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Abstract— We are concerned in this paper by bounded
control of nonlinear underactuated dynamical systems. We
focus our exposition on a feedback-based stabilization bounded
control action shaped by saturation functions. A simple sta-
bilizing controller for the well-known cart-pendulum system
is then designed in this paper. Our control strategy describes
in lumped linear time-invariant terms the concerned under-
actuated nonlinear system as a cascade nonlinear dynamical
system consisted of a simple chain of four integrators with
a high-order smooth nonlinear perturbation, and assumes
initialization of the resulting underactuated system in the upper-
half plane. Our proposed feedback-based regulation design
procedure involves the simultaneous combination of two control
actions: one bounded linear and one bounded quasilinear. Con-
trol boundedness is provided in both involved control actions by
specific saturation functions. The first bounded control action
brings the non-actuated coordinate near to the upright position
and keep it inside of a well-characterized small vicinity, whereas
the second bounded control action asymptotically brings the
whole state of the dynamical system to the origin. The necessary
closed-loop stability analysis uses standard linear stability
arguments as well as the traditional well-known Lyapunov
method and the LaSalle’s theorem. Our proposed control law
ensures global stability of the closed-loop system in the upper
half plane, while avoiding the necessity of solving either partial
differential equations, nonlinear differential equations or fixed-
point controllers. We illustrate the effectiveness of the proposed
control strategy via numerical simulations.
Keywords: Underactuated Nonlinear Mechanical Systems, Cas-
cade Interconnected Systems, Nonlinear Feedback-Based Bounded
Control, Global Stabilization, Saturation Functions, Cart-Pendulum
System. .

I. INTRODUCTION

Underactuated nonlinear dynamical mechanical systems
offer an interesting challenge when considering control is-
sues. Nonlinear feedback-based stabilization of this class
of dynamical systems is by no means a trivial problem.
Because of its control-related challenging features, the well-
known cart-pendulum system have been extensively studied
in recent times by the control community (see for instance
[1] and the references therein). This control benchmark
consists of a free vertical rotating pendulum with a pivot
point mounted on a cart horizontally moved by a horizontal
force (which corresponds to the system input). The control

Carlos Aguilar-Ibañez is with CIC-IPN, Av. Juan de Dios Bátiz s/n
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problem ask for the pendulum to be swinged up from its
stable hanging position in order to maintain it in its unsta-
ble upright position. What makes this simple mechanical
system an interesting control benchmark is the fact that
the pendulum angular acceleration cannot be controlled,
i.e. the cart-pendulum system is a two degrees-of-freedom
mechanical underactuated system. Hence, many common
stabilizing control techniques developed for fully-actuated
systems (mainly robot manipulators) cannot be directly ap-
plied to this particular system. It must be pointed out that
the cart-pendulum system is not input-output (statically or
dynamically) feedback linearizable (see for instance [2]).
Moreover, the cart-pendulum system loses controllability and
other control-related geometric properties when the pendu-
lum moves through the horizontal plane (see [1] ). However,
since the system is locally controllable around the unstable
equilibrium point, closed-loop stabilization by linear pole-
placement can be used there (see for instance [3]). Being
more specific, stabilizing the cart-pendulum system involves
two main aspects: i) swinging up the pendulum from the sta-
ble hanging position to the unstable upright vertical position
(see for instance [4]); ii) stabilizing the closed-loop system
around the open-loop unstable equilibrium point. For this
second aspect it is commonly assumed that the free endpoint
of the pendulum is initially located above the horizontal
plane, or lies inside a well-characterized open vicinity of zero
(the vicinity defines the closed-loop stability domain). We
focus our attention on the former more challenging problem.
Let us now review some remarkable works on this aspect.
In [5] a nonlinear controller, based on the backstepping
procedure, is used to solve the stabilization problem in the
unstable equilibrium point; the proposed controller ensures
full state convergence. A controller based on nested satura-
tion functions is proposed in [6]. A similar work is discussed
in [7], where a chain of integrators is considered as a model
for the cart-pendulum system. In [4] a stabilization technique
using switching and saturation functions (in addition to the
Lyapunov method) is introduced. A control strategy based
on controlled Lagrangians is presented in [8]. A feedback
control scheme based on matching conditions is described
in [9], while a simple matching condition is used in [10]
to solve the cart-pendulum regulation problem. A very in-
teresting nonlinear control strategy based on energy shaping
techniques combined with input-to-state stability methods is
presented in [11]. A solution which exploits power-based
passivity properties of the cart-pendulum system is proposed
in [12]. A nonlinear controller based on both the fixed-
point backstepping procedure and saturation functions is
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proposed in [13]. This list of published works is by no
means exhaustive. Let us conclude it by mentioning the work
published in [14], where the challenging nature of the cart-
pendulum problem is underscored to the nonlinear control
community. We proceed now to speak about our bounded
control approach. As far as the description of the system
is concerned, we consider the nonlinear model discussed in
[13], assuming that the pendulum is initialized over the upper
half plane. We propose then a very simple control strategy,
based on the traditional Lyapunov method and the LaSalle’s
theorem. Based on a description of the concerned system as
a cascaded interconnected nonlinear system, our approach
splits the control scheme in two bounded control actions: the
first control action consists of a bounded linear controller,
whereas the second control action consists of a bounded
quasilinear control law. In dynamical terms, the bounded
linear control action confines both the angular position
and the angular velocity in a small compact set defining
the closed-loop stability domain. As far as the bounded
quasilinear control action is concerned, it guarantees the
full state convergence of the closed-loop system. We must
point out that our solution avoids the necessity of solving
partial differential equations, nonlinear differential equations
or fixed point control equations. The paper is organized
as follows: Section II concerns modeling issues as well as
the problem statement, namely the cart-pendulum regulation
problem. We present our proposal in Section III, which we
illustrate with a simulated control scheme. We conclude with
some final remarks in Section IV.

