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Abstract— This paper considers the effects of a penalty term
in both the state and parameter estimates for multi-agent
systems. It is assumed that the plant parameters are desired to
be identified on-line and N agents are available to implement
adaptive observers. Using an additive term which takes the
form of a penalty on the mismatch between the state and pa-
rameter estimates, the proposed adaptive consensus estimation
scheme ensures that both state and parameter estimates reach
consensus. While the proposed adaptive consensus identifiers
assume an all-to-all connectivity, the abstract framework that
the adaptive identifiers are examined under, allows for any
form of agent connectivity to be examined. As a measure of
agreement of the estimates that is independent of the network
topology, the deviation from the mean estimate for both the state
and parameter estimates is defined and shown to converge to
zero. Simulation studies of a second order system provide a
verification of the proposed theoretical predictions.

I. INTRODUCTION

In this work, we consider a plant with unknown state

and input matrices. It is desired to adaptively identify both

matrices using a group of N agents. Each agent is generating

its own adaptive identifier which is based on the identifiers

presented in [1]. Despite sharing the same structure, there is

no guarantee that these N adaptive identifiers will have their

estimates converge to the same value, unless one imposes

a persistence of excitation condition. When interagent infor-

mation exchange is implemented, a consensus of both state

and parameter estimates is reached.

The additional term in both the state and parameter

equations, which penalizes the mismatch amongst all es-

timates, takes the form of a non-negative damping term

which also enhances the convergence properties of the state

and parameter errors. The proposed work follows from

earlier work [2] on adaptive consensus control of multi-agent

systems with the difference that the mismatch between the

parameter estimates is also penalized, which constitutes the

main contribution of this work. However, in the non-adaptive

case, a linear estimator scheme was considered that penalized

the mismatch of the parameter estimates [3], [4].

To examine the agreement of both the state and parameter

estimates, a measure that is independent of the network

topology [5] is considered, and which takes the form of the

deviation from the mean estimate.

The added benefit of the proposed adaptive identifiers,

which penalize both state and parameter estimates, is the

abstract form that the collective error dynamics are placed.
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Despite the fact that the stringent all-to-all connectivity is as-

sumed, which serves the purpose of a baseline for subsequent

extensions with different inter-agent connectivity, the abstract

framework allows one to decouple the connectivity (graph

Laplacian) with the stability analysis by simply replacing

one non-negative damping-like matrix (representing all-to-

all connectivity) with another such matrix (representing more

general inter-agent connectivity).

II. PROBLEM FORMULATION AND MATHEMATICAL

PRELIMINARIES

We are concerned with the adaptive estimation of plant pa-

rameters in systems with full state availability. It is assumed

that the dynamical system is given by

ẋ(t) = Ax(t)+Bu(t), x(0) = x0, (1)

where x ∈ Rn is the plant state and u ∈ Rq is the control

input. Without resorting to any plant parametrization [1], [6],

it is assumed that the matrices A and B are unknown and it

is desired to identify them on-line. Following the procedure

outlined in [6], one considers the following adaptive observer

˙̂x(t) = Amx̂(t)+(Â(t)−Am)x(t)+ B̂(t)u(t),

x̂(0) = x̂0 6= x0,

(2)

where Â(t) is the adaptive estimate of A and B̂(t) is the

adaptive estimate of B. The matrix Am is a design matrix

that essentially defines the observer poles and satisfies an

associated Lyapunov equation. Central to the extraction of

the adaptation rules for these on-line estimates is the associ-

ated Lyapunov function which uses the state and parameter

errors. Defining the state and parameter errors

e(t), x̂(t)− x(t), Ã(t), Â(t)−A, B̃(t), B̂(t)−B,

we have that the state error is governed by

ė(t) = Ame(t)+(Â(t)−A)x(t)+(B̂(t)−B)u(t)

= Ame(t)+ Ã(t)x(t)+ B̃(t)u(t).
(3)

