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Abstract— A new approach of fault detection and diagnosis
(FDD) for general stochastic systems in discrete-time is studied.
Our work on this problem is motivated by the fact that
most of the nonlinear control laws are implemented as digital
controllers in reality. Different from the formulation of classical
FDD problem, it is supposed that the measured information
for the FDD is the probability density functions (PDFs) of the
system output rather than its measured value. A radial basis
function (RBF) neural network technique is proposed so that
the output PDFs can be formulated in terms of the dynamic
weighting of the RBFs neural network. Feasible criteria to
detect and diagnose the system fault are provided by using
linear matrix inequality (LMI) techniques. An illustrated ex-
ample is included to demonstrate the efficiency of the proposed
algorithm, and satisfactory results are obtained.

I. INTRODUCTION

Under the assumption that the random variables or the

noise in the stochastic system are subject to Gaussian

processes, the following approaches have been widely

applied in theoretical studies: minimum variance control [1],

whose purpose is minimizing the variations in the controlled

system outputs or tracking errors, linear optimal control

[2], linear quadratic martingale control [3], and stochastic

control for systems with Markovian jump parameters [4].

In all these methods, the targets are the mean and variance

of the output. However, this assumption may not hold in

some applications. For example, many variables in the

paper-making systems do not obey Gaussian distributions

[5], [6]. Therefore, a new measure of randomness, called

the PDF control, should be employed for general stochastic

systems with non-Gaussian variables [5]. In PDF control

problems, the control objective is to design a control signal

so that the PDF shape of the output variable follows a

desired distribution.

There are many stochastic systems in practice whose

outputs are the PDF of the system output[5], rather than the

actual output values. For such cases, the measured output

PDFs can be used as an output for the feedback control. Such

types of stochastic systems are called Stochastic Distribution

Control (SDC) systems [5]. Practical examples of SDC
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systems in industrial applications include: Molecular weight

distribution control [7], [8], combustion flame distribution

processes [9], [10], particle size distribution control in poly-

merisation and powder processing industries [11], [12], and

the wet-end of paper-making [5].

SDC was originally developed by Professor Hong Wang

in 1996, when he considered a number of challenging paper

machine modelling and control problems [5]. The process

and the control were presented in a PDF form. As such,

the purpose of the controller design was to obtain the PDF

of the controller so that the closed-loop PDF would follow

the pre-specified PDF. Since then, rapid developments have

been made and introduced in different control applications

[13]. The most exciting PDF control approaches are based

on the B-spline model. Four types of model have been

used in PDF control strategies, namely: The linear B-spline

model [14], the square-root B-spline model [15], the rational

B-spline model [16], and the rational square-root B-spline

model [17]. Moreover, multi-layer perception (MLP) neural

network models have been applied to the shape control for

the output PDFs [18]. Recently, a RBF neural network has

been used to approximate the output PDF of the system [19].

In this work, we have used RBFs instead of B-Splines which

help generalize the output PDF expression and overcome

the problems with B-spline-based functional approximations.

Many effective FDD strategies have been developed by

researchers in the last several decades to cover various types

of faulty systems [20], [21], [22]. For stochastic systems,

many significant schemes have been introduced and applied

to practical process successfully. In general, the following

approaches have been widely applied and developed for

this problem: filter-or observer-based approaches [22], [23],

identification-based approaches [24], and static approaches

based likelihood approaches [25]. For dynamic stochas-

tic systems, the filter based FDD approaches, have been

presented as an effective way for Gaussian variables in

stochastic systems. However, in many practical process, non-

Gaussian variables exist in many stochastic systems. In this

case, the filter-based FDD for non-Gaussian stochastic sys-

tems may be incapable. Therefore, for non-Gaussian stochas-

tic systems, a new FDD approach has been established by

using output distribution function for general stochastic sys-

tems in [22], where the dynamical system was supposed to

be a precise linear model and the design algorithm required

some technical conditions that were hard to verify. That work

was motivated by the retention system of the paper making

process, where the system output is replaced by the measured
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output PDFs to generate the residual of the filter [22]. The

residual signal is calculated via the use of either the weighted

integration or the integration of the square of the difference

between the measured and the estimated PDFs. This method

was the first attempt focussing on the application of the

PDF model. However, there was a criticism that the used

linear B-spline model cannot guarantee the output PDF of

the model is positive [23], [26]. Subsequently, an improved

design approach has been applied for the general stochastic

system by using a square root B-spline model and nonlinear

filter design [26].

