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Abstract— This paper describes an efficient discretization
approach for nonlinear continuous-time systems. A Carleman
linearization approach is used to evaluate the exact coefficients
of the Taylor-Lie expansion of the dynamics of the system. The
resulting discretization scheme is used to build a discrete-time
observer that displays good performance. The paper shows the
advantages of using an integrated discretization - observation
approach for large discretization intervals.

I. INTRODUCTION

State estimation for continuous-time systems when only

discrete-time measurements are available is a problem of

the utmost importance in many applications. The problem is

substantial when the discretization interval is large enough

to prevent the use of observers for continuous-time sys-

tems. This happens frequently in applications fields such

as Medicine, Biology and Economy. The most widely used

approach to deal with this problem is to build an approximate

discrete version of the system which is used to build a

discrete-time observer. In this paper we adopt an integrated

discretization-observer method, where the observer design is

based on the structure of the discretized system.

Discretization methods for continuous-time systems have

been widely investigated. Classical numerical techniques for

the integration of nonlinear ODEs such as Euler, Runge-

Kutta, etc are accurate only for very small values of the

discretization interval. Approaches that generalize the notion

of the convolution integral and that aim, in principle, at devel-

oping a nonlinear analogue of the discretization approach for

linear systems have been presented in [19], [20]. In presence

of the zero-order hold (ZOH) element the continuous-time

system becomes autonomous over the sampling interval, and

this enables the use of an immediate sampled representation

of the original system within the context of the Taylor-Lie

series theory [11], [14], [15]. The use of higher-order terms

of the Taylor-Lie series makes the method very accurate,

but the algorithms presented so far for the derivation of the

exact expression of the Taylor coefficients of the discretized

system are quite complicated (see for example [12]). Another

approach to the discretization problem makes use of the

Carleman linearization method, where the nonlinear system

is approximated by a linear system with an extended state

containing the vector of the original state variables together

with its Kronecker powers. This method is used for example
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Campus Bio-Medico di Roma, A. Germani is also with Dipartimento di
Ingegneria Elettrica e dell’Informazione, Università degli Studi dell’Aquila,
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in [24], that uses a Carleman linearization with a fixed

starting point. The drawback of this approach is that the

system size increases very rapidly with the degree of desired

accuracy.

Our approach is also based on a Carleman linearization,

which is however used to derive the coefficients of the Taylor

approximation in a simple way. The original system size is

then preserved.

Many papers discuss the extension to discrete-time sys-

tems of observer design techniques devised and developed

for continuous time systems. An approach widely inves-

tigated is to find a nonlinear change of coordinates that

transform the system into some form suitable for observer

design using linear methodologies [1], [16], [25], [26].

Another popular approach is to design the observer in the

original coordinates and to use iterative algorithm, typically

inspired by the Newton method, that asymptotically solve

suitably defined observability maps [7], [8], [10], [21]. The

use of the Extended Kalman Filter as a local observer

for noise-free systems and its convergence properties have

been investigated in [3], [4], [22], [23]. In [9] the use

of the polynomial approximations of nonlinear discrete-

time systems for solving the observation problem has been

investigated, and conditions for the exponential convergence

of the Polynomial Extended Kalman Filter, when used as

an observer, are studied. Recently, hybrid approaches have

been proposed for certain classes of systems [2], [13]. In

the hybrid approach a continuous-time nonlinear observer is

coupled with an inter-sample output predictor. Clearly, the

method provides a continuous-time observer.

In this paper we use a variant of the Newton approach

of [7], [8], which is however integrated in the discretization

scheme to produce a simpler and efficient observer design.

