
Optimal static output feedback design through direct search

E. Simon

Abstract— This paper investigates the performance of us-
ing a direct search method to design optimal Static Output
Feedback (SOF) controllers for Linear Time Invariant (LTI)
systems. Considering the old age of both SOF problems and
direct search methods, surprisingly good performances will be
obtained compared to a state-of-the-art method. The motivation
is to emphasize the fact that direct search methods are too
much neglected by the control community. These methods
are very rich for practical purposes on a lot of complex
problems unyielding to classical optimization techniques, like
linear matrix inequalities, thanks to their ability to explore even
non-smooth functions on non-convex feasible sets.

Index Terms— Optimal control, Direct search methods, Static
Output Feedback, Linear Time Invariant systems

I. INTRODUCTION

This paper considers a class of fundamental and still open

problems: the design of optimal Static Output Feedback

(SOF) controllers for Linear Time Invariant (LTI) systems.

The approach used here is to solve benchmarks of such

problems with a state-of-the art method (HIFOO [9], [5]),

and compare the objective values found and computational

times required with those obtained using a direct search

method. The quality of these results will allow to determine if

direct search methods are adequate as a powerful candidate to

solve complex optimization problems in systems and control.

There are historical reasons behind the fact that direct

search methods are largely overlooked in this field, which

we summarize briefly as follows. Direct search methods

appeared in the late fifties and quickly enjoyed a vast success

amongst optimization practitioners. However since a review

of W.H. Swann in 1972, direct search methods have been

scorned by theoreticians because they lacked convergence

guarantees [22]. It is only since the early nineties -i.e. from

the PhD thesis of Virginia Torczon in 1989 [21]- that proofs

of convergence started to appear for direct search methods,

which then started to revive. However this was eclipsed

in optimization for systems and control by Linear Matrix

Inequalities (LMIs), which exploded at that time and became

the standard approach still to this day.

The approach of LMIs, originally motivated by Lyapunov

theory, is richer for theoretical developments. But for com-

plex problems, for which the feasible set is typically non-

convex, LMIs approaches can be inadequate and unsuccess-

ful. Efficient iterative LMIs algorithms can be found for SOF

stabilization (see e.g. [12], [8]). However these are feasibility

problems and no such algorithm has been shown efficient

for minimization problems, e.g. minimizing the H2 and H∞

Emile Simon is with the Department of Mathematical Engineering, Uni-
versité Catholique de Louvain, 4 avenue Georges Lemaitre, 1348 Louvain-
la-Neuve, Belgium, simonemile at gmail dot com.

norms. In general, iterative LMIs algorithms proposed to

solve Bilinear Matrix Inequalities (BMIs) problems do not

converge toward locally optimal solutions neither in theory

nor in practice (see [19] and references therein).

Note also the general large drawback of using LMIs:

many additional variables are typically required to write

the problem under a LMIs formulation. Most often such

variables come from a Lyapunov matrix with n(n + 1)/2
entries, where n is the number of states of not only the

controller to be designed but also that of the open loop plant.

Therefore, despite the polynomial time complexity of solving

LMIs problems -which is however not guaranteed anymore

with iterative LMIs algorithms- and the efficient solvers

available, LMIs approaches may quickly lead to prohibitive

computational times.

Furthermore, writing problems under a LMIs scheme can

prove very strenuous and quite inflexible to adaptations or

objective modifications. While the set of problems that can be

brought under LMIs formulations is continuously increasing,

it does not easily encompass more complex problems based

on real-life objectives and constraints met in the industry.

Considering these three drawbacks, there appears a need

to find better suited methods. When the gradients of the

considered objective functions are available, such infor-

mations should be used (if they are not too expensive

to compute). This is done within HIFOO c©[9], [5] and

hinfstruct c©[2], certainly the best two methods for the

problems considered in this paper (see benchmarks in [1]).

It is however interesting to investigate the performance of

a direct search method, not using gradient informations, for

the problem considered and see how well it fares compared to

HIFOO (hinfstruct was not available to us at the time).