The associated Lyapunov function is

V (t) = eT (t)Pe(t)+Tr
{

ÃT (t)Γ−1
a Ã(t)+ B̃T (t)Γ−1

b B̃(t)
}

(4)

where Γa and Γb are the adaptive matrix gains and the

symmetric positive definite matrix P satisfies the Lyapunov

equation

AT
mP+PAm =−Q, Q = QT

> 0. (5)
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Using the above Lyapunov function, the adaptation rules are

˙̂
A(t) =−ΓaPe(t)xT (t), Â(0) = Â0 6= A,

˙̂
B(t) =−ΓbPe(t)uT (t), B̂(0) = B̂0 6= B,

(6)

Without incorporating any robust modifications to the above

adaptive laws as no unmodeled dynamics or bounded distur-

bances were considered in (1), one has that the signals e(t),
Â(t) and B̂(t) are bounded and if the plant state x and control

input u are bounded, then limt→∞ e(t) = 0. Convergence of

the adaptive estimates to the true values can be shown when

a persistence of excitation condition is imposed [6].

The above error system can be placed in a compact form

d

dt




e(t)

Ã(t)

B̃(t)


= A(x,u)




e(t)

Ã(t)

B̃(t)


 (7)

where

A(x,u) =




Am (·)x(t) (·)u(t)

−ΓaP(·)xT (t) 0 0

−ΓbP(·)uT (t) 0 0


 .

The above structure with skew-adjoint state dependent matrix

is characteristic of adaptive systems [7]. The same matrix

will be observed in the case of distributed adaptive consensus

identifiers, in which the equivalent form will involve the

same matrix as before and the contribution due to consensus

enforcement. The latter can be related to the Laplacian of

the graph topology.

III. ADAPTIVE CONSENSUS DISTRIBUTED OBSERVERS

We now consider a multi-agent system in which N agents

are utilized to adaptively estimate the plant parameters A and

B. Each agent will provide its own estimate Âi(t) and B̂i(t),
i = 1, . . . ,N, and it is desired to arrive at common estimates,

i.e. reach consensus on the parameter adaptive estimates.

A. Overview of adaptive distributed observers

When the N agents do not interact with each other (no

connectivity), then the N decoupled adaptive observers along

with the adaptive estimates are simply generated by a direct

application of (2) and (6), and are given by

˙̂xi(t) = Amx̂(t)+(Âi(t)−Am)x(t)+ B̂i(t)u(t),

x̂i(0) = x̂i0 6= x(0),

˙̂
Ai(t) =−ΓaiPei(t)x

T (t), Âi(0) = Âi0,

˙̂
Bi(t) =−ΓbiPei(t)u

T (t), B̂i(0) = B̂i0,

(8)

for i= 1, . . . ,N. One would like to find the extent at which the

above state and parameter estimates agree with each other.

A measure of agreement/disagreement, as was considered in

[5] and which addresses disagreement independent of the

network topology, is the deviation from the mean

δie(t), x̂i(t)−
1

N

N

∑
j=1

x̂ j(t) = ei(t)−
1

N

N

∑
j=1

e j(t),

δia(t), Âi(t)−
1

N

N

∑
j=1

Â j(t) = Ãi(t)−
1

N

N

∑
j=1

Ã j(t),

δib(t), B̂i(t)−
1

N

N

∑
j=1

B̂ j(t) = B̃i(t)−
1

N

N

∑
j=1

B̃ j(t),

for i = 1, . . . ,N, and the pairwise disagreement

x̂i j(t), x̂i(t)− x̂ j(t) = ei j(t) = ei(t)− e j(t),

Âi j(t), Âi(t)− Â j(t) = Ãi j(t) = Ãi(t)− Ã j(t),

B̂i j(t), B̂i(t)− B̂ j(t) = B̃i j(t) = B̃i(t)− B̃ j(t),

for i, j = 1, . . . ,N. While the distributed adaptive observers

in (8) are not expected to have any form of agreement, as no

penalty of their disagreement was imposed in the adaptation

rules, we will consider the dynamics for their disagreement

as they will provide a baseline for the success of the adaptive

consensus filters presented below.