II. PROBLEM FORMULATION

In this section, this approach is different from the results in

[26], a discrete-time RBF neural networks square root model

is introduced to approximate the output PDFs, and then

formulate a discrete-time nonlinear model for the weighting

vectors.

Consider u(k) ∈ Rr as the input of a discrete-time

dynamic stochastic system, y(k) ∈ [a, b] as the output, and

F (k) as the fault. At sample time k, y(k) can be described

by its PDF γ(y, u(k)), which is defined by

P (a ≤ y(k) < ξ) =
∫ ξ

a
γ(y, u(k), F (k))dy

where P (a ≤ y(k) < ξ, u(k)) denotes the probability of

output variable y lying between a and ξ when the control is

applied to the system.

It is assumed that the PDF is measurable and defined on a

known interval [a, b]. The well-known RBF neural networks

can be used to approximate the square root of the output

PDF as follows [5].

√

γ(y, u(k), F (k)) = R(y)V (k) + rn(y)h(V (k))

+ ω(y, u(k), F (k))
(1)

where γ(y, u(k), F (k)) is the output measured PDF.

R(y) = [r1(y), r2(y), ....., rn−1(y)]

V (k) = [v1(k), v2(k), ....., vn−1(k)]
T

Λ4 = ΛT
2
Λ2 − Λ3Λ1,Λ1 =

∫ b

a

RT (y)R(y)dy

Λ2 =

∫ b

a

RT (y)rn(y)dy,Λ3 =

∫ b

a

r2n(y)dy

(2)

and

h(V (k)) =
1

Λ3

(−Λ2V (k) +
√

V T (k)Λ4V (k)) (3)

F(k) is supposed to be an actuator fault, to be diagnosed and

compensated. Term ω(y, u(k), F (k)) represents the model

uncertainties or the error term on the approximation of PDFs.

In addition, ω(y, u(k), F (k)) must satisfy the following

condition [5]:

|ω(y, u(k), F (k))| ≤ δ

where δ > 0 is a known positive constant. In (1), R(y)
and V (k) are the activation function and weight element

corresponding to RBF neural network used for PDF mod-

elling, respectively. Similar to [27], [28], the RBF activation

functions are chosen as of Gaussian shapes and expressed as

follows.

rl(y) = exp

(

−
(yj − µl)

2

2σ2

l

)

(4)

where µl, σl are the centres and widths of the RBF ba-

sis functions, respectively. In (3), the nonlinear function

h(V (k)) should satisfy the following Lipschitz condition for

any V1(k), V2(k) and a known matrix U1.

‖h(V1(k))− h(V2(k))‖ ≤ ‖U1(V1(k)− V2(k))‖ (5)

A. Nonlinear Dynamic Weight Model

In many cases, the dynamic relation between the input and

the output PDFs can be transformed into dynamic relation

between the control input and the weights of the RBFs neural

network approximation to the output PDFs. In this section,

the following discrete-time nonlinear weighting model will

be used

x (k + 1) = Ax (k) +Bu (k) +Gg (x (k)) +DF (k)

V (k) = Ex (k) (6)

where x (k) ∈ Rn is the state vector, and u (k) ∈ Rr is

the measurable input vector. Moreover, A, B, G, D and E

represent the identified coefficient matrices of the weight

system with suitable dimensions. g (x (k)) is a nonlinear

vector function that stands for the nonlinear dynamics of

the model, and is supposed to satisfy g (0) = 0 , and the

following Lipschitz condition.

‖g (x1 (k))− g (x2 (k)) ‖ ≤ ‖U2(x1(k)− x2(k))‖ (7)

for any x1 (k) and x2 (k) , where U2 is a known matrix.

F (k) is an actuator fault to be estimated and rejected. With

model (6), equation (1) can be written as a nonlinear function

of x(k) as follows:
√

γ(y, u(k), F (k)) = R(y)Ex(k) + rn(y)h(Ex(k))

+ ω(y, u(k), F (k))
(8)

Different from the models considered in [26], [22], the

proposed discrete-time square root RBFNN model is more

practical and better suited to digital control.

