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Abstract— We develop new design procedures for optimizing
anti-windup control applicable to open-loop stable multivari-
able plants subject to input saturations. The optimizing anti-
windup control falls into a class of compensator commonly
termed directionality compensation. The computation of the
control involves the on-line solution of a low-order quadratic
program in place of simple saturation. We exploit the equiva-
lence of the quadratic program to a feedthrough term in parallel
with a deadzone-like nonlinearity that satisfies a sector bound
condition. This allows for LMI-based anti-windup synthesis
using a decoupled structure similar to that proposed in the
literature for anti-windup schemes with simple saturation. We
demonstrate the effectiveness of the design compared to several
schemes using a highly ill-conditioned benchmark example.

I. INTRODUCTION

Most practical control problems must deal with constraints

imposed by equipment limitations such as actuator nonlin-

earities. While it may be of economic benefits to operate

on or close to the constraints, the violation of actuator

constraints during normal operation can result in serious

performance degradation or even instability. One approach,

that has recently received much attention, in dealing with

such problems is the anti-windup technique [1], [2], [3],

[4], [5], [6], [7], [8]. It has however, become a common

practice to incorporate an additional artificial nonlinearity

(directionality compensator) in multivariable anti-windup

designs to address the problem of directionality change in

control action [9], [10], [11], [12], [13], [14], [15], [16],

[17]. Such directionality compensators often take the form

of dynamic optimization problems that are solved either

implicitly ([18], [19]) or explicitly ([13], [14], [15]) during

control computation. When the control policy is obtained by

an explicit solution of on-line optimization problem at each

time step, the resulting scheme is termed optimizing anti-

windup (for example [20], [21], [17]).

While the synthesis of non-optimizing anti-windup with

both stability and performance guarantees has been studied

extensively (see [3], [22], [4], [23], [24], [25], [7]), there

have been few studies on the synthesis of optimizing anti-

windup schemes with closed-loop stability guarantee. Most

optimizing anti-windup schemes (e.g.[13], [15]) have fo-

cused on nonlinear performance optimization in the presence

of input constraints without consideration of closed-loop

stability. The design of directionality compensators is usually
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carried out independently of the control design and with the

assumption that the resulting optimizing structures inherit the

stability of the unsaturated loop. A notable exception is [21]

where a sector-bound result (multivariable circle criterion)

is extended to demonstrate the stability of optimizing anti-

windup. In [16], [17], we employed the theory of Integral

Quadratic Constraints (IQCs) to develop a sufficient robust

stability condition for optimizing anti-windup subject to any

infinity-norm-bounded uncertainty.

It is now standard in the saturating anti-windup synthesis

literature to express the saturated loop in terms of a feedback

interconnection involving a deadzone nonlinearity and a

feedthrough term ([1], [3], [24], [22]). We note that the

quadratic program in optimizing anti-windup can be sim-

ilarly expressed as a corresponding nonlinearity satisfying

a sector-bound condition. The information from the plant’s

structural characteristics and the quadratic program can then

be incorporated into the optimizing anti-windup synthesis

to guarantee closed-loop stability as well as improved non-

linear performance. The resulting synthesis problem can be

cast as a convex optimization problem over linear matrix

inequalities.

Notation: Given a square matrix X , we define He(X) :=
X +XT .

II. PROBLEM SETUP

Fig. 1. The modified IMC anti-windup Structure

Fig. 2. IMC anti-windup with a quadratic program as directionality
compensator

We consider the modified internal model control anti-

windup structure of Fig. 1 where G(s), G̃(s) : Lm → Lp

represent the plant and the nominal plant dynamics respec-

tively. For compactness of expressions, we will henceforth
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drop the arguments (s or jw). Although we have restricted

our discussions to the continuous-time systems, the discrete-

time analysis follows naturally. The nominal IMC controller

Q is assumed to have been designed to meet some nomi-

nal stability and performance specifications [26]. The anti-

windup compensators Q1 and Q2 are related to the nominal

IMC controller through

Q = (Q2 + I)−1Q1. (1)

Following the convention of anti-windup designs, we assume

that the plant input is subject to saturation nonlinearities. The

input signal u is constrained such that

umin
i ≤ ui(t) ≤ umax

i i = 1, . . . ,m. (2)

This can be represented by the saturation function sat(.)
defined as

sat(u(t)) =




sat(u1(t))
...

sat(um(t))




where

sat(ui(t)) =





umax
i ui(t) > umax

i

ui(t) umin
i ≤ ui(t) ≤ umax

i

umin
i ui(t) < umin

i

denotes the saturation nonlinearity associated with each of

the manipulated input ui(t).
However, for optimizing anti-windup, artificial nonlineari-

ties (directionality compensators) are introduced such that the

input saturation nonlinearities are never active and may be

safely ignored as shown in Fig. 2. The artificial nonlinearities

are assumed to take the form of a generalized positive hessian

quadratic program (QP) as in (3).