The distributed Lyapunov functions for each agent are

given in a similar form as in (4):

Vi(t) = eT
i (t)Pei(t)+Tr{ÃT

i (t)Γ
−1
ai Ãi(t)+ B̃T

i (t)Γ
−1
bi B̃i(t)} (9)

for i = 1, . . . ,N. The stability of the collective dynamics are

examined by

V (t) =
N

∑
i=1

Vi(t). (10)

It is straightforward to see that V̇i(t) = −eT
i Qei(t), i =

1, . . . ,N, and that

V̇ (t) =−
N

∑
i=1

eT
i Qei(t) =−ET (t)QE(t)

where E(t) =
[

eT
1 (t) eT

2 (t) . . . eT
N(t)

]T
, and Q =

diag{Q} is the block-diagonal matrix Q = In×n ⊗ Q. The

above distributed adaptive observers can be placed in a form

similar to (7). Define

Â(t) =




Â1(t)

Â2(t)

...

ÂN(t)



, B̂(t) =




B̂1(t)

B̂2(t)

...

B̂N(t)



,

with Ã(t) and B̃(t) defined in a similar manner,

Am = In×n ⊗Am, P= In×n ⊗P,

Γa =




Γa1 0n×n . . .

...
. . .

...

0n×n . . . ΓaN


 ,Γb =




Γb1 0n×n . . .

...
. . .

...

0n×n . . . ΓbN


 ,
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then we have



Ė(t) = AmE(t)+ Ã(t)x(t)+ B̃(t)u(t),

˙̃
A(t) =−ΓaPE(t)xT (t),

˙̃
B(t) =−ΓbPE(t)uT (t).

When the above is placed into matrix form, it yields

d

dt




E(t)

Ã(t)

B̃(t)


= A(x,u)




E(t)

Ã(t)

B̃(t)


 , (11)

with

A(x,u) =




Am (·)x(t) (·)u(t)

−ΓaP(·)x
T (t) 0 0

−ΓbP(·)u
T (t) 0 0


 .

Equation (11) is the multi-agent version of (7), and we have

that each of the distributed adaptive observers in (8) enjoys

the same stability and convergence properties as (2) and (6).

B. Adaptive consensus distributed observers - Main result

We now present the main results of this work. The update

laws for the parameter identifiers in (8) now include a penalty

of the mismatch of the parameter estimates Âi(t) and B̂i(t).
While the individual adaptive estimates will still need to have

a certain condition of persistence of excitation to ensure

parameter convergence, the proposed adaptive consensus

modification ensures that all the parameter estimates agree

with each other without enforcing persistence of excitation.

This is presented in the lemma below.

Lemma 1: Consider the dynamical system (1) with x and

u available and bounded, and A and B are unknown. Assume

that there are N available agents capable of implementing

their own distributed adaptive observers and that they have

all-to-all connectivity (complete graph). Then the following

distributed adaptive consensus observers




˙̂xi(t) = Amx̂(t)+(Âi(t)−Am)x(t)+ B̂i(t)u(t)

−P−1
N

∑
j 6=i

(x̂i(t)− x̂ j(t)), x̂i(0) = x̂i0,

˙̂
Ai(t) = −ΓaiPei(t)x

T (t)

−Γai

N

∑
j 6=i

(Âi(t)− Â j(t)), Âi(0) = Âi0,

˙̂
Bi(t) = −ΓbiPei(t)u

T (t)

−Γbi

N

∑
j 6=i

(B̂i(t)− B̂ j(t)), B̂i(0) = B̂i0,

(12)

for i = 1, . . . ,N and with P satisfying (5), ensure that both

state and parameter estimates reach consensus via

lim
t→∞

x̂i j(t) = 0, lim
t→∞

Âi j(t) = 0, lim
t→∞

B̂i j(t) = 0, i, j = 1, . . . ,N,

and the distributed state errors converge to zero,

lim
t→∞

ei(t) = 0, i = 1, . . . ,N.