If the direct search approach is found successful enough

on these central problems, this gives a good indication that

these methods are adequate for many current open complex

problems of the field. HIFOO or hinfstruct are more

efficient for the problems they consider thanks to the use

of gradient informations, but direct search methods allow to

span a very broad set of problems as long as those can be

formulated as minimizing a function f(x) : R
n −→ R.

In this paper we use the Nelder-Mead algorithm (NM),

restarted to improve convergence. There are other direct

search methods with theoretical convergence guarantees:

MDS [21], [11] on smooth functions and MADS [6] even

on non-smooth functions, but this restarted NM will suffice

to obtain good objective values while keeping reasonable

computational times.

2011 50th IEEE Conference on Decision and Control and
European Control Conference (CDC-ECC)
Orlando, FL, USA, December 12-15, 2011

978-1-61284-799-3/11/$26.00 ©2011 IEEE 296

Contents and structure of the paper

The paper is structured as follows. First the SOF problem

for LTI systems is presented in Section II, along with a

brief discussion on some current methods available. Then a

brief description of the NM algorithm is given in Section III,

along with two modifications that improve in practice both

the obtained objectives and the required computational times.

Sections IV, V and VI present the results obtained for the

most typical LTI optimal control objectives: stabilization, H2

norm and H∞ norm minimizations. The LTI models used for

these benchmarks are the unstable models from the COMPlib

datatbase [14], which regroups many systems coming from

both real applications and academic problems. Finally, the

conclusions are drawn.

II. STATIC OUTPUT FEEDBACK DESIGN

The static output feedback (SOF) is the control law u =
Ky with the gain matrix K ∈ R

nu×ny that determines in-

stantly the actuation input(s) u ∈ R
nu given the measurement

output(s) y ∈ R
ny of a system. Designing this matrix K to

ensure desired properties for the closed-loop system can be

seen as the first problem in (output-feedback) control design

(in [20] it is regarded as ’probably the most important open

question in control engineering’). The framework considered

is that of LTI systems, where the models of the systems are

fixed linear differential equations and do not vary with time.

Within this setup, the models P can be written under the

so-called state-space representation as:

P :







ẋ = Ax + B1w + Bu
z = C1x + D11w + D12u
y = Cx + D21w + D22u

(1)

where x ∈ R
nx is the state vector, ẋ is the time derivative

of x, z ∈ R
nz the performance ouptut(s), w ∈ R

nw the

performance input(s), u and y defined above, and the other

elements are matrices of corresponding dimensions with real

entries. In this paper continuous-time systems are used but

the extension to discrete-time systems is almost immediate

(unlike most other methods, including HIFOO). It is assumed

that D22 = 0 without loss of generality, otherwise a linear

change of variables presented in [23] can be used (this

is necessary to have K entering affinely the closed-loop

representation). Therefore the state-space representation of

the closed-loop performance channel(s) Twz becomes:
(

A B

C D

)

=

(

A + BKC B1 + BKD21

C1 + D12KC D11 + D12KD21

)

(2)

This representation will be used to define the typical

optimal control objectives of Sections IV, V and VI.

Current methods and results

A survey of SOF design methods is a clearly too vast

topic to be treated here. For this we refer to [20] and more

recently to the introduction of [4] and the references therein.

Note that reduced-order design problems extend naturally

from the SOF ones, by augmenting the state spaces matrices

of the system. The two best methods for these problems are

certainly HIFOO [9], [5] and hinfstruct, the last only

dealing at the moment with the H∞ case and appearing even

faster than HIFOO [1] but for which no implementation was

available to us at the time. So the method used here will be

compared to HIFOO on a large series of tests, objectives and

systems, both in terms of obtained objectives and required

computational times.

A method that was not mentioned in [20] was pointed out

surprisingly late in [10]: to use direct search (DS) methods,

amongst which the NM algorithm, for the SOF problem.

Note that other control design problems have been dealt with

DS methods in the past but, to the best of our knowledge,

not SOF problems before [10]. In [2], the use of DS methods

in control design is rather harshly criticized. The discussion

is actually on how often the non-smoothness of the control

design problems causes DS methods to fail. In this paper,

for SOF problems and using the modified version of NM,

we illustrate that this very seldom happens with extensive

numerical experiments and comparisons with HIFOO which

is gradient-based and enjoys a convergence certificate. Note

that in [2] MDS [21], [11] has been tested, but not NM.