QP1 :
v∗ = argmin

1

2
vTHv − vTHu

subject to Lv � b
(3)

where H = HT ∈ R
m×m. The fixed terms L ∈ R

2m×m

and b ∈ R
2m in the inequality constraints are respectively

obtained from (2) as

L =

[
−Im
Im

]
and b =

[
−umin

umax

]
(4)

with umin =
[
umin
1 , · · · , umin

m

]T
and umin =[

umax
1 , · · · , umax

m

]T
.

The quadratic program (QP1) has some attractive proper-

ties. It can be solved efficiently on-line [27], [13], [28] and

it has also been shown to satisfy the sector-bound condition

[21]

ψ(u)TH (ψ(u)− u) ≤ 0 ∀u. (5)

Condition (5) is a generalized sector condition. A special

case is when the nonlinearity is decoupled (i.e. ψi(u) =
ψi(ui)) with each component ψi(ui) inscribed in the sector

[0, 1]. This corresponds to diagonal H . Besides containing

information about the sector bound, the Hessian matrix H is

also used to capture the directional characteristics of the plant

in directionality compensation schemes [15], [17]. Typically,

H takes the form H = HT
r Hr where Hr is the characteristic

matrix of the plant [15]. Other choices of Hr are discussed

in [17].

To obtain a decoupled representation of the optimizing

IMC anti-windup, a related quadratic program to (3) is

required in the forward path.

Lemma 1: Let the quadratic program (3) be set as v =
ψ(u) and let w = φ(u) be the quadratic program

QP2 :
φ(u) = argmin

1

2
wTHw

subject to Lu− Lw � b,
(6)

the interconnection of w = φ(u) with v = u−w is equivalent

to v = ψ(u).
Proof: The Karoush-Kuhn-Tucker (KKT) conditions

[27] for φ are given by

Hw − LTλ = 0

Lu− Lw − b+ s = 0

s � 0, λ � 0, λT s = 0

(7)

If we substitute w = u− v into (7), we obtain

Hv −Hu+ LTλ = 0

Lv − b+ s = 0

s � 0, λ � 0, λT s = 0

(8)

The conditions in (8) are exactly the KKT conditions for ψ.

It also follows from the KKT conditions (7) that φ(u)
inhabits the same sector as the original nonlinearity ψ(u)
in (3). Using lemma 1, the optimizing anti-windup can be

redrawn with the original quadratic program (3) replaced

with a deadzone-like quadratic program (6) as shown in

Fig. 3.

Fig. 3. Directionality compensator expressed a Deadzone-Like QP

With the assumption of perfect model, the closed loop

equation of the equivalent structure can be expressed as

y = ylin −G(I +Q2)
−1w

u = ulin + (I +Q2)
−1Q2w

w = φ(u)

(9)

with ylin = GQr + (I − GQ)d and ulin = Q(r − d)
where ylin and ulin are the intended linear plant output

and control input respectively. The disturbance filter G(I +
Q2)

−1 represents the difference between the intended linear

performance and the degraded non-linear performance. The

term (I +Q2)
−1Q2 plays an important role in determining

closed-loop stability as it represents the loop transfer function
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around the nonlinearity. It is natural to choose (I + Q2)
−1

as M from the coprime factorization of the plant G =
NM−1. With this choice, the slow modes of the plant

are removed from the disturbance filter and thus recovery

of linear performance after saturation is hastened. It also

implies that there are no unstable pole-zero cancellations in

the factorization of Q in (1). The IMC anti-windup can then

be parameterized in terms of M as

Q1 =M−1Q, Q2 =M−1 − I. (10)

The anti-windup design problem then reduces to finding

an appropriate right coprime factorization of the nominal

plant. This interpretation is similar to the coprime-factor

parameterization in [29], [1], [5], [30], but here the opti-

mizing framework offers an additional degree of freedom by

incorporating the directional information of the plant through

the parameter H .

The problem we seek to tackle in this paper is summarized

as follows:

Problem: Given a stable plant G, a nominal internal model

controller Q which meets certain linear performance spec-

ifications and a non-singular matrix H which contains the

directional characteristics of the plant, synthesize the anti-

windup compensator Q1 and Q2 such that the closed-loop

system of Fig. 2 is stable, has a guaranteed level of non-linear

performance and recovers the linear performance when there

are no control saturations (i.e. v = u).