III. FAULT DETECTION

In order to detect the fault based on the changes of PDFs,

the following nonlinear observer is considered:

x̂(k + 1) = Ax̂(k) +Bu(k) +Gg(x̂(k)) + Lǫ(k)

ǫ(t) =

∫ b

a

µ(y)(
√

γ(y, u(k, F ))−
√

γ̂(y, u(k)))dy

√

γ̂(y, u(k)) = R(y)Ex̂(k) + h(Ex̂(k))rn(y)

(9)

where x̂(k) ∈ Rn is the estimated state, L ∈ Rn×p is the

filter gain to be determined. Residual ǫ(k) is formulated as

an integral of the difference between the measured PDFs and

the estimated ones, where, µ(y) ∈ Rp×1 is a pre-specified

weighting vector.
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Denoting the estimation error as e(k) = x(k) − x̂(k), the

dynamic of the estimation error will be expressed as

e(k + 1) = (A− LΓ1)e(k) + [Gg(x(k))−Gg(x̂(k))]

− LΓ2[h(Ex(k))− h(Ex̂(k))]

− L∆(k) +DF (k) (10)

where

Γ1 =

∫ b

a

µ(y)R(y)Edy

Γ2 =

∫ b

a

µ(y)rn(y)dy

∆(k) =

∫ b

a

µ(y)ω(y, u(k))dy

(11)

It can be seen that

ǫ(k) = Γ1e(k) + Γ2[h(Ex(k))− h(Ex̂(k))] + ∆(k) (12)

From |ω(y, u(k), F )| ≤ δ , it can be verified that

‖∆(k)‖ = ‖

∫ b

a

µ(y)ω(y, u(k))dy‖ ≤ δ̃ (13)

where δ̃ = δ‖
∫ b

a
µ(y)dy‖.

Theorem 1. For the parameter λi > 0(i = 1, 2), if there

exit matrices P > 0, and R satisfying

Ψ =









M1 0 0 ATP − ΓT
1
RT

0 −λ2

2
I 0 GTP

0 0 −λ2

1
I ΓT

2
RT

PA−RΓ1 PG −RΓ2 −P









< 0

(14)

M1 = −P + λ2

2
UT
2
U2 + λ2

1
ETUT

1
U1E

then in the absence of fault, the error dynamic system

with gain L = P−1R is stable and the error satisfies

limk→∞ e (k) = 0

Proof : For this purpose, the following Lyapunov function

is considered.

Φ(k) = eT (k)Pe(k)

+ λ2

1

k−1
∑

i=1

[

‖U1Ee(i)‖2 − ‖h(Ex(i))− h(Ex̂(i)‖2
]

+ λ2

2

k−1
∑

i=1

[

‖U2e(i)‖
2 − ‖g(x(i))− g(x̂(i)‖2

]

(15)

In the absence of F (k), along with (10) it can be verfied that

∆Φ = Φ(k + 1)− Φ(k)

= eT (k + 1)Pe(k + 1)− eT (k)Pe(k)

+ λ2

1

[

‖U1Ee(k)‖2 − ‖h(Ex(k))− h(Ex̂(k)‖2
]

+ λ2

2

[

‖U2e(k)‖
2 − ‖g(x(k))− g(x̂(k)‖2

]

= ST
k Ψ1Sk + 2ST

k





−(A− LΓ1)
TPL

−GTPL

ΓT
2
LTPL



∆(k)

+ ∆T (k)LTPL∆(k) < 0

(16)

where

Ψ1 =





Ψ2 (A− LΓ1)
TPG −(A− LΓ1)

TPLΓ2

∗ −λ2

2
I +GTPG −GTPLΓ2

∗ ∗ −λ2

1
I + ΓT

2
LTPLΓ2





(17)

S
T

k =
[

eT (k), (g(x(k))− g(x̂(k))T , (h(Ex(k))− h(Ex̂(k))T
]

Ψ2 = (A− LΓ1)
T
P (A− LΓ1) +M1

Denote R = PL, it can be seen that

∆Φ = ST
k Ψ1Sk + 2ST

k





−(A− LΓ1)
TR

−GTR

ΓT
2
RTP−1R



∆(k)

+ ∆T (k)RTP−1R∆(k) < 0

(18)

By using the Schur complement formula, (17) can be further

reduced to

Ψ5 =

[

Ψ3 ΨT
4

Ψ4 −P

]

< 0 (19)

where

Ψ3 =





−P + λ2

2
UT
2
U2 + λ2

1
ETUT

1
U1E 0 0

∗ −λ2

2
I 0

∗ ∗ −λ2

1
I





(20)

and

Ψ4 =
[

PA−RΓ1 PG −RΓ2

]