II. DISCRETIZATION OF NONLINEAR SYSTEMS

The discretization approach that we use in this paper is

known as Carleman linearization [17], and it consists of

building an infinite dimensional linear system equivalent to

the original nonlinear one. In the scheme that we propose

here, the linear system is solved exactly and the solution is

truncated at the approximation chosen. It turns out that the

terms of the truncated approximation correspond to those of

the Taylor expansion of the solution of the nonlinear differ-

ential equation. The scheme provides an efficient recursive

procedure for the computation of the terms of the Taylor

series of the solution, which is amenable of easy evaluation

by means of sparse matrices.
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Let us consider the continuous-time nonlinear system

ẋ(t) =f (x(t), u(t))

y(t) =h (x(t)) ,
(1)

where f : IRn × IRp → IRn and h : IRn → IR are analytic

functions in all compact sets of IRn. Given a discretization

interval ∆, we assume u(t) to be constant in [k∆, (k+1)∆).
The symbol ⊗ denotes the Kronecker matrix product, the no-

tation A[i] is used for the Kronecker power of matrix A (that

is A⊗A⊗· · ·⊗A, repeated i times). The standard Jacobian

of f can be formally written as ∇x ⊗ f , where ∇x denotes

the operator [∂/∂x1 . . . ∂/∂xn]. Higher-order Jacobians of f

can be expressed as ∇
[i]
x ⊗ f = ∇x ⊗

(

∇
[i−1]
x ⊗ f

)

.

In the time interval [k∆, (k + 1)∆) u(t) is constant and

system (1) is autonomous,

ẋ(t) = f (x(t), u(k∆)) , t ∈ [k∆, (k + 1)∆). (2)

In this time interval we define the function ϕk(t) = x(t) −
x(k∆), such that ϕk(k∆) = 0, x((k + 1)∆) = x(k∆) +
ϕk((k+ 1)∆), and ϕ̇k(t) = ẋ(t). Under standard analiticity

hypothesis, the Taylor expansion of ϕ̇k(t) yields

ϕ̇k(t) =

∞
∑

i=0

∇[i] ⊗ f(x)

i!

∣

∣

∣

x=x(k∆)
ϕk

[i](t)

=
∞
∑

i=0

A1
i (x(k∆))ϕk

[i](t),

(3)

where A1
0(x) = f(x, u), A1

1(x) is the standard Jacobian of

f(x, u), and A1
j (x) ∈ IRn×nj

. Clearly, even if the A1
j (x)

depend only on x within each discretization interval, in

general they depend also on the value of u(k∆). This has

been omitted in the notation for the sake of clarity.

The Carleman linearization procedure is obtained by ex-

tending the system (3) with the time derivatives of the

Kronecker powers ϕ
[i]
k (t). It is known [17] that

d

dt
ϕ
[i]
k (t) =

∞
∑

j=0

Ai
j(x(k∆))ϕk

[j+i−1](t), (4)

where the coefficients Ai
j(x) ∈ IRni×nj+i−1

can be easily

computed from the A1
j (x) through the recursive expression

Ai
j = A1

j ⊗ I [i−1]
n + In ⊗Ai−1

j , (5)

where In is the identity matrix of dimension n.

To obtain the infinite dimensional linear system asso-

ciated to (2) we introduce the extended state Φ(t) =

[ΦT
1 (t), ΦT

2 (t), . . . ]
T , where Φi(t) = ϕ

[i]
k (t). From (4) we

have

Φ̇(t) = Lk +MkΦ(t), k∆ ≤ t < (k + 1)∆, (6)

where the infinite dimensional matrices Lk and Mk have the

block structure

Lk =









A1
0

0n2×1

0n3×1

. . .









, Mk =













A1
1 A1

2 A1
3 . . .

A2
0 A2

1 A2
2 . . .

0n3×1 A3
0 A3

1 . . .
0n4×1 0n3×n A4

0 . . .
. . . . . . . . . . . .













.

(7)

A solution of (6) can be obtained for t ∈ [k∆, (k + 1)∆)
with initial condition Φ(k∆) = [0 0 . . . ]T , as

Φ(t) =

∫ t

k∆

eMk(t−τ)Lkdτ = M−1
k

(

eMk(t−k∆) − I
)

Lk

=

∞
∑

j=1

M j−1
k Lk

tj

j!
, k∆ ≤ t < (k + 1)∆.

(8)

we are interested in ϕk(t) = Φ1(t) = [In 0n×n2 . . . ]Φ(t),
that is used to compute the value x((k + 1)∆). This yields

x((k+1)∆) = x(k∆)+
∞
∑

j=1

(

[In 0n×n2 . . . ]M j−1
k Lk

) ∆j

j!
.