II. PROBLEM STATEMENT

In this work we consider cascade interconnected nonlinear
dynamical systems expressed in state-based terms as follows:

.
z1 = z2;

.
z2 = z3 + ∆(z3, z4);

.
z3 = z4;

.
z4 = u, (1)

where ∆(z3, z4) :R2 → R is a smooth nonlinear function,
bounded as |∆(z)| ≤ κ0z

2
4 , with k0 being a real constant

parameter. A system described in this simple way can be seen
as a chain of four integrators with a high-order perturbation.

Remark 1: Notice that the cascade interconnected nonlin-
ear system (1) corresponds in fact to a nonlinearly pertur-
bated linear system, what allows linear control actions to
be included in feedback-based control schemes intended to
regulate the behavior of the system.

We must point out that many underactuated nonlinear
dynamical systems can be described as in (1). That is the
case in [13], where this description is chosen in order to
solve the stabilization problem of both the Furuta pendulum
and the cart-pole system. A novel version of the backstep-
ping technique, combined with a fixed point controller is
proposed in [13] to stabilize these two nonlinear dynamical
systems. The corresponding stability analysis is based on the
remarkable convergence property, proposed in [15], satisfied
by some cascaded interconnected systems. We must remark
that some other works related to the study of the stabilization
of this kind of feed-forward systems were introduced before
[13]. For instance, a nested saturation control technique is

introduced in [16]. Here we solve the regulation problem
of the cart-pendulum system using the configuration (1). In
what follows we show how our system can be expressed as
a perturbed chain of four integrators. We finish this section
introducing the following useful definitions concerning both
linear saturation functions and nonlinear saturation functions:

Definition 1: Let x ∈ R. The classical linear saturation
function is defined as:

σm(x) =

{
x if |x| ≤ m; m

x

|x|
, if |x| > m,

}
(2)

for a fixed given bound m ∈ R.
Definition 2: By a sigmoidal function sm(x), we mean a

smooth function that is bounded, strictly increasing with the
property that sm(0) = 0, xsm(x) ≥ 0, and |sm(x)| ≤ m,
for all x ∈ R.

We proceed now to show how the cart-pendulum system
can be described as a cascaded interconnected nonlinear
systems consisted of a nonlinearly perturbed chain of four
integrators.