(21)

which is equivalent to (14). If (14) holds, a positive scalar

exists ̺ so that Ψ ≤ −̺I . Thus, it can be seen that

∆Φ ≤ −̺‖Sk‖
2 − 2‖ÃTR‖‖∆(k)‖‖Sk‖

+ ‖∆(k)‖2‖RTP−1R‖

≤ −̺‖Sk‖
2 − 2δ̃‖ÃTR‖‖Sk‖+ δ̃2‖RTP−1R‖

(22)

where

Ã =
[

A− LΓ1 PG −RΓ2

]

(23)

it can be shown that

‖Sk‖ ≥ δ̺̃−1

(

∥

∥

∥
ÃTR

∥

∥

∥
+

√

∥

∥

∥
ÃTR

∥

∥

∥

2

+ ̺ ‖RTP−1R‖

)

(24)

which implies

‖Sk‖ ≤ max
{

‖Sk(1)‖, δ̺̃
−1

(∥

∥

∥
ÃTR

∥

∥

∥

+

√

∥

∥

∥
ÃTR

∥

∥

∥

2

+ ̺ ‖RTP−1R‖

)

(26)

This means that the error system in (10) is asymptotically sta-

ble under Ψ < 0. Because limk→∞ e (k) = 0, equations (5)

and (7) guarantee that limk→∞ (h(Ex(k))− h(Ex̂(k))) = 0
and limk→∞ (g(x(k))− g(x̂(k))) = 0, which implies that

limk→∞ ∆Φ(k) = 0.
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IV. FAULT DIAGNOSIS

Once the fault is detected, the fault value must be esti-

mated. For this purpose, the following observer is considered:

x̂(k + 1) = Ax̂(k) +Bu(k) +Gg(x̂(k)) + Lǫ(k) +DF̂ (k)
√

γ̂(y, u(k)) = R(y)Ex̂(k) + rn(y)h(Ex̂(k))

F̂ (k + 1) = −Υ1F̂ (k) + Υ2ǫ(k)
(27)

where F̂ (k) is the estimation of F (k). Υ1 > 0 and Υ2 are the

learning operators to be determined together with L by the

diagnosis algorithm in (27). Denoting F̄ (k) = F (k)− F̂ (k)
and e(k) = x(k)−x̂(k). The dynamic of the estimation error

will be expressed as

e(k + 1) = (A− LΓ1)e(k) + [Gg(x(k))−Gg(x̂(k))]

− LΓ2[h(Ex(k))− h(Ex̂(k))]− L∆(k) +DF̄ (k)
(28)

and

F̄ (k + 1) = F (k + 1)− F̂ (k − 1)

= F (k + 1) + Υ1F̂ (k)−Υ2ǫ(k)

= F (k + 1)−Υ1F (k) + Υ1F̄ (k)−Υ2ǫ(k)

= ∆F (k) + Υ1F̄ (k)−Υ2Γ1e(k)−Υ2∆(k)

−Υ2Γ2[h(Ex(k))− h(Ex̂(k))]
(29)

where ∆F (k) = F (k + 1)−Υ1F (k)

Theorem 2. For the parameter λi > 0(i = 1, 2), if there

exit matrices P > 0, R, and Υi > 0(i = 1, 2) satisfying

Ψ̄ =













Ψ̄1 0 M2 M3 (A− LΓ1)
TP

∗ −λ2

2
I 0 0 GTP

∗ ∗ M4 M5 ΓT
2
RT

∗ ∗ ∗ M6 DTP

∗ ∗ ∗ ∗ −P













< 0 (30)

where

Ψ̄1 = −P + λ2

2
UT
2
U2 + λ2

1
ETUT

1
U1E + ΓT

1
ΥT

2
Υ2Γ1

M2 = ΓT
1
ΥT

2
Υ2Γ2,M3 = ΓT

1
ΥT

2
Υ1

M4 = −λ2

1
I + ΓT

2
ΥT

2
Υ2Γ2,M5 = −ΓT

2
ΥT

2
Υ1

M6 = −I +ΥT
1
Υ1

then the filtering gain L = P−1R, the error dynamic system
is stable and the error satisfies

‖S̄k‖ ≤ max

{

‖S̄k(1)‖, ̺
−1

1

(

‖Ξ1‖+

√

‖Ξ1‖
2 + ̺1 ‖Ξ2‖

)}

(31)

Proof : For this purpose, the following Lyapunov function

is considered.