(9)

It is easy to recognize that (9) is the Taylor series for the so-

lution of (2) in the prescribed time interval. An approximate

solution is obviously obtained by choosing a bound ν for

the index of the summation. It is interesting to notice that,

even if Mk and Lk are matrices with infinite dimensions,

for any j the product M j
kLk has only a finite number of

non-zero blocks. The coefficients of the Taylor expansion of

the solution of the nonlinear system coincide with the first

block of M j
kLk, which is always a vector of size n× 1.

The discretization procedure can be readily obtained by

(9). Given ∆ and a bound ν, in the first step we compute the

coefficients A1
j = ∇[j] ⊗ f(x), j = 0, . . . , ν. Then, starting

with P0 = Lk, we compute the sequence Pj = MkPj−1.

This requires the computation of the first j block-rows and

columns of Mk, that are obtained by means of (5) from the

elements of A1
j . This step is trivial, since we only need to

perform Kronecker products with the identity matrix. The

expression of the discretization step becomes now

x((k + 1)∆) = x(k∆) +

ν
∑

j=0

[In Z]Pj(x(k∆))
∆j+1

(j + 1)!
,

(10)

where and Z is a zero matrix of size n ×
(

(nν − 1)/(n −
1) − n

)

. Notice that [In Z]Pj(x) are the exact coefficients

of the Taylor expansion of the solution. These coefficients

are listed in Table I for j = 0, . . . , 3. At each discretization

step it is sufficient to evaluate these coefficients in the new

point x((k + 1)∆).

III. DISCRETIZATION-BASED OBSERVER

A. Observability map

The discretization approach described in the previous

section yields a discrete-time system of the form

xk+1 = F∆(xk, uk)

yk = h(xk),
(11)

where F∆(xk, uk) is in the form (10),

xk+1 = F∆(xk, uk) = xk +

ν
∑

j=1

Cj(xk)
∆j

j!
, (12)

with Cj(x) = [In Z]Pj−1(x).
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j [In Z]Pj(x)

0 A1
0 = f(x)

1 A1
1A

1
0 = J(x)f(x)

2
(

A1
1

)2
A1

0 + 2A1
2

(

A1
0

)[2]

3
(

A1
1

)3
A1

0 + (2A1
1A

1
2 + 3A1

2A
2
1)

(

A1
0

)[2]
+ 6A1

3

(

A1
0

)[3]

TABLE I

COEFFICIENTS OF THE TAYLOR EXPANSION OF THE DISCRETIZATION

SCHEME

It is useful to notice that it is easy to invert F∆(xk, uk)
using the Taylor expansion with a backward time step,

xk = F−∆(xk+1, uk) = xk+1+

ν
∑

j=1

Cj(xk+1)
(−∆)j

j!
. (13)

We follow an approach similar to [7] and [8], where the

observer design is based on a nonlinear observability map

on IRn zk = Ψu[k]
(xk), that is, from the state variables to

the last n samples of the scalar output variable,

zk =









yk
yk−1

. . .
yk−n+1









=









h(xk)
h ◦ F−∆(xk, uk−1)

. . .

h ◦ F
(n−1)
−∆ (xk, uk−n+1)









= Ψu[k]
(xk)

(14)

where h ◦ F−∆(x) = h(F−∆(x)), and F
(i)
−∆(x) de-

notes the application of F−∆ iterated i times. This

map Ψu[k]
is parametrized by the vector u[k] =

[uk−1 uk−2 . . . uk−n+1] ∈ IRn−1. The difference with the

approach of [7] and [8] is that here we use an observability

map from xk to zk, whereas in the cited papers the observ-

ability map is from xk−n+1 to zk. Obviously, this is due to

availability of F−∆, provided by the discretization scheme.