In [10] it is outlined that DS methods can be efficient

for SOF stabilization but not to what extent, or for other

problems. Now that we can make comparisons with the

efficient and easily available method HIFOO, we can get a

clearer picture of the performances that can actually be ex-

pected. Once the good performances of NM are established,

future work can deal with more complex control objectives

considering that NM is extremely flexible: it admits any real-

valued objective function f(x) : R
n −→ R. Furthermore,

as pointed out in [10], non-expert users can easily use this

optimization routine and adapt it to their needs.

We also note that with DS methods no additional variables,

like Lyapunov matrices, are required. This allows to use

formulations of the problems with the least variables, which

can give a significant edge to direct search methods for the

computational time. In practice a rule of a thumb would

be to use problem formulations with less than 50 or 100

variables, depending on the computational time needed to

perform one function evaluation. With more variables, only

significant ones have to be selected and/or gradients informa-

tions become unavoidable to keep reasonable computational

times.

III. THE NELDER-MEAD ALGORITHM

This algorithm, presented in [16] in the sixties, belongs

to the class of DS methods. These methods only use cost

function evaluations and no gradient (first order methods,

like HIFOO) or Hessian (second order methods, like interior

point methods) informations. The basic ideas behind NM are

briefly described here, the interested reader can refer e.g. to

[16], [13], [17] for proper descriptions and details.

The first step is the generation of an initial simplex of

N + 1 solutions (around and including the provided initial

solution), where N is the number of variables of the function.

The cost function is then evaluated at each of these N +
1 solutions and sorted from the best to the worst solution.

297

This initial simplex generated, the NM algorithm chooses

iteratively between several possibilities (or steps) to change

the shape of the simplex (eventually displacing it), trying to

find better solutions. For example the basic step is that the

worst solution is reflected on the other side of the simplex,

in order to create a ’downhill’ effect.

Different implementations of the NM algorithm can be

found in the literature. Two of the most easily available are

the fminsearch function in MATLAB c©, based on [13],

and the nmsmax function of [11] (the one used in [10]).

Early tests gave us better results with the first option, thus

we will consider that implementation.

The original fminsearch can be written as:

Xf = FM(F (X),Xi,C1(ǫF)
∧

C2(ǫX))

where Xi is the initial (e.g. random) solution, Xf is

the returned solution and F (X) : R
nu×ny → R is the

cost function and C1(ǫF)
∧

C2(ǫX) is the original stopping

criterion of fminsearch with (
∧

= and,
∨

= or):

C1(ǫF): The difference between the worst and the best

objective value in the set F (simplex) is less than ǫF .

C2(ǫX): The maximum coordinate difference between the

best X and the other Xs in the simplex is less than ǫX .

It is also possible to define a maximum number of itera-

tions and functions evaluations.

Modification of the algorithm

We have modified this implementation to overcome its

main shortcomings. The new implementation is defined as:

Xf (1) = FM(F (X),Xi,C1r(ǫr)
∨

C3(ǫr, N))
i = 2; acc = 1 (> ǫs)

while acc > ǫs do

Xf (i) = FM(F (X),Xf (i − 1),C1rel(ǫr)
∨

C3(ǫr, N))
i = i+1; acc = abs(abs(F (Xf (i−1))/F (Xf (i)))−1)

end while

return Xf (i − 1)

The differences between the original implementation and

this one are the successive restart(s) and the stopping and

restarting criteria. The simplex modification strategy within

fminsearch remains the same. The restarting criterion is

C1rel(ǫr)
∨

C3(ǫr, N)), where:

C1rel(ǫr) : The same as C1(ǫF) but with relative accuracy

ǫr and not absolute tolerance ǫF .

C3(ǫr, N) : The relative difference between the current

best objective and the best objective N iterations earlier is

less than ǫr.

The stopping criteria (no further restart) is the moment

when the objective obtained at the last optimization is not

better than the previous one, to a relative accuracy acc ≤ ǫs.

These two important modifications are justified here.