III. STABILITY AND PERFORMANCE ANALYSIS

With the assumption that Q has been designed to meet

some specified nominal stability and performance require-

ments, the stability of the optimizing anti-windup is then

determined by the stability of the non-linear loop involving

the nonlinearity φ(.) and the loop transfer function (I +
Q2)

−1Q2 = I −M . The stability of such interconnections

involving a class of nonlinearities has been widely studied

using results from small gain, passivity, multiplier and IQC

theories (see [29], [31] for saturating anti-windup). Prop-

erty (5) allows the extension of such results to the optimizing

anti-windup. Here, we exploit the structure of the quadratic

program (6) to construct sufficient stability condition for the

optimizing anti-windup in Fig. 2. We first show that after

two linear transformations, the nonlinearity φ(.) belongs to

the sector [0,I].

Lemma 2: Let z = ϕ(x) be the quadratic program

QP3 :
ϕ(x) = argmin

1

2
zT z

subject to Rx−Rz � b,
(11)

φ(u) and ϕ(x) are equivalent after two linear transformations

φ(u) = H−1
r ϕ(x) and u = H−1

r x. Furthermore, ϕ(x)
belongs to the sector [0, I].

Proof: The KKT conditions for ϕ(x) are given by

z −RTλ = 0

Rx−Rz − b+ s = 0

s � 0, λ � 0, λT s = 0

(12)

Equivalence follows by substituting w = H−1
r z, u = H−1

r x

and finally L = RHr in (12) to obtain (7). Pre-multiplying

the first KKT condition in (12) by zT and substituting gives

zT z − zTx = −bTλ ≤ 0. (13)

Hence, we may say ϕ(x)T (ϕ(x) − x) ≤ 0 or analogously

ϕ(x) ∈ sector[0, I].
Using the linear transformations of lemma 2 followed by

loop transformations, the nonlinear loop can be redrawn as

shown in Figures 4 and 5 respectively.

Fig. 4. Nonlinear loop with quadratic program ϕ ∈ sector [0, I]

Fig. 5. Nonlinear loop with quadratic program ϕ ∈ sector[0, I] transformed
to ϕ̃ ∈ sector [0,∞] via loop transformation

It then follows from passivity result or the multivariable

circle criterion [21] that a sufficient condition for asymptotic

stability of the nonlinear-loop is that HM is strongly positive

real (SPR). This implies that

HM∗ +MH > 0 (14)

for all frequency and where the superscript (∗) denotes the

complex conjugate transpose. Stronger stability result may be

obtained by introducing multipliers such as those discussed

in [17], [32], [33] into the nonlinear loop of Fig. 5. We would

like to incorporate the above stability result into the choice

of the compensators Q1 and Q2 for optimizing anti-windup

of Fig. 2.

Apart from ensuring closed-loop stability, the main goal

of anti-windup designs is to ensure graceful performance

degradation during control inputs saturations and swift re-

covery of linear performance after a period of saturation.

This objective can be achieved if the disturbance filter is

small in some sense. Typically, the anti-windup performance

criterion is specified in terms of minimization of the L2 gain

from the unconstrained control input ulin to the difference

between the constrained output and the unconstrained output

(i.e. y− ylin) [24], [5], [22]. From the closed-loop equation

(9), the map from ulin to (y − ylin) can be expressed in

state-space form using the coprime-factor parameterization

of (10).
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Let the right coprime factors of the plant G = NM−1

admit the following state space realizations

[
M

N

]
=



A+BF B

F I

C +DF D


 (15)

where F must be chosen such that A+BF is Hurwitz, the

map ulin → (y − ylin) is obtained as



ẋ

u− ulin
yd


 =



A+BF B

−F 0
C +DF D



[
x

w

]
with

w = φ(u).

(16)

The optimizing anti-windup synthesis problem is thus that of

finding a free parameter F such that the closed-loop system

of Fig 2 has both stability and performance guarantees.