Definition 1: Given a C∞ function h : IRn → IR and the

u-parametrized C∞ vector field F−∆ on IRn, let Hi(x, u) =

h ◦ F
(i)
−∆(x, u) and H0(x) = h(x). The observability matrix

Qu[k]
(x) is defined as

Qu[k]
(xk) =

d

dx









H0(xk)
H1(xk, uk−1)

. . .
Hn−1(xk, uk−n+1)









=
d

dx
Ψu[k]

(xk).

(15)

Definition 2: The nonlinear system (11) is said to be

observable in an open subset Ω of IRn if its observability

map (14) is invertible in Ω.

Definition 3: The nonlinear system (11) is said to be

uniformly Lipschitz observable in an open subset Ω of IRn

if it is observable and if both maps Ψu[k]
(x) and Ψ−1

u[k]
(z)

are uniformly Lipschitz in Ω and Ψu[k]
(Ω), respectively.

B. Observer definition

The idea behind the proposed observer is to approximate

the vector of the output variables from the current estimate

x̂k. Let x̂k+1|k = F∆(x̂k, uk) denote the one-step prediction.

We have

zk+1 =Ψu[k+1]
(xk+1) = Ψu[k+1]

(x̂k+1|k)

+
∞
∑

j=1

∇⊗Ψu[k+1]
(x)

j!

∣

∣

∣

x=x̂k+1|k

(

xk+1 − x̂k+1|k

)[j]
.

(16)

Truncating the Taylor expansion at j = 1 and neglecting the

remainder, we have

zk+1 ≃ Ψu[k+1]
(x̂k+1|k)+Qu[k+1]

(x̂k+1|k)
(

xk+1− x̂k+1|k

)

.
(17)

Inverting (17) we can express the one-step estimate x̂k+1 as

x̂k+1 = x̂k+1|k+Q−1
u[k+1]

(x̂k+1|k)
(

zk+1−Ψu[k+1]
(x̂k+1|k)

)

.

(18)

Theorem 4: For a nonlinear system (11), consider the

system

x̂k+1 = F∆(x̂k, uk)+
(

Qu[k+1]
(F∆(x̂k, uk))

)−1

(

zk+1 −Ψu[k+1]
(F∆(x̂k, uk))

)

.

(19)

Then there exists a suitable δ > 0 for which

lim
t→∞

‖x̂k − xk‖ = 0, (20)

provided that

• ‖x̂0 − x0‖ < δ;

• system (11) is Lipschitz observable in IRn;

• h(x) and F∆(x, u) are uniformly Lipschitz in IRn.

Proof. The proof can be derived following the guidelines

of Theorem 1.2 in [8], and it is based on the following

representation of system (11) using the z-coordinates

zk+1 = Abzk +Bb

(

h ◦ F∆(Ψ
−1
u[k]

(zk))
)

yk = h(Ψ−1
u[k]

(zk))
(21)

where Ab, Bb are Brunowski matrices of size n.

�

Theorem 4 states that (19) is a local observer for system

(11), since the convergence is guaranteed only for ‖x̂0 −
x0‖ < δ.

The observer (19) is based on the linear approximation

(17) of the inverse map Ψ−1
u[k]

(z). More general semi-global

observers, with an arbitrary convergence region, can be

designed using a polynomial approximation of Ψ−1
u[k]

(z),
following the approach proposed in [10].

C. Implementation issues

In practice, a gain vector K ∈ IRn may be introduced

on the correction term to speed up the convergence of the

observer. It helps to keep into account the sensitivity of
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the system dynamics to initial errors on the different state

variables. This yields the observer

x̂k+1 = F∆(x̂k, uk)+
(

Qu[k+1]
(F∆(x̂k, uk))

)−1

K
(

zk+1 −Ψu[k+1]
(F∆(x̂k, uk))

)

.

(22)

For many high-gain observers based on a coordinate trans-

formation, the computation of the Jacobian of the coordinate

map is a complex task. Frequently, the computation of

derivatives of order up to the size of the system is mandatory.