The first essential modification is the use of local restarts

of the algorithm: it is restarted from a new simplex generated

around the last solution, as long as no improvements are

obtained under a given (small) accuracy ǫs. This idea is not

new: In [17] a provably convergent implementation of the

NM algorithm is introduced where an additional step is used

to regenerate degenerate simplexes, In [15] this mending

is done by simply restarting the algorithm locally which

reinitializes the simplex. In practice, this simple strategy

allows to deal with the nonsmoothnesses that might cause

DS methods to fail, as criticized in [2]. Maybe it could

still be possible that NM ’stagnates’ at ’dead points’ or

non-stationary solutions or ’partial solutions’ (depending on

the authors), but using these restarts makes it much more

unlikely. Anyway, since the best we can expect is local

convergence, it is clear that such algorithm must be used

from several starting points (or ’global’ restarts) in order to

compare the different local optima obtained and choose the

best (and perhaps keep looking if not enough instances of the

best one have been found). By doing so, the probability of

failure of convergence to a stationary point decreases further.

Similarly, this idea is used in [15] where X belongs to a

bounded set and the probability of convergence to a global

optimum increases with the number of global restarts.

The second modification is the replacement of

C1(ǫF)
∧

C2(ǫX) by C1r(ǫr)
∨

C3(ǫr, N)). Whereas the

aim of restarting the algorithm is to avoid most of the

nonstationnary solutions, the aim of this second modification

is to shorten the computation time. We have noticed that

the original criterion often lengthen these times uselessly.

Indeed we often observed that, although an optimum has

very probably been reached, a lot of time is wasted to

reduce the size of the simplex to the required tolerances

ǫF and ǫX . This is in particular true for problems with

larger values of F (X) and X because the tolerances are

absolute and not relative (a mistake in our opinion). We

design the criterion C3 that will trigger earlier in order to

partly remove the often useless period where actually only

the simplex size is reduced and not the objective. We leave

N iterations for the algorithm to try to find an objective

improvement bigger than ǫr, if not the algorithm is restarted

if the stopping criterion is not met. We keep the condition

C1 but normalize it to the current best objective to make

it more case-independent, and use or instead of and still

to shorten the computation time. We used as default values

ǫs = ǫr = 10−4, N = 100, chosen ’by hand’ (this criterion

makes anyway more sense than the arbitrary choice of a

maximum number of iterations and/or functions evaluations

of the original implementation). The values of ǫs, N giving

the optimal trade-off between best optimum against shortest

computational time differ anyway for each case.

Further modifications can be considered, but the version

proposed here works well enough for our purposes. Indeed,

it will already appear than this version of NM has similar

performances than those of HIFOO.

IV. STABILIZATION

The well-known problem of SOF stabilization is to find

K such that the closed loop system Σc given by

Σc : ẋ = (A + BKC)x = Ax

298

is stable, i.e. with poles in the open left-half plane.

This means finding K such that the spectral abscissa (the

maximum real part of the eigenvalues) of A + BKC is

negative. It is obtained in MATLAB with the command

max(real(eig(A+BKC))).

Unlike the static state feedback stabilization problem

which admits a convex representation, this problem is still

open and conjectured NP-hard [7], [20]. When it admits a

feasible set, it can be non-convex as well as not connected

(see [4] and references therein).

The models (A,B,C) used for the benchmarks are the

unstable ones of the COMPLib database [14], which regroups

many examples from experimental and industrial applications

as well as academic examples. The stable models are not

considered since K=0 trivially satisfies the problem. For each

test made, both NM and HIFOO were started from the same

random initial solutions K. Note that the code of HIFOO

was slightly modified to perform one optimization at a time:

starting from the given initial solution and not generating any

other random initial solution. For each plant 100 tests were

performed for which the initial points where chosen as: one

K=0, 50 K=randn(nu,ny), 25 K=rand(nu,ny), 24 K=-

rand(nu,ny). These MATLAB functions define each entry

of the initial random matrices as follows: randn uses the

normal distribution with mean zero and standard deviation

one and rand uses the uniform distribution on the unit

interval.

The results obtained are given for each plant in Table I1.

The last column (seconds NM/HIFOO) gives the ratio of the

time required for the 100 tests by NM on the time required

by HIFOO. The previous column (NM/HIFOO) gives the

number of successful stabilizations for the 100 tests by NM/

those by HIFOO.