IV. ANTI-WINDUP COMPENSATOR SYNTHESIS

The results in this section extend the synthesis approach

of [24], [30] to the optimizing anti-windup. Here, we con-

sider a multi-objective synthesis approach which addresses

a) closed-loop stability through a Lyapunov-based stability

criterion; b) nonlinear performance by minimizing the L2-

norm of the difference between the constrained output y and

the unconstrained (nominal) output ylin via the quadratic

program (3); and c) recovery of linear performance through

the minimization of the L2 gain of the map ulin → (y−ylin).
Theorem 1 (Synthesis with Lyapunov stability criterion):

Given a stable plant G with coprime factorization (15) and

a stable Q. Suppose there exists positive quadratic function

V and τ > 0 such that for all t,

V̇ (x) + 2τwTH(u− w) < 0 (17)

for all x, u, ulin and w satisfying (16). Then the optimizing

anti-windup in Fig. 2 is stable. Moreover, condition in (17)

is equivalent to the existence of P = PT > 0 such that the

following LMI in P , L and α > 0
[
AP + PAT +BL+ LTBT αB − LTH

αBT −HL −2αH

]
< 0. (18)

is satisfied. A suitable choice of F is given as F =
LP−1 where L and P are feasible solutions of LMI (18).

Proof: Choosing V as V = xTXx with X = XT > 0,

the expression in (17) is a direct application of S-procedure

to V̇ (x) < 0 and the sector condition wTH(u − w) ≥ 0 ∀
τ > 0. Condition (17) is guaranteed ∀ [xT wT ]T 6= 0 with

ulin = 0 if (19) is satisfied.
[
XA+ATX +XBF + FTBTX XB − τFTH

BTX − τFH −2τH

]
< 0.

(19)

By a simple congruence transformation diag(X−1, τ−1I)
and defining P = X−1, α = τ−1, L = FP in equation

(19), we obtain the LMI in (18).

Remark 1: The main result of theorem 1 is that existing

optimizing anti-windup schemes such as those in [13], [15],

[19] can now be equiped with stability guarantees for all

nonlinearities of the form of (3) and satisfying the gen-

eralized sector condition (5). By construction, the Hessian

matrix H is always positive definite. The key feature of

this theorem is the freedom in choosing H which may now

assume a more general non-diagonal structure as compared

to existing saturating anti-windup schemes [3], [24], [5].

The appropriate choice of H is made based on the plant

characteristics [17], giving the designer more control on the

anti-windup design as well as offering insights into the anti-

windup computation.

The result (18) can also be obtained by applying the

positive real lemma (e.g.[34]) to the stability condition (14).

We note that similar sufficient stability result based on the

KKT conditions of the associated input nonlinearities have

earlier been suggested in the literature [20], [21] but only

for posteriori stability checks. Here, the information from

the QP (3) is incorporated into the synthesizing LMI such

that closed loop stability is assured.

Theorem 2 (Synthesis with L2-gain performance): Given

a stable plant G with coprime factorization (15) and a

stable Q. Suppose there exists positive quadratic function

V , τ > 0 and γ > 0 such that for all t,

V̇ (x) + yTd yd − γ2uTlinulin + 2τwTH(u− w) < 0 (20)

for all x, u, ulin and w satisfying (16). Then the L2 gain
of the map from ulin to (y − yd) is less than γ. Moreover,
condition (20) is equivalent to the existence of P = PT > 0
such that the following LMI in P , L, α > 0 and γ > 0

He







AP +BL 0 0 0

αBT
−HL −αH 0 0

0 H −γI/2 0

CP +DL αD 0 −γI/2






< 0. (21)

is satisfied. A suitable choice of F is given as F =
LP−1 where L and P are feasible solutions of LMI (21).

Proof: With a Lyapunov function choice of V = xTY x
with Y = Y T > 0, condition (20) reduces to




Y Ã+ ÃTY + C̃T C̃ Y B + C̃TD − τFTH 0

BTY +DT C̃ − τHF DTD − 2τH τH
0 τH −γ2I



 < 0

(22)

for all [xT wT uTlin]
T 6= 0 where Ã = A + BF2 and

C̃ = C +DF2. By applying Schur complement, change of
variables Y = γX, τ = γβ and congruence transformation
using diag(X−1, β−1I, I, I), (22) reduces to

He









ÃX−1
0 0 0

β−1BT
−HFX−1

−β−1H 0 0

0 H −γI/2 0

C̃X−1 β−1D 0 −γI/2









< 0.

(23)

Defining P = X−1, α = β−1, L = FP in (23) as well as

substituting for Ã and C̃ gives the LMI result (21).

Remark 2: The feasibility of LMI (21) is sufficent for the

feasibility of LMI (18) since the LMI (18) is a principal

submatrix (upper left 2×2 block) of LMI (21). On the other

hand, LMI (21) is feasible if and only if LMI (18) is feasible

and γ is sufficiently large (as seen from the lower right 2×2

block of LMI(21)).
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V. SIMULATION EXAMPLE

In order to demonstrate the effectiveness of our anti-

windup design method, we consider a case-study example

involving an ill-conditioned distillation column [26], [35].