A nice feature of the observer (19) is that its implementation

requires only the first derivative of F∆(x, u) and h(x).
Consider again the Jacobian (15). The computation of the

i-th row of Qu[k]
(xk), i > 0, can be carried out as

d

dx
Hi(xk) =

d

dx

(

h ◦ F
(i)
−∆(xk)

)

=
d

dx

(

h ◦ F−∆ ◦ · · · ◦ F−∆(xk)
)

=

(

dh

dx

∣

∣

∣

F
(i)
−∆(xk)

)(

dF−∆

dx

∣

∣

∣

F
(i−1)
−∆ (xk)

)

. . .

(

dF−∆

dx

∣

∣

∣

xk

)

,

(23)

that is, the requested row is obtained as the product of

dh/dx by the matrix dF−∆/dx evaluated i times along the

discretized trajectory that ends at xk.

The evaluation of dF−∆/dx (or, equivalently, dF∆/dx),

is straightforward, due to the polynomial nature of F∆(x),

dF∆(x, u)

dx
= ∇x⊗F∆(x, u) = In+

ν
∑

j=1

(

∇x⊗Cj(x)
)∆j

j!
.

(24)

From the structure of the coefficients Cj reported in Table

I, it is easy to compute ∇x ⊗ Cj(x), reminding that

∇x ⊗A1
j = (j + 1)A1

j+1, (25)

and using the following derivation rule of matrix product

∇x ⊗
(

A ·B
)

=
(

∇x ⊗A
)

(In ⊗B) +A
(

∇x ⊗B
)

, (26)

where n is the size of x, and A ∈ IRl×m, B ∈ IRm×q are

generic compatible matrices.

IV. SIMULATION RESULTS

The example presented in this section in not casual, in

fact it motivated the study of the discretization/observation

approach presented previously. The system that we consider

is a simple model for the avascular tumor growth that can

be used to estimate the kinetic parameter of the growth as

well as the effects of chemotherapy treatment. In the last

decades, many mathematical models have been proposed to

describe the untreated and treated tumors growth at different

level of complexity, from macroscopic to the microscopic

molecular scale of analysis. However they have been only

marginally used in clinical applications, due to the intrinsic

complexity of the phenomena related to tumor growth and

to the difficulties of arranging these models on the basis of

the limited set of available measurements. This problem is

dramatically true for in vivo applications, since the available

information is provided just by means of biomedical image

techniques like TAC and RNM that, among other things, are

bound to provide measurements with very large discretization

intervals.

Detailed mathematical models for tumor growth must take

into account of several factors and, specifically, the nutrient

concentration profiles within the tumor mass. To accomplish

this task, partial differential equations must be solved, to

include the space and time dependence for all variables of

interest. On the other hand, some interesting results can be

achieved considering models based on ODE, whose aim is

to describe how the number of proliferant, quiescent and

dead cells evolves over time; even if they do not describe

the nutrients concentration profiles, are able to reproduce

with reasonable accuracy the typical observed tumor growth

over time. These models generally rely on an empirical

definition of the dynamics of the tumor cell growth, based on

parameters that characterize some kinetic features. Among

them, a relevant place is occupied by the Gompertz model

[6], [18], that has been seen chosen as a benchmark for the

description of the tumor growth along time.

The practical applicability of this model is limited by two

factors, namely

1) Parameter identification: there is no straightforward

method to infer the value of the parameters contained

in the model from biological evidence.

2) Discretization: as many other models based on nonlin-

ear ODEs, the Gompertz model cannot be immediately

applied when only discrete-time measurements are

available. It must be noticed that the time interval

between consecutive measurements is usually much

larger than the threshold allowed for simple lineariza-

tion techniques.

We present here a simplified version of the model that

we studied in [5], in order to provide a case study for the

proposed discretization/observation approach. [5] includes

the case of chemotherapic infusion but a different observer

is used. The Gompertz model that we use, in the case of

avascular untreated growth, is defined by the equation:

dN(t)

dt
= γ · log

(

N∞

N(t)

)

, (27)

where N(t) is the number of cells of the tumor in the

avascular phase, γ is a kinetic parameter and N∞ is the

theoretical saturation value, that depends on the kind of the

cells.