The success rate is slightly better for NM than HIFOO:

92.3% for NM and 90.6% for HIFOO (for 63*100 tests,

without the ’easy’ plants HF2D). Moreover NM proved

faster: it needed an average of 0.74 times the time necessary

for HIFOO for each plant, 0.15 altogether2. For the plants

HF2D Big, both techniques were very successful and NM

was a bit slower: it required an average of 1.4 times the time

necessary for HIFOO (but this situation can be reversed, as

explained further, using ARPACK instead of LAPACK).

Note that the plants NN3 and REA4 have been removed

from this list. These are not SOF stabilizable, as easily

checked by plotting the spectral abscissa along the scalar K
since these are SISO systems. The plants CM4,5,6IS are not

SOF stabilizable and have been removed as well. Thorough

3D plots confirm this since these plants have nu ∗ ny = 2.

We give some comments on the plants that proved

hard(er) to SOF stabilize: AC10,IH,PAS,NN10,NN12,ROC3.

The model AC10 of the Boeing 767 was SOF stabilized in

0.07s by NM and 0.4s by HIFOO, but this only worked

1The tables have been removed to meet the page number requirement.

They are available in the originally submitted version at:
http://arxiv.org/abs/1104.5369v1

2The computer used is a HP Compaq dc7800 c©, processor Intel Q9300 c©,
2.5GHz, 3.48Go RAM, software MATLAB 2007b c©

when starting from the initial point K=0: the other random

points all failed ([2] also points out the good result obtained

starting from K=0, but does not discuss other initial points).

IH was harder to deal with by NM, certainly because it is the

problem with the most variables (nu ∗ny = 110). We briefly

remark that by changing the stopping/restarting criteria of

NM and extending the computation times (sometimes signif-

icantly) we can get the same success rate as that of HIFOO

for this plant. On the other hand, the system PAS also with

many variables (nu ∗ ny = 60) was easy to deal with NM

(100% success + much faster) whereas it was much more

troublesome for HIFOO. Regarding NN10 and NN12, those

are indeed hard considering they were deemed unfeasible

in [10]. Though it does not appear on this table, further

testing made HIFOO as successful as NM on NN10, i.e.

less than 10% success. Finally, the plant ROC3 has not been

stabilized with NM and with difficulty by HIFOO. On this

we mention that using the multidirectionnal search [21], [11]

along with NM (both DS methods) allows to SOF stabilize

ROC3. This last possibility is too vast to be discussed here

and is currently studied. Note that in [14], the plants ROC

(for reduced order) are said not to be SOF stabilizable, which

is a mistake.

Stabilization of large unstable plants

Table II gives the results obtained with the plants having

a large number of states: nx ∈ [2025, 4489] (5 tests for

each). HIFOO was able to SOF stabililize only the two

plants with nx = 2025, but not the bigger ones because

of memory problems. The limit of NM is higher, it is

the maximum size of a matrix whose eigenvalues can be

computed (here somewhere in the 8000s). Regarding the

computation times, clearly these are much longer than for

smaller plants. However we have reduced these by using

ARPACK’s eigs method instead of LAPACK’s eig. eigs

is faster on bigger matrices (we found experimentally nx >
62 on random matrices) but proves less robust (occasional

numerical errors) than eig. The method chosen was to begin

with eigs and revert to eig once an error occurred. The

examples in Table II were obtained an average of 3.5 times

faster than with only eig (especially appreciable seen the

large computation times).

The average computation time for the 5 tests is given for

each plant in the last column as an indication of the difficulty

encountered. This version of NM, using ARPACK and a

faster restarting criterion (ǫr = 10−2 instead of 10−4 and

N = 20 instead of 100), stabilized faster than HIFOO the

two plants HF2D6, HF2D8 (it is not shown here but this is

also the case for the plants HF2D Big with nx ∈ [256, 576]).
It appears also that all these large plants were SOF stabilized

by NM (but some were not 100% successful) and that

the large number of states does not harm the technique’s

principle.

