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Abstract—A new differential game which admits a “closed 
form” solution is analyzed. In this paper guidance laws are 
developed to optimally position a relay Micro-UAV (MAV) to 
provide an operator at the base with real-time Intelligence, 
Surveillance, and Reconnaissance (ISR) by relaying 
communication and video signals when the rover MAV 
performing the ISR mission is out of radio contact range with 
the base. The ISR system is comprised of two MAVs, the Relay 
and the Rover, and a Base. The Relay strives to minimize the 
radio frequency (RF) power required for maintaining 
communications, while the Rover performs the ISR mission, 
which may maximize the required RF power. The optimal 
control of the Relay MAV entails the solution of a differential 
game.  

I. INTRODUCTION 

nmanned Aerial Vehicles (UAVs) are prevalent in 
current military operations. UAVs vary in size and 

mission. While some UAVs are the same size as aircraft, 
others are man-portable and can be carried in a backpack. 
These man-portable Micro-UAVs (MAVs) utilized by small 
tactical units are not supported by satellite communications 
and use radio frequency (RF) modems. High frequency radio 
communications are range limited. The MAVs considered in 
this paper are utilized for Intelligence, Surveillance and 
Reconnaissance (ISR) and will therefore be referred to as 
ISR MAVs or as Rovers [1]. The Base may lose 
communication (and controllability) with deployed ISR 
MAVs/Rovers if the Rovers, in the course of performing 
their mission, stray far away. In this paper guidance laws are 
developed to optimally position an autonomous  Relay MAV 
to provide the operator at the Base with real-time ISR by 
relaying communication and sensor data while allowing for 
extended range Rover operations. The Relay-Rover 
interaction is modeled as a differential game whose solution 
yields the optimal Relay strategy. 
 

II. ANALYSIS 

It is assumed that the rElay (E) MAV is cognizant of the 
rOver’s (O) instantaneous position and, obviously, own ship 
position. As far as the RF power requirements are 
concerned, this is determined by their distance from the Base 
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(B) and the Rover-Relay separation. Thus, the state is the 
distance rE of the Relay from the Base, the distance rO of the 
Rover to the Base, and the angle  included between the 
radials from the Base to the Relay and the Rover. This angle 
is measured clockwise. The MAVs have simple motion. The 
control for each MAV is its relative heading angle measured 
clock-wise from its radial from the Base. Figure 1 provides a 
visualization of the kinematics. The differential equations of 
motion are 
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T is the planning horizon utilized by the control algorithm. 

    The cost functional is indicative of the RF power required 
and is the time averaged sum of the squares of the distance 
between the Relay and the Rover and between the Relay and 
the Base:  

 2 2

0
( ) ( )

T
EO t BE t dt y  

The points E, B and O in 
2  represent the positions of the 

Relay, Base and Rover respectively. These three points form 
a triangle which can be utilized to calculate the distance 

EO  by the law of cosines. 
2 2 2( ) 2 cosE O E OEO t r r r r     

Hence the cost functional is 
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    The objective is to minimize the average RF power 
required for maintaining communications. The control 
available to accomplish this task is limited to setting the 
course angle  of the Relay, while the Rover performs his 
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ISR mission: in a worst case scenario, one might assume that 
the independently controlled Rover is working to maximize 
the cost functional. The optimization problem is then a 
differential game [2] where the Relay’s control is its relative 
heading  and the Rover’s control is its relative heading . 

The system is analyzed by first non-dimensionalizing the 
states and the parameters. The velocities are scaled by the 
velocity of the Relay (VE), yielding a non-dimensional speed 
ratio . The distances are scaled by d, where d is a 
characteristic length, say

Ed V T . Set 

: ,  : ,  t : ,  T :OE E E
E O

rr V V
r r t T

d d d d
       and the speed 

ratio O

E

V

V
  . Using these non-dimensional variables and 

parameters, the two sided optimization problem now 
becomes 
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The problem parameters are the speed ratio 0   and the 
planning horizon 0T  . 

Since the optimal control problem only makes sense if the 
rOver is closer to the rElay than to the Base (B), the 
following must hold.  

2 cosE Or r  . 

Thus, since the problem is symmetric about the 0  axis, 
the state space is  
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To solve the differential game, the Hamiltonian is 
introduced in eq. (4), 
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where ,   and 
E Or r     are the system co-states. 