Proof: We consider the dynamics of the state and

parameter errors associated with the proposed laws in (12)

ėi(t) = Amei(t)+ Ãi(t)x(t)+ B̃i(t)u(t)−P−1
N

∑
j 6=i

ei j(t)

˙̃
Ai(t) =−ΓaiPei(t)x

T (t)−Γai

N

∑
j 6=i

Ãi j(t)

˙̃
Bi(t) =−ΓbiPei(t)u

T (t)−Γbi

N

∑
j 6=i

B̃i j(t),

(13)

for i = 1, . . . ,N. We use the same distributed Lyapunov

functions (9) to assess the stability of (12). The derivative of

the individual Vi’s along (13) are given by

V̇i(t) = eT
i (t)

(
AT

mP+PAm

)
ei(t)

+2eT
i (t)

N

∑
j 6=i

ei j(t)+2eT
i (t)PÃi(t)x(t)

+2eT
i (t)PB̃i(t)u(t)+2Tr{

˙̃
AT

i (t)Γ
−1
ai Ãi(t)}

+2Tr{ ˙̃
BT

i (t)Γ
−1
bi B̃i(t)}

=−eT
i (t)Qei(t)−2eT

i (t)
N

∑
j 6=i

(ei(t)− e j(t))

−2ÃT
i (t)

N

∑
j 6=i

Ãi j(t)−2B̃T
i (t)

N

∑
j 6=i

B̃i j(t),

(14)

where we used the fact that

N

∑
j 6=i

(x̂i(t)− x̂ j(t)) =
N

∑
j 6=i

(ei(t)− e j(t)) =
N

∑
j 6=i

ei j(t),

N

∑
j 6=i

(Âi(t)− Â j(t)) =
N

∑
j 6=i

(Ãi(t)− Ã j(t)) =
N

∑
j 6=i

Ãi j(t),

and

N

∑
j 6=i

(B̂i(t)− B̂ j(t)) =
N

∑
j 6=i

(B̃i(t)− B̃ j(t)) =
N

∑
j 6=i

B̃i j(t).

Now we consider the collective dynamics via (10). Using

(14), the derivative is given by

V̇ (t) =
N

∑
i=1

V̇i =−
N

∑
i=1

eT
i (t)Qei(t)−2

N

∑
i=1

eT
i (t)

N

∑
j 6=i

(ei(t)− e j(t))

−2
N

∑
i=1

ÃT
i (t)

N

∑
j 6=i

(Ãi(t)− Ã j(t))−2
N

∑
i=1

B̃T
i (t)

N

∑
j 6=i

(B̃i(t)− B̃ j(t))

=−
N

∑
i=1

eT
i (t)Qei(t)−

N

∑
i=1

N

∑
j 6=i

‖ei j(t)‖
2

−
N

∑
i=1

N

∑
j 6=i

‖Ãi j(t)‖
2 −

N

∑
i=1

N

∑
j 6=i

‖B̃i j(t)‖
2 ≤ 0,

where we used the fact that

2
N

∑
i=1

ai

N

∑
j 6=i

(ai −a j) =
N

∑
i=1

N

∑
j 6=i

|ai −a j|
2
.

356



From the above, we have that

V (t)+λmin(Q)
∫ t

0

N

∑
i=1

‖ei(τ)‖
2dτ+

∫ t

0

N

∑
i=1

N

∑
j 6=i

‖ei j(τ)‖
2dτ

+

∫ t

0

N

∑
i=1

N

∑
j 6=i

‖Ãi j(τ)‖
2dτ+

∫ t

0

N

∑
i=1

N

∑
j 6=i

‖B̃i j(τ)‖
2dτ ≤V (0),

implying E ∈ L2(0,∞;RnN)∩L∞(0,∞;RnN) or equivalently

ei ∈ L2(0,∞;Rn)∩L∞(0,∞;Rn), i = 1, . . . ,N,

with Âi ∈ L∞(0,∞;Rn×n), B̂i ∈ L∞(0,∞;Rn×q), and ei j ∈
L2(0,∞;Rn), i, j = 1, . . . ,N,

Âi j ∈ L2(0,∞;Rn×n), B̂i j ∈ L2(0,∞;Rn×q), i, j = 1, . . . ,N.