Considering the conjectured NP-hardness of the prob-

lem [7] (which theoretically renders even moderately large

problems numerically untractable [20]) and comparing these

results to what could be done with Lyapunov-based methods

299

(that can hardly deal with nx > 100 because of the additional

nx(nx + 1)/2 variables), this is excellent. Remark that an

alternative method could be to reduce the size of the plant,

then compute a stabilizing SOF for the reduced plant (as

done in the works of [14]) and then use this solution as initial

solution for the full size plant. Clearly this would work well

in the current scheme but the point here was to show that

the full size plants could be dealt with directly.

Minimal spectral abscissa

Tests were also performed of minimizing

max(real(eig(A+BKC))) (i.e. maximizing the

closed-loop decay rate) instead of only stabilizing (i.e. stop

when a negative value is reached). The table of results is

not shown due to space limitations. We only mention that

around 52% of the obtained spectral abscissa were smaller

with NM than HIFOO and NM was an average of 5 to 6

times faster than HIFOO. In the end we conclude that for

SOF stabilization and minimal spectral abscissa, NM is

faster than HIFOO and very slightly more successful.

V. H2 NORM

The problem of H2 norm minimization of Twz is to find

K such that ||Twz||2 is minimal. After a stability check,

returning ∞ if unstable, this norm and its gradient are

computed using MATLAB’s lyap (see e.g. [5] for details) or

norm if an error occurs with lyap. The gradient information

is used by HIFOO but not by NM. Since this is a true

gradient (not like the subgradients that will be used for

the H∞ norm), HIFOO will perform better at least for the

computational time. However it will appear in the results of

Table III that NM gets most of the time the same optima as

HIFOO, sometimes better and sometimes worse. The plants

considered are those of [5] and 30 tests are performed for

each plant, like in that paper. Note that there are some

plants not satisfying for all DK the equality constraint

D = D11 + D12DKD21 = 0 necessary for a finite H2

norm. These could be dealt with using the same technique

as that of HIFOO: using singular value decomposition to

rewrite this affine constraint in an explicit parametric form

(thus with less variables so easier to deal with using DS

approaches). Here we simply force D11 = 0, D12 = 0 to

lighten the benchmarking work. In order to start each H2

minimization from the same initial solution, the stabilizing

controller found by HIFOO is also used as starting point for

NM (we slightly modified HIFOO to recover the stabilizing

solution). Of course the stabilization computation time has

been removed from the total time required by HIFOO. The

results are in Table III.

As expected NM is slower than HIFOO, by an average of

10 times (for each plant, 2 times only altogether because

HIFOO was very slow on NN16). However 60% of the

optima obtained are similar within 1% to each other, 14%

found by NM are better and 26% found by HIFOO are better.

So it is reasonable to say than both methods compete in term

of reached objectives values. Regarding the computationnal

time, HIFOO is much better certainly thanks to the quick

access to the true gradient of the objective function (a

convenient feature that is typically unavailable for many

problems). Note that the success rate of NM can be improved

by reducing ǫr and/or increasing N , which also modifies

(normally increases) the total computationnal time.

VI. H∞ NORM

The objective considered here is to find K such that

||Twz||∞ is minimal (more details e.g. in [23]). The norm

is computed with MATLAB’s function norm with accuracy

10−10 (after a stability check, ∞ is returned when unstable).

The results are to be read as in the previous section and are

given in Table IV.

Now that only Clarke’s subgradients are available (see e.g.

[3]), HIFOO becomes much slower. For this benchmark,

NM is an average of 1.32 times slower than HIFOO for

each plant (without CSE2, for which NM always found a

better optimum but was 98 times slower than HIFOO) and

altogether NM took 0.72 times the time needed by HIFOO.

Considering the optima obtained, 40% of the results obtained

are similar within 1% to each other, 23% found by NM are

better and 37% found by HIFOO are better.

We remark that we reran these tests on MATLAB 2010a

and found about the same results and ratios. Also, for most

tests for which the best objective found by NM is close but

not identical to the one found by HIFOO, the same objective

can be found by reducing ǫr, ǫs (which of course requires

more computational time).

VII. CONCLUSIONS

This paper evaluates the performances of a direct search

method, here a restarted Nelder-Mead algorithm, to design

optimal Static Output Feedback controllers for LTI systems.