Φ1 (k) = eT (k)Pe(k) + F̄T (k)F̄ (k)

λ2

1

k−1
∑

i=1

[

‖U1Ee(i)‖2 − ‖h(Ex(i))− h(Ex̂(i)‖2
]

+ λ2

2

k−1
∑

i=1

[

‖U2e(i)‖
2 − ‖g(x(i))− g(x̂(i)‖2

]

(32)

It can be verfied that

∆Φ1 = Φ1(k + 1)− Φ1(k)

= eT (k + 1)Pe(k + 1) + F̄T (k + 1)F̄ (k + 1)

− eT (k)Pe(k)− F̄T (k)F̄ (k)

+ λ2

1

[

‖U1Ee(k)‖2 − ‖h(Ex(k))− h(Ex̂(k)‖2
]

+ λ2

2

[

‖U2e(k)‖
2 − ‖g(x(k))− g(x̂(k)‖2

]

= S̄T
k Ψ̄2S̄k +∆FT (k)∆F (k)− 2∆FT (k)Υ2∆(k)

+ ∆T (k)
(

LTPL+ΥT
2
Υ2

)

∆(k)

− 2S̄T
k























(A− LΓ1)
TPL

GTPL

−ΓT
2
LTPL

DTPL









+









−ΓT
1
ΥT

2

0
−ΓT

2
ΥT

2

ΥT
1









Υ2















∆(k)

+ 2S̄T
k









−ΓT
1
ΥT

2

0
−ΓT

2
ΥT

2

ΥT
1









∆F (k) < 0

(33)

where

Ψ̄2 =









Ψ̄3 (A− LΓ1)
TPG Ψ̄4 Ψ̄5

∗ −λ2

2
I +GTPG −GTPLΓ2 GTPD

∗ ∗ Ψ̄6 N1

∗ ∗ ∗ N2









(34)

N1 = −ΓT
2
LTPD −M5

N2 = DTPD +M6

Ψ̄3 = (A− LΓ1)
TP (A− LΓ1)− P + λ2

2
UT
2
U2

+ λ2

1
ETUT

1
U1E + ΓT

1
ΥT

2
Υ2Γ1

Ψ̄4 = −(A− LΓ1)
TPLΓ2 + ΓT

1
ΥT

2
Υ2Γ2

Ψ̄5 = (A− LΓ1)
TPD − ΓT

1
ΥT

2
Υ1

Ψ̄6 = −λ2

1
I + ΓT

2
LTPLΓ2 + ΓT

2
ΥT

2
Υ2Γ2

Denote R = PL, it can be seen that

∆Φ1 = S̄T
k Ψ̄2S̄k +∆FT (k)∆F (k)− 2∆FT (k)Υ2∆(k)

+ ∆T (k)
(

RTP−1R+ΥT
2
Υ2

)

∆(k)

− 2S̄T
k























(A− LΓ1)
TR

GTR

−ΓT
2
LTR

DTR









+









−ΓT
1
ΥT

2

0
−ΓT

2
ΥT

2

ΥT
1









Υ2















∆(k)

+ 2S̄T
k









−ΓT
1
ΥT

2

0
−ΓT

2
ΥT

2

ΥT
1









∆F (k) < 0

(35)

By using the Schur complement formula, (34) can be further

reduced to

Ψ̄9 =

[

Ψ̄7 Ψ̄T
7

Ψ̄8 −P

]

< 0 (36)
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Fig. 1. Three basis functions for approximating the output PDF

where

Ψ̄7 =









Ψ̄1 0 ΓT
1
ΥT

2
Υ2Γ2 ΓT

1
ΥT

2
Υ1

∗ −λ2

2
I 0 0

∗ ∗ −λ2

1
I + ΓT

2
ΥT

2
Υ2Γ2 −ΓT

2
ΥT

2
Υ1

∗ ∗ ∗ −I +ΥT
1
Υ1









(37)

and

Ψ̄8 =
[

PA−RΓ1 PG −RΓ2 PD
]

(38)

which is equilevent to (30). If (30) holds, a positive scalar
exists ̺1 so that Ψ̄ ≤ −̺1I . Thus, it can be seen that