By virtue of the boundedness of Âi and B̂i, one then has

Âi j ∈ L∞(0,∞;Rn×n), B̂i j ∈ L∞(0,∞;Rn×q), i, j = 1, . . . ,N.

Examination of the first equation of (13) reveals that ėi ∈
L∞(0,∞;Rn) provided that x and u are bounded. That imme-

diately implies via the use of Barbǎlat’s Lemma (ei ∈ L2∩L∞

and ėi ∈ L∞) that

lim
t→∞

‖ei(t)‖= 0, i = 1, . . . ,N.

Once again, using the boundedness and square integrability

of ei with a bounded derivative, we have that ei j is bounded

with a bounded derivative. The latter along with the square

integrability of ei j implies that

lim
t→∞

‖ei j(t)‖= lim
t→∞

‖x̂i j(t)‖= 0, i, j = 1, . . . ,N.

Examining the second and third components of (14), we

have that
˙̂
Ai j and

˙̂
Bi j are bounded provided that x and u

are bounded. Once again, application of Barbǎlat’s Lemma

[8] yields

lim
t→∞

‖Âi j(t)‖= 0, and lim
t→∞

‖B̂i j(t)‖= 0.

A consequence of the proposed adaptive consensus dis-

tributed filters is that there is guaranteed convergence of

the pairwise difference of the adaptive estimates. This was

a consequence of the L2 boundnedness of the pairwise

disagreement of the parameter estimates.

To better examine the dynamic agreement of the parameter

and state estimates, we consider the error system (13) in a

compact form. Towards this end, we define

J=




(N −1)In×n −In×n . . . −In×n

−In×n (N −1)In×n . . . −In×n

... . . .
. . .

...

−In×n . . . −In×n (N −1)In×n



,

then we have




Ė(t) = AmE(t)+ Ã(t)x(t)+ B̃(t)u(t)−JE(t)

˙̃
A(t) =−ΓaPE(t)xT (t)−ΓaJÃ(t)

˙̃
B(t) =−ΓbPE(t)uT (t)−ΓbJB̃(t)

The above placed in a matrix form yields

d

dt




E(t)

Ã(t)

B̃(t)


=

(
A(x,u)−GJ

)



E(t)

Ã(t)

B̃(t)


 ,

with

G =




I 0 0

0 Γa 0

0 0 Γb


 , J =




J 0 0

0 J 0

0 0 J


 ,

which has similar structure to (11), differing only in the

additional term J due to consensus.

Remark 1: In the not so conservative requirement of an

all-to-all connectivity assumed here, one may have an undi-

rected graph which when considered in the abstract form

proposed here, will result in a matrix J that is still non-

negative but may have a lower maximum eigenvalue.

To assess the convergence properties of the deviation from

the mean, we can express the deviation as follows

δie(t) = ei(t)−
1

N

N

∑
j=1

e j(t) =
1

N

N

∑
j 6=i

ei j(t).

Similar expressions can be written for δia(t) and δib(t).
The convergence of the deviation from the mean can easily

be established when one uses the fact that the pairwise

disagreement of the state and parameter errors converge to

zero and therefore we have

lim
t→∞

δie(t) = 0, lim
t→∞

δia(t) = 0, lim
t→∞

δib(t) = 0, i = 1, . . . ,N.

The interpretation of the above is that the individual devia-

tions of the adaptive state and parameter estimates from their

mean (static average) converge to zero. This is summarized

in the following lemma.

Lemma 2: Consider the deviations of the state and param-

eter estimates from their mean (static average) given by

δie(t) = x̂i(t)−
1

N

N

∑
j=1

x̂ j(t) = ei(t)−
1

N

N

∑
j=1

e j(t)

=
1

N

N

∑
j 6=i

x̂i j(t) =
1

N

N

∑
j 6=i

ei j(t),

δia(t) = Âi(t)−
1

N

N

∑
j=1

Â j(t) = Ãi(t)−
1

N

N

∑
j=1

Ã j(t)

=
1

N

N

∑
j 6=i

Âi j(t) =
1

N

N

∑
j 6=i

Ãi j(t),

δib(t) = B̂i(t)−
1

N

N

∑
j=1

B̂ j(t) = B̃i(t)−
1

N

N

∑
j=1

B̃ j(t)

=
1

N

N

∑
j 6=i

B̂i j(t) =
1

N

N

∑
j 6=i

B̃i j(t).