The problem that we analyze here is to infer the value

of N∞ and γ from the measurements of N(t). To this end

we set x1 = log(N), x2 = log(N∞), x3 = γ, thus we can

recast equation (27) in the following dynamical system

ẋ1(t) = x3(t)
(

x2(t)− x1(t)
)

ẋ2(t) = 0

ẋ3(t) = 0

y(t) = ex1(t)

(28)
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Fig. 1. Gompertz continuous and discrete-time models, a free growth case
with ν = 3 and ∆ = 2 days.

The discretization of (28) is easily accomplished. The first

three terms of the resulting Taylor expansion are

C1 =





x3(x2 − x1)
0
0



 , C2 =





−x2
3(x2 − x1)

0
0



 ,

C3 =





x3
3(x2 − x1)

0
0



 ,

(29)

thus, with ν = 3 the discrete-time system is

xk+1 = xk +





C1(xk)∆ + C2(xk)
∆2

2 + C3(Xk)
∆3

6
0
0





yk = e(xk)1 .
(30)

It may be noticed that f(x) is polynomial, consequently the

blocks A1
j of the matrix Mk in (7) are identically null for

j > 2. This makes straightforward the derivation of higher

order terms Cj for j > 3.

We test the discretization algorithm in free growth scenario

with N(0) = 1, N∞ = 105, and γ = 0.2 day−1. The steady

state is reached after approximately 50 days. Fig. 1 compares

the continuous-time and discrete-time system output N(t)
with a discretization interval ∆ = 2 days. Notice that

the exponential dynamics of the population growth is a

challenging test for the discretization scheme.

In Fig. 2 the mean of the absolute difference between

the continuos and discrete-time system, ||N(k∆)−Nk||, is

plotted as a function of the discretization interval ∆ for a

choice of ν in the interval [1, 4]. Clearly, ν = 1 corresponds

to a linearization of the system.

The performance of the discrete-time observer for system

(28) with ν = 3 are reported in Fig. 3. Since n = 3 the
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for ν=1 – 4.
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observer equations are

x̂k+1 =F∆(x̂k)+

Q−1(F∆(x̂k))K









yk+1

yk
yk−1



−





h(F∆(x̂k))
h(x̂k)

h(F−∆(x̂k))







 ,

(31)

where h(x) = ex, Q(x) is defined as in (15) using (23)

Q(x) =









(

dh
dx

)

x
(

dh
dx

)

F−∆(x)
·
(

dF−∆

dx

)

x
(

dh
dx

)

F 2
−∆(x)

·
(

dF−∆

dx

)

F−∆(x)
·
(

dF−∆

dx

)

x









(32)

We have performed 1000 simulations for each discretiza-

tion interval ∆ in the range {0.5, 1, 1.5, 2, 2.5, 3} with

initial condition N(0) = 2, N∞ = 105, γ = 0.2, and setting

the initial estimate x̂(0) at a random variable with normal

distribution, mean [log(2), log(104), 0.25] and standard

deviation [0, log(103), 0.02]. We have then computed the

mean across simulations of the relative estimate error for

the two non-measured state variables x2 = log(N∞) and

x3 = γ at 3 points, namely t = 25, t = 37 and t = 50
days. As it can be readily noticed in the plots, the final

mean error on the parameter estimate is under 4% at any

value of the discretization interval. Moreover with ∆ < 2
the mean estimate error is below 5% at t = 25 days, that

corresponds to half of the time needed by the avascular tumor

to reach its steady state. Thus, the discrete-time observer

allows to estimate the growth parameters efficiently even for

large values of the discretization interval. One simulation for

∆ = 2 is shown in Fig. 4.

V. CONCLUSIONS

The scheme proposed in this paper highlights a theoretical

connection between the Carleman linearization method and

the Taylor series approach and provides a fast recursive

procedure for the computation of the the coefficients of the

Taylor series, a useful tool to design a precise time-discrete

approximation of a time-continuous system. Moreover, we

have shown that the resulting discretization system has a

structure that allows to design a simple yet efficient observer.

We have shown that the resulting observer is robust with

respect to the discretization interval. This approach is very

general and can be extended further in two directions, namely

the design of semi-global observers in the spirit of [10] and to

the design of filters for nonlinear systems with time-discrete

measurements.
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