.1 −0.28

]

, B =

[

0.45 0.01
0.01 −0.86

]

,

G =

[

[0.02 0
0 0.01

]

, D = E =

[

1 0
0 1

]

The nonlinear function was chosen as follows.

g(V (t)) =

[

0
√

v2
1
+ v2

2

]

The initial value of the weight vector is set as V1(0) =
[0.001, 0.001]T , and the ILC learning rates are defined as

Λµ =





−7.8 0 0
0 −13.1 0
0 0 −16.9









0.0030× j

0.0015× j

0.0015× j





along with

Λσ =





−0.71 0 0
0 −0.71 0
0 0 −0.71









0.005× j

0.005× j

0.005× j





where j = 0, 1, ...., 20. In addition, the matrices U1 and U2

were chosen as follows.

U1 =

[

0.1 0
0 0.1

]

, U2 =

[

1 0
0 1

]

,

For simulation purposes, 200 uniformly distributed samples

of the output and 20 for the time samples were used. Also,

the RBF basis functions parameters of the desired output

PDF are as follows:

µg1 = 0.2, µg2 = 0.8, µg3 = 1.3

σg1 = σg2 = σg3 = 0.1

Moreover, the desired dynamical weights are set as Vg =
[0.09; 0.06]. With the above parameters, the 3-D plot of the

desired PDF shape is shown in Fig. 1. Assume that the

modelling error satisfies |ω(y, u(k), F )| ≤ 0.002. The bound

of medelling error satisfies δ̃ = 0.0008 for µ(y) = 1. It can

be compute that

Λ1 =

[

0.3010 0.0347
0.0347 0.3010

]

,Λ2 =
[

0.0001 0.0350
]

,

Λ3 = 0.3413

Also, it can be seen that

Γ1 =
[

0.0389 0.0348
]

,Γ2 = 0.4225

To demonstrate the effectiveness of the proposed algorithm,

the fault is chosen to be a constant signal as F (t) = 0.8,

and it is supposed to commence at T = 2s.

By applying the nonlinear fault isolation filter, the estimated

fault should track the real fault profile as close as possible.

Fig. 2 shows that such a filter can effectively diagnose the

actuator fault.
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Fig. 4. Control weight under FTC

The difference of the PDF tracking within the second batch

between the measured and desired PDF is shown in Fig. 3.

The parameters of controller in this batch are

KP =

[

−5522.4 −3534.0
7431.7 4453.3

]

,KI =

[

0.00394 0.00394
0.04860 0.04860

]

After the final batch(k = 10), the coefficients of PI controller

are as follows.

KP =

[

175.88 −275.59
−307.94 482.51

]

,KI =

[

0.1876 0.1876
−0.3285 −0.3285

]

As a result, the corresponding of the weight control loop

with the last batch of operation can be described in Fig. 4.

Fig. 4 clearly demonstrates the effect of the fault-tolerant

action on maintaining the correct value for the controlled

weights. Moreover, it reflects the effectiveness of LMI

feasbility results.

The 3D mesh plot of the output PDF in the last batch of

operation is shown in Fig. 5. In addition, the PDF tracking

performance within the last batch of operation is shown in

Fig. 6.
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Fig. 5. 3-D mesh plot of the measured output PDF after the fault happens
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Fig. 6. 2D plot of measured and desired PDF, k=10

Finally, the trend of the ILC performance function along

the batches implies the effectiveness of the proposed algo-

rithm is shown in Fig. 7
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Fig. 7. performance function of the ILC
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