This is a well studied problem because of the strong direc-

tionality and interaction that exist in the plant dynamics as

well as its high sensitivities to diagonal input nonlinearities

and uncertainties. We compare three anti-windup approaches,

namely the modified IMC anti-windup ([18]), the LMI-

based anti-windup design without directionality compen-

sation ([1], [30]) and the LMI-based anti-windup design

with directionality compensation of theorem 2. The second

example demonstrates the superiority of the proposed method

compared to existing optimization-based anti-windup when

applied to plants with lightly damped modes.

Example 1: The nominal plant dynamics is given by the

transfer function matrix

G(s) =
1

75s+ 1

[
0.878 −0.864
1.082 −1.096

]
(24)

with both inputs constrained as |ui| ≤ 100, i = 1, 2. In

the absence of control input saturations, the linear controller

is designed to achieve a completely decoupled closed-loop

response represented as follows

GF (s) =
1

1.43s+ 1
I.

The classical IMC controller design for a step input is

Q(s) =
75s+ 1

(1.43s+ 1)

[
39.94 −31.49
39.43 −32.00

]
(25)

and the corresponding unity feedback controller is

K(s) =
75s+ 1

1.43s

[
39.94 −31.49
39.43 −32.00

]
. (26)

We chose H = HT
r Hr with Hr as the characteristic matrix

of the plant (in the notion of [15]).

Hr =

[
0.012 −0.012
0.014 −0.015

]

For the modified IMC anti-windup design [18], the plant

model is slightly modified as

G̃(s) =
1

75s+ 1



0.878 −0.864

0.1s+1

1.082
0.1s+1

−1.096


 (27)

and the compensator Q1 is designed as Q1 = fAG̃Q where

fA =

[
85.42(s+ 1) 0

0 −68.43(s+ 1)

]
. (28)

Figs 6 and 7 show the input and output responses of

the nominal plant to a set-point change from [0 0]T

to [0.99 0]T at time t = 10 and from [0.99 0]T to

[0.99 0.01]T at time t = 50 respectively for the different

control configurations listed in Table I. In the saturated

case (without anti-windup and directionality compensations),

the control inputs are kept saturated longer than required

resulting in serious performance degradation on both chan-

nels as compared to the nice decoupled response of the

unconstrained case. Note that the unconstrained case requires

a very aggressive control action during transient condition

to achieve the decoupled response. The modified IMC anti-

windup [18] results in improved transient performance but

degraded steady-state behaviour. This is not unexpected as

the anti-windup compensator Q1 is designed to instanta-

neously minimize the 1-norm of a filtered difference be-

tween the unconstrained and the constrained outputs which

is based on a related plant model. In addition, there are

no design guidelines for the filter which is chosen purely

based on intuition and has nothing to do with the plant’s

characteristics. The optimal LMI-based anti-windup design

(without directionality compensation) [1], [30] shows an

improved steady-state performance as compared with the

modified IMC but with a sluggish transient response. Since

the LMI synthesis results in a compensator with a very fast

pole (requiring a very high sampling frequency), we have

constrained the poles to a region comparable to those of

Theorem 2 for ease of implementation. The solid lines in

Figs. 6 through 7 show the improved performance achievable

when an anti-windup scheme is augmented with a direction-

ality compensator especially for an ill-conditioned plant. The

response is closest to the unconstrained response for both

transient and steady-state behaviours.
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TABLE I

LEGEND FOR THE RESPONSES IN FIG. 6A THROUGH 7B

System Line Type

Unconstrained Bold
Saturated (without anti-windup) Dotted
Modified IMC [18] Dashdot
Optimal anti-windup (without QP)[1] Dashed
Optimal anti-windup (with QP) Solid
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VI. CONCLUSIONS

We have presented a multivariable optimizing anti-windup

design which guarantees closed-loop stability while com-

pensating for both windup and directionality change in the

control input vector. The simulated examples demonstrate

the benefits that ensue: both from introducing directional-

ity compensation into an anti-windup structure and from

applying our proposed design procedures. The results are

especially beneficial when the plant is ill-conditioned or

has lightly damped modes. The method allows an explicit

trade-off between stability and performance. We are currently

investigating how significantly the balance is shifted when

we replace input saturations with a quadratic program. We

have also restricted our discussions to the nominal case

where there are no model uncertainties. An area of further

work is to adapt the synthesis approach of [5] or [36]

for incorporating robustness into the optimizing anti-windup

design.
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