Then we have convergence of these deviations to zero

lim
t→∞

‖δie(t)‖= 0, lim
t→∞

‖δia(t)‖= 0, lim
t→∞

‖δib(t)‖= 0,
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for i = 1, . . . ,N.

Proof: The proof easily follows from Lemma 1 which

provides the pairwise convergence limt→∞ x̂i j = limt→∞ Âi j =
limt→∞ B̂i j = 0 and the fact that N < ∞.

One can also consider the deviations in matrix form and

relate them to the graph Laplacian

δe(t)=




δ1e(t)

δ2e(t)

...

δNe(t)



, δa(t)=




δ1a(t)

δ2a(t)

...

δNa(t)



, δb(t)=




δ1b(t)

δ2b(t)

...

δNb(t)




via δe(t) =
(

1
N

)
JE(t), δa(t) =

(
1
N

)
JÃ(t), δb(t) =

(
1
N

)
JB̃(t),

since ∑ j 6=i�i j is the ith row of J�. From Lemma 2, we have

the following convergence

lim
t→∞

‖JE(t)‖= lim
t→∞

‖JÃ(t)‖= lim
t→∞

‖JB̃(t)‖= 0.

However, the convergence

lim
t→∞

‖Ã(t)‖= 0 and lim
t→∞

‖B̃(t)‖= 0

cannot be established unless one imposes the additional con-

dition of persistence of excitation. The above demonstrates

the beneficial effects of information sharing (connectivity)

where the absence of J removes the convergence results on

consensus unless persistence of excitation is imposed.

IV. SPECIAL CASE

We now consider a special case that can use the adaptive

consensus structure presented in the previous section.

A. Adaptive consensus using partial state measurements

We consider SISO systems given by the following

parametrization

ẋ(t) = Ax(t)+Bθϕ(y,u), y(t) =Cx(t), (15)

where ϕ(y,u) is a known function of the input and output

signals and θ represents the unknown parameter. Further it

is assumed that the triple (A,B,C) satisfies Lur’e equation

AT P+PA =−Q, PB =CT
. (16)

The proposed adaptive consensus distributed filters are given

along the lines of (12)

˙̂xi(t) = Ax̂i(t)+Bθ̂i(t)ϕ(y,u)−P−1 ∑
j 6=i

x̂i j(t),

˙̂
θi(t) =−γεi(t)ϕ(y,u)− γi ∑

j 6=i

θ̂i j(t).
(17)

The resulting ith error system is given by

ėi(t) = Aei(t)+Bθ̃i(t)ϕ(y,u)−P−1 ∑
j 6=i

ei j(t)

εi(t) =Cx̂i(t)− y(t),

˙̃
θi(t) =−γεi(t)ϕ(y,u)− γi ∑

j 6=i

θ̃i j(t),

(18)

To assess the stability of (18), the following Lyapunov

candidate is used

Vi(t) = eT
i (t)Pei(t)+

1

γi

θ̃2
i (t), i = 1, . . . ,N, (19)

which produces

V̇i(t) =−eT
i (t)Qei(t)−2eT

i ∑
j 6=i

ei j(t)−2θ̃i(t)∑
j 6=i

θ̃i j(t), (20)

via the use of (16) and (18). The collective dynamics are

once again examined via

V̇ (t) =−
N

∑
i=1

eT
i (t)Qei(t)−

N

∑
i=1

N

∑
j 6=i

‖ei j(t)‖
2 −

N

∑
i=1

N

∑
j 6=i

|θ̃i j(t)|
2

The convergence results are stated in the following lemma

without proof, as most of the arguments are similar to the

full-state case.