Thorough benchmarkings (around 13000 tests) have been

made with parallel comparison with one of the most numeri-

cally efficient method currently available for these problems:

HIFOO. It appears that both methods are similarly successful

for the considered problems: stabilization, minimization of

H2 and H∞ norms. However the computational times differ.

NM is faster than HIFOO for stabilization. HIFOO is clearly

faster than NM for the H2 norm (smooth objective function).

And for the H∞ norm (Clarke subdifferentiable objective

function), the computational times are equivalent. Neverthe-

less it is quite surprising that the excellent performances

of direct search methods for these problems have not been

pointed out before, except very recently in [10] for SOF

stabilization.

Considering the results in this paper we believe having ful-

filled the objective of illustrating that direct search methods

should be put back on the grid of competitive methods as a

candidate of choice for complex optimal control problems.

Although these methods may lead to good computational

times, this is not their strong point. Gradient informations

become necessary to improve the computational time, and in-

creasingly so for larger number of variables. Their important

property is their good ability to explore non-smooth objective

functions on non-convex feasible sets. This ability combined

300

with the flexibility of dealing with any problem formulated as

minimizing a function f(x) : R
n −→ R makes such methods

very useful to deal with a broad set of optimization problems

in systems and control, for which classical approaches will

have a hard time finding good solutions and even more so

locally optimal ones.

We have seen here that NM can be used alone, but in

general it can always be used as a systematic refinement

for almost any other method yielding conservative results.

Certainly, the idea of hybrid optimization combining DS

methods with other techniques (interior point or gradient

sampling or almost any method) is a very promising research

direction for optimal control design (an idea already consid-

ered in [2]). Not to mention that NM has a high practical

value for both academics desiring an alternative approach

to their problem and for non-expert users needing a method

readily available, robust, flexible and easy to use.

In the case where cost functions are quickly evaluated,

it is not costly to perform many optimizations. So even if

failures -i.e. convergence to non-stationary solutions- may

still be possible, this can be rendered increasingly unlikely by

using more different initial solutions. Therefore by obtaining

more instances of the best solution found so far, one becomes

increasingly sure that this solution is at least locally and pos-

sibly globally optimal. This is an idea usually encountered

within global optimization methods.

The best direct search method should be MADS [6]

because it has the strongest convergence properties, but this

method is not so easily available as NM and has more pa-

rameters and options to choose. Clearly, the multidirectional

search (MDS) [21], [11] is also a candidate of choice. Early

tests gave results sometimes better with NM, sometimes with

MDS. Other tests with Gauss-Newton methods were much

less successful but these might probably be adapted (this

idea is anyway close to what HIFOO and hinfstruct are

already doing very well). Certainly, powerful combinations

and modifications can be made (hybrid optimization as sug-

gested above). In the literature the genetic algorithm is also

sometimes used, which we rather not recommend because of

its weak convergence properties and many parameters and

options to choose strongly influencing its performance.

To conclude in a few words, direct search methods will

be able to bring good to excellent results for many complex

problems of optimizations in systems and control. This

is thanks to the following facts: -these methods are able

to explore non-smooth objective functions on non-convex

feasible sets (in particular with MADS) -these problems

typically need only a reasonable number of key variables

-efficient routines are available for many objective function

evaluations -the performance of computers increases expo-

nentially with time. A second layer of work can then be made

to create specialized methods for specific problems, ideally

using gradient informations similarly to what is done in

the excellent HIFOO and hinfstruct. These approaches

should most often have the upper hand over e.g. iterative LMI

algorithms methods to try to solve non-convex problems (see

[19] for another example).

ACKNOWLEDGMENTS

The author gratefully acknowledges Vincent Wertz, Christian
Ebenbauer and Pierre Apkarian for useful remarks. This research
was supported by the Interuniversity Attraction Poles Programme
initiated by the Belgian State, Science Policy Office and of the
Network DYSCO (Dynamical Systems, Control, and Optimization).

REFERENCES

[1] D. Ankelhed, A. Helmersson and A. Hansson “A Partially Augmented
Lagrangian Method for Low Order H∞ Controller Synthesis using
Rational Constraints,” in 50th CDC-ECC, Orlando, Dec. 2011.