∆Φ1 ≤ −̺1‖Sk‖
2 − 2

{

‖ÃT
R‖+ ‖T̃T ‖‖Υ2‖

}

‖∆(k)‖‖Sk‖

− 2‖∆F (k)‖‖ Υ2‖‖∆(k)‖+ 2‖T̃T ‖‖∆F (k)‖‖Sk‖

+ ‖∆(k)‖2
{

‖RT
P

−1
R‖+ ‖Υ2‖

2

}

+ ‖∆F (k)‖2

≤ −̺‖Sk‖
2 − 2‖Ξ1‖‖Sk‖+ Ξ2

(39)

where

Ã =
[

A− LΓ1 PG −RΓ2 PD
]

T̃ =
[

−Υ2Γ1 0 −Υ2Γ2 Υ2

]

Ξ1 = δ̃
{

‖ÃTR‖+ ‖T̃T ‖‖Υ2‖
}

− ‖T̃T ‖‖∆F (k)‖

and

Ξ2 = ‖∆F (k)‖2 − 2‖∆F (k)‖‖ Υ2‖δ̃

+ δ̃2
{

‖RTP−1R‖+ ‖Υ2‖
2
}

it can be shown that

‖S̄k‖ ≥ ̺−1

1

(

‖Ξ1‖+

√

‖Ξ1‖
2
+ ̺1 ‖Ξ2‖

)

(40)

which implies

‖S̄k‖ ≤ max

{

‖S̄k(1)‖, ̺
−1

1

(

‖Ξ1‖+

√

‖Ξ1‖
2 + ̺1 ‖Ξ2‖

)}

(41)

This means that the error system in (28) is asymptotically

stable under Ψ̄ < 0.

V. AN ILLUSTRATED EXAMPLE

In this section, a simulation study of the proposed method

will be described. First, the system model and RBF neural

network components are introduced, and then the perfor-

mance of the FDD will be investigated.
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Fig. 3. Fault and its estimation under the filter

For a stochastic system with non-Gaussian process, it is

supposed that the output PDF can be formulated by using

three-layer neural network with three radial basis activation

functions as shown in Fig. 1 with the following initial

conditions over its definition interval[a, b].

y ∈ [0, 2],

µ1 = 0.5, µ2 = 1.0, µ3 = 1.5

σ1 = σ2 = σ3 = 0.2

This would mean that the output PDF of the stochastic

system is described as.
√

γ(y, u(k), F (k)) = R(y)V (k) + rn(y)h(V (k))

+ ω(y, u(k), F (k))
(42)

where

R(y) = [r1(y), r2(y)]

and

V (t) = [v1(t), v2]
T

The weight vector behaves dynamically as described in

(6) with the following parameters:

A =

[

−0.45 0.03
0.1 −0.28

]

, B =

[

0.45 0.01
0.01 −0.86

]

,

G =

[

[0.02 0
0 0.01

]

, D = E =

[

1 0
0 1

]

The nonlinear function was chosen as follows.

g(V (t)) =

[

0
√

v2
1
+ v2

2

]

The initial value of the weight vector is set as V1(0) =
[0.001, 0.001]T . In addition, the matrices U1 and U2 were

chosen as follows.
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U1 =

[

0.1 0
0 0.1

]

, U2 =

[

1 0
0 1

]

,

Assume that the modelling error satisfies

|ω(y, u(k), F )| ≤ 0.002. The bound of medelling error

satisfies δ̃ = 0.0008 for µ(y) = 1. From (2), it can be

compute that

Λ1 =

[

0.3010 0.0347
0.0347 0.3010

]

,Λ2 =
[

0.0001 0.0350
]

,

Λ3 = 0.3413

Also, from (11), it can be seen that

Γ1 =
[

0.0389 0.0348
]

,Γ2 = 0.4225

To demonstrate the effectiveness of the proposed algorithm,

the fault is chosen to be a constant signal as F (t) = 0.8,

and it is supposed to commence at T = 2s.

Firstly, we consider the fault detection problem. Using The-

orem 1 with λ1 = λ2 = 1 it can be calculated that

P =

[

1.5941 0.1479
0.1479 95.5499

]

, R =

[

14.9186
50.1447

]

, L =

[

9.3113
0.5104

]

Next, the fault diagnosis problem is considered for the above

system and fault. Using Theorem 2, the following results can

be obtained:

P =

[

2.272 −0.023
−0.023 2.305

]

, R =

[

−3.956
0.920

]

, L =

[

−1.737
0.382

]

Υ1 = 0.97,Υ2 = 1.3

By applying the nonlinear fault isolation filter, Fig. 3 shows

that such a filter can effectively diagnose the actuator fault.
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