According to the Pontryagin Maximum Principle (PMP) 
[3], the differential equations for the co-states are 

2

2

sin
4 2 cos   ,  ( ) 0

sin
2 2 cos ,  ( ) 0

2 sin                           ,  ( ) 0

E E

O O

r E O r
E

r O E r
O

E O

r r T
r

r r T
r

r r T





 

   

    

  

   

   

 













         

(5) 

and the optimality condition is given by max min

H , namely 

the derivatives of H in   and   vanish. 

This yields 

tan *
Er Er



 

                                   

(6) 

and  

tan *
Or Or





                                   

(7)

                     The second-order sufficiency condition for  is 
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and inserting the expression for * from (6) yields 
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and inserting the expression for * from (7) yields 
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The expressions for * and * given in Equations (6) and 
(7) can be used to rewrite the state and co-state equations 
only in terms of the states and co-states. A nonlinear Two-
Point Boundary Value Problem (TPBVP) on the interval t = 
[0, T] is obtained: 
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A. The End-Game 

…Isaac’s method entails the retrograde integration of eqs. 
(10), which obviates the need to solve the TPBVP. 
However, the controls do not feature in the integrant of the 
cost functional (2) and at time t=T the co-states vanish. It 
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is therefore impossible at time T to calculate the “initial” 
(terminal) controls by applying the PMP and maximizing 
and minimizing the Hamiltonian (4); obviously, equations 

(10) don’t apply at time T because 2 2 2 0.
E

r E
r     This is 

an interesting new wrinkle. The end game requires special 
attention. 
Since the end state is free - that’s why the co-states vanish 

at t=T – the rElay’s and rOver’s optimal strategies at t=T are 
myopic: according to the PMP, and also from first 
principles, the rElay would want the integrand in the cost 
functional  
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to be minimized. Similarly, the rOver would want the 
integrand in the cost functional to be maximized. Now, since 
the control variables   and  do not directly feature in L, 

the rElay minimizes and the rOver maximizes the temporal 
derivative of L, evaluated at t=T: 
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The rElay and rOver solve the respective static optimizations 
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Concerning eq. (11): minimizing in   the derivative of 

the integrand at time t=T yields the rElay’s optimal terminal 
control 
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An inspection of Fig. 1 tells us that in the end game, at 
time t=T, the rElay heads toward the midpoint M of the 

segment .BO  This, provided E is not already at the midpoint 
M. 

Concerning eq. (12): maximizing in   the derivative of 
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An inspection of Fig. 1 tells us that in the end game, at 
time t=T, the rOver runs away from the rElay. The players’ 

strategies in the end game are shown in Figure 2. 

III. END GAME IN DIFFERENTIAL GAME 

The end game strategies shown in Fig. 2 don’t apply when 
1

2E Or r  and 0  , namely, they don’t apply at point M-

referred to as the “sweet spot”; we cannot start the backward 
integration at M.  

In the differential game there is a line of “sweet spots”,
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Fig. 3.  End State’s Manifold 

 
Fig. 2.  The end game 
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“sweet spot” on the said (red) line is encapsulated in a small 
hemispherical terminal manifold, as shown in Fig.3  

We back off from “sweet spots” and the retrograde 
integration of the characteristics equations is initiated from 

end states  ,  ,
T ToE Tr r   on a hemispherical manifold, as 

shown in Fig. 3, where 
 T sin    
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1
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1
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 reside on a small hemispherical terminal 

manifold, as shown in Fig. 4, where the state space of the 
differential game is illustrated.  

Without loss of generality we confine our attention to 
1

Tor  . The family of optimal trajectories is thus 
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2
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integration stops when the boundary of the state space is 
reached and 2E or r cos . 

The optimal control of the rElay at t=T is given by the 
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Similarly, the optimal control of the rOver at t=T given by 
the solution of the end game is  
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provided that the end state is not 
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is the case, from first principles we conclude that the rOver’s 
control  * 0.T 

 
Thus, having backed off from the “sweet 

spot”, one considers the terminal states on the small 
hemisphere which encapsulates the “sweet spot” shown in 
Fig. 3. The end states on the small hemisphere around the 
“sweet spot” are parameterized as follows.      
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The optimal controls at t=T for end states on the 
hemispherical terminal manifold are obtained by inserting 
eqs. (15) into the terminal control eqs. (13) and (14). After 
that first step, one integrates eqs. (10) in retrograde fashion. 
    The complete solution of the one sided, simpler, optimal 
control problem when the rOver is stationary is shown in 
Fig. 5. Note the small semicircular terminal manifold 
centered at the “sweet spot” M. 
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Fig. 5.  The optimal flow field when the rOver is stationary 

 
 