[2] P. Apkarian and D. Noll, “Controller design via nonsmooth multidi-
rectional search,” SIAM J. Control Optim., vol.44, 1923–1949, 2006.

[3] P. Apkarian, D. Noll and A. Rondepierre, “Mixed H2/ H∞ control via
nonsmooth optimization,” SIAM journal of control and optimization,
vol. 47, no. 3, pp. 1516–1546, 2008.

[4] D. Arzelier, E. N. Gryazina, D. Peaucelle and B. T. Polyak, “Mixed
LMI/randomized methods for static output feedback control design,”
in American Control Conference, June 2010.

[5] D. Arzelier, G. Deaconu, S. Gumussoy and D. Henrion, “H2 for
Hifoo,” in http://arxiv.org/abs/1010.1442

[6] C. Audet and J. Dennis, “Mesh adaptative direct search algorithms
for constrained optimization,” Siam Journal of Optimization, vol. 17,
no. 1, pp. 188–217, 2006.

[7] V. Blondel and J. Tsitsiklis, “NP-hardness of some linear control
design problems,” SIAM journal on control and optimization, vol. 35,
no. 6, pp. 2218–2127, 1997.

[8] L. El Ghaoui, F. Oustry and M. AitRami “A cone complementary lin-
earization algorithm for static output-feedback and related problems”
IEEE Trans. on Automatic Control, vol. 42, no. 8, pp. 1171–1176,
1997.

[9] S. Gumussoy, D. Henrion, M. Millstone and M. Overton, “Multiob-
jective robust control with Hifoo 2.0,” in Proceedings of the IFAC

Symposium on Robust Control Design, 2009.
[10] D. Henrion, “Solving static output feedback problems by direct search

optimization,” in CCA, Munich, 2006.
[11] N. J. Higham, “The Matrix Computation Toolbox,” http://www.

ma.man.ac.uk/˜higham/mctoolbox.
[12] T. Iwasaki “The dual iteration for fixed-order control” IEEE Trans. on

Automatic Control, vol. 44, no. 4, pp. 783–788, 1999.
[13] J. Lagarias, J. A. Reeds, M. H. Wright and P. E. Wright, “Convergence

properties of the Nelder-Mead simplex method in low dimensions,”
SIAM Journal of Optimization, vol. 9, no. 1, pp. 112–147, 1998.

[14] F. Leibfritz, “Complib: Constraint matrix-optimization problem library
- a collection of test examples for nonlinear semidefinite programs,
control system design and related problems.” University of Trier, Tech.
Rep., 2004, http://www.complib.de/.

[15] M. Luersen and R. L. Riche, “Globalized Nelder-Mead method for
engineer optimization,” Computers and structures, vol. 82, no. (23-
26), pp. 2251–2260, 2004.

[16] J. Nelder and R. Mead, “The downhill simplex method,” Computer

journal, vol. 7, pp. 308–313, 1965.
[17] C. Price, I. Coope and D. Byatt, “A convergent variant of the Nelder-

Mead algorithm,” Journal of optimization theory and applications, vol.
113, no. 1, pp. 5–19, 2002.

[18] E. Simon, P. R.-Ayerbe and C. Stoica and D. Dumur and V. Wertz,
“LMIs-based coordinate descent method for solving BMIs in control
design,” in 18th IFAC World Congress, August 2011. http://hdl.
handle.net/2078.1/69840

[19] E. Simon and V. Wertz, “Direct search methods for an open problem
of optimization in systems and control,” submitted http://arxiv.
org/abs/1104.5183

[20] V.L. Syrmos, C. Abdallah, P. Dorato and K. Grigoriadis, “Static output
feedback: A survey,” Automatica vol. 33, pp. 125–137, 1997.

[21] V. Torczon, “Multidirectional search: A direct search algorithm for
parallel machines,” Ph.D. dissertation, Rice University, 1989.

[22] M. H. Wright “Direct search methods: once scorned, now respectable”
Numerical Analysis, vol. 344, pp. 191–208, 1995.

[23] K. Zhou, J. C. Doyle and K. Glover, Robust and Optimal Control.
Prentice Hall, 1996.

301