Lemma 3: Consider the SISO system whose nominal

transfer function is strictly positive real, i.e. satisfies (16).

Assume that the state x and the known function ϕ(y,u) are

bounded. Then the distributed adaptive consensus observers

(17) ensure that all signals are bounded, the state estimation

errors asymptotically converge to zero limt→∞ ‖ei(t)‖ = 0,

i = 1, . . . ,N, and the pairwise parameter disagreement errors

converge to zero limt→∞ θ̃i j(t) = 0, i, j = 1. . . . ,N, with the

deviation from their mean converging to zero

lim
t→∞

(
θ̂i(t)−

1

n

N

∑
i=1

θ̂i(t)
)
= 0.

V. NUMERICAL RESULTS

We consider the following second order system as the plant

z̈+7ż+4z = θż+u, y = ż,

which can be placed in state space form

ẋ = Ax+Bθy+Bu, y =Cx,

with

A =

[
0 1

−4 −7

]
, B =

[
0

1

]
, x(t) =

[
z(t)

ż(t)

]
, C = BT

.

The plant parameters are assumed known and it is desired to

adaptively estimate θ using available signals (i.e. u,y). The

above parametrization assumes that there is an uncertainty

in the damping parameter 7 − θ, where only the nominal

value of 7 is known. In this case, the condition of SPR

is simplified since we have collocated input and output

matrices. The nonlinear function ϕ(y,u) = y and P= I in (16)

with −Q = A+AT . In fact, due to the collocated input and

output, one can have −Q = Ak +AT
k where Ak = A− kBBT

and k is a static output feedback gain to be designed. We take

N = 5 and these distributed consensus observers are given by

˙̂xi = Akx̂i + kBy+Bu+Bθ̂iy−
5

∑
i=1

(x̂i − x̂ j)

˙̂
θi =−γi(Cx̂i − y)y− γi

5

∑
j 6=i

(θ̂i − θ̂ j)

i = 1, . . . ,5.
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TABLE I

INITIAL CONDITIONS

variable I.C. variable I.C.

ẑ1(0) 2.5 z(0) 2
˙̂z1(0) 4 ż(0) 4

ẑ2(0) 1 θ 1.5
˙̂z2(0) 5 ˙̂z5(0) 0.5

ẑ3(0) 0.5 θ̂1(0) 0.5
˙̂z3(0) 2.5 θ̂2(0) 0.6

ẑ4(0) 0 θ̂3(0) 0.9
˙̂z4(0) 1.5 θ̂4(0) 3.2

ẑ5(0) 3 θ̂5(0) 2.3
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Fig. 1. Adaptive parameter estimates with consensus.

The plant along with the 5 adaptive consensus observers were

simulated in the time interval [0,20] with γi = 0.05, k = 1

and u(t) = 5sin(10t). The initial conditions for the state and

parameter estimates are given in Table I.

Figures 1 and 2 depict the evolution of the 5 adaptive

estimates θ̂i(t) with and without consensus. It is observed

that when penalty disagreement is enforced on the parameter

estimates, they all converge to the same value, which in

this case is the true value of the parameter θ. The same

conclusion can be drawn from Figure 3, which depicts the

state and parameter deviations from the mean estimates.

VI. CONCLUSIONS

This paper considered the adaptive estimation of a class

of multi-agent systems with full connectivity. A modification

in the standard adaptive law of the distributed adaptive

observers was proposed which penalized the pairwise dis-

agreement of the parameter adaptive estimates. This con-

stituted the main contribution of this work which ensured

that both state and parameter estimates reach consensus.

Enforcing parameter consensus was shown to provide better

parameter convergence properties, thus artificially yielding

persistence of excitation. The numerical studies of a second

order system in which the unknown parameter was related to

the damping ratio, complemented the theoretical predictions

of the agreement of the parameters generated by the multiple

adaptive consensus estimators.
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Fig. 2. Adaptive parameter estimates without consensus.
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Fig. 3. State and parameter deviations from the mean estimates.
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