Fig. 4.  State Space 
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IV. NUMERICAL RESULTS 

    Guided by the suboptimal solution and the solution of the 
one – sided optimal control problem, the differential game is 
solved using Isaacs method [2], namely, the retrograde 
integration of the characteristics’ equations (10), as 
discussed in section II and III. In the figures below, the 
spatial results are shown. The following numerical results 
show the solution of the differential game where 

0 0 0 60.25,  1,  .5,  1 and .E OT r r        

The following numerical results show the solution of the 
min-max problem where 

0 0 3.49,  1,  1 and .OT r         

Optimal trajectories for additional scenarios are illustrated in 
Figures 8 and 9.  The point is that although initially the 
relay, rover and base are collinear and the rover is between 
the relay and the base, the engagement is not linear.  The 
rover breaks out, the relay goes around, and the optimal 
trajectories are curved.   

V. CONCLUSIONS 

This paper develops optimal guidance laws for a Relay 
MAV in support of extended range ISR. The algorithm is 
based upon the solution of a min-max optimization problem, 

namely, the solution of the differential game, which 
represents a worst case scenario. Heuristic Relay guidance 
strategies are also provided. These are derived using a 
geometry based (sub)optimality principle, and also the 
solution of the one-sided Relay optimal control problem, 
where the Rover is considered stationary. Both the heuristic 
method and the solution of the one-sided optimal control 
problem shown in Fig. 5 provide corroborating results which 
were then employed to gain insight into the solution of the 
differential game. The optimal control and differential 
game’s solution exhibits interesting behavior: the optimal 
flow field namely the optimal trajectories will converge to 

the family of end states 1
,

2E Or r 0  . The latter is a 

singular trajectory, provided the speed ratio 2.   
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Fig. 8.  Optimal trajectories of Rover and Relay.  
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Fig. 6.  Spatial Results for 
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APPENDIX 

   Geometric solution of the one-sided optimal control 
problem  

The optimal strategy of the rElay is to point toward the 
midpoint M of the Base-rOver segment. This can be deduced 
from the following elementary Euclidean geometry result. 

It is well known that the locus of all points such that the 
sum of the distances from two fixed points is constant, is an 
ellipse. Thus, the following is of some interest [4]. 

Theorem 1 The Locus of all points such that the sum of 
the squares of the distances from two fixed points is 
constant, is a circle centered at the midpoint of the segment 
formed by the two fixed points. The radius of this circle is 

2 2R d f   
where the sum of the squares of the distances is 2d2 and the 
distance between the fixed points is 2f; obviously, d f . 

Proof: 
Let the fixed points F1 and F2 be on the x-axis (F1 = (f, 0), 

F2 = (-f, 0)) as shown in the figure below. 

 
The sum of the squares of the distances is calculated as 

2 2 2 2 2

2 2 2 2

2 2 2 2

2 ( ) ( )

2 2 2

  

2

d f x y f x y

f x y

x y d f

d

     

  

   

 

This is the equation of a circle centered at the origin, 
whose radius is 

2 2R d f   

  ⁪ 
This result appeared in [5]. 
Remark: The loci of constant costs, 2d2, are concentric 

circles where the minimum cost is found at the midpoint of 
the line formed by F1 and F2, where d = f. 

Extension: The Locus of all points such that the weighted 
sum of the squares of the distances from two fixed points is 
constant, is a circle centered on the segment formed by the 

two fixed points and is at a distance of (1 – 2)f from this 
segment’s midpoint. The radius of this circle is 

2 24 (1 )R d f     
where d2 is the specified weighted sum of the squares of 

the distances, the distance between the fixed points is 2f; and 
the weight is ; if  < 0 or  > 1 this is true 0d  , and if 

0 1  , 2 (1 )d f    . Note: When the weight  = ½, 

need d f . 

Proof: The weighted sum of the squares of the distances 
is calculated as 

 

2 2 2 2 2

2 2 2 2

2 2

2 2 2

2 2 2 2 2

( ) (1 ) ( )

2 (1 )

(1 ) 2(1 ) (1 )

2 (1 2 )

(1 2 ) (1 2 ) .

d f x y f x y

f x fx y f

x fx y

f x y fx

x f f y f

 

    

  



 

            
     

     

    

      

 

 2 2 2 2(1 2 ) 4 (1 )x f y d f        
 

 
The circular shape of the isocost surfaces is conducive to 

the rElay heading toward the center, namely, point M.
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Fig. 10.  Schematic of Fixed Points Showing Isocost Circle 
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