A. System dynamics
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Fig. 1. Cart-pendulum system.

Consider the well-known cart-pendulum system (see Fig-
ure 1), described by the following set of normalized differ-
ential equations (see for instance [3]):

cos θq̈ + θ̈ − sin θ = 0, (1 + δ) q̈ + cos θθ̈ + θ̇2 sin θ = f,
(3)

where: q is the normalized displacement of the cart; θ is
the actual angle that the pendulum forms with the vertical;
f is the horizontal normalized force applied to the cart
(i.e. the system input), and δ > 0 is a real constant
that depends directly on both, the cart and the pendulum
masses. In the non-forced case corresponding to f = 0 and
θ ∈ (−π/2, π/2) the above system has only one unstable
equilibrium point given by x = (θ = 0, θ̇ = 0, q = q, q̇ = 0);
with q being constant. Some simple algebra allows us to
derive a new control variable u:

q̈ =
1

δ + sin2 θ

(
f − θ̇2 sin θ − cos θ sin θ

)
4
= u. (4)

Thus, system (3) can be written in a very simple way as:

θ̈ = sin θ − cos θu, q̈ = u. (5)
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Now, we proceed to express system (5) as if it were a
four-order chain of integrators plus an additional nonlinear
perturbation. For this end we define the new coordinates:

z1 = q + 2 tanh−1(tan
θ

2
),

z2 =
.
q +

.

θ sec θ, z3 = tan θ, z4 =
.

θ sec2 θ. (6)

Then, system (5) can be written as:
.
z1 = z2,

.
z2 = z3 + α(z3)z24 ,

.
z3 = z4,

.
z4 = v, (7)

where the term α(z3) is given by α(z3) = z3

(1+z23)
3
2

, and v

is now the new control variable defined, as:

v
4
= sec2 θ (−u cos θ + sin θ) + 2θ̇2 sec2 θ tan θ. (8)

Remark 2: Notice that the above set of transformations
are well defined for all −π/2 < θ < π/2. That is, the cart-
pendulum model (5) works well for all the states belonging
to the upper half plane. We shall then assume in what follows
that the system is initialized on the upper half plane. On the
other hand, we must remark that |α(z)| ≤ κ0 = 2/31.5.
We can say then that (7) approximates (5) in the upper half
plane, i.e. we describe the motion of the system only in
the region that concerns our control purposes. The cascaded
interconnected system (7) corresponds to a control-on-the-
upper-half-plane reduced model.

We can now formulate our control problem.

Problem formulation: Given a cart-pendulum system de-
scribed as in (7), bring the pendulum to the upright position
and, simultaneously, bring the cart to the origin or any other
fixed desired position.

Remark 3: Note that this problem formulation assumes
that the pendulum angle position is initialized over the
horizontal plane.

We proceed now to propose our bounded control strategy.

III. REGULATION OF THE CART-PENDULUM SYSTEM

A. Linear transformation

Inspired in what is presented in [16], we first introduce
the following linear transformation:

x
4
=


x1
x2
x3
x4

 =


1 3 3 1
0 1 2 1
0 0 1 1
0 0 0 1



z1
z2
z3
z4

 ,
which leads to when applied to (7):

.
x1 = x2 + x3 + x4 + 3α(z3)q24 + v,
.
x2 = x3 + x4 + α(z3)x24 + v,
.
x3 = x4 + v,
.
x4 = v.

(9)

In the following subsection we split the new control input v
into two control actions. One part of this control, namely
v1, brings both the state x3 and the state x4 to a small
compact set defining the closed-loop stability domain and,
consequently, renders the nonlinear terms of system (9) to

an arbitrarily small vicinity of zero. Acting simultaneously
with the linear control action, a bounded quasilinear control
action, namely v2, stabilizes the missing states x1 and x2.

B. Stabilization of the states x3 and x4
In order to guarantee that the states x3 and x4 are bounded,

we propose v to be splitted as:

v =

v1︷ ︸︸ ︷
−x3 − x4 + v2, (10)

where |v2| ≤ ε; with ε > 0. Thus, after substituting (10) into
(9), we have that:

.
x1 = x2 + 3α(z3)x24 + v2,
.
x2 = α(z3)x24 + v2,
.
x3 = −x3 + v2,
.
x4 = −x3 − x4 + v2.

(11)

We emphasize that, if |v2| ≤ ε (with ε small enough),
then the states x3 and x4 converge toward the vicinity
B(x34) ≤ δε

1; where the bound δε can be made small by
minimizing ε and, consequently, all the nonlinear terms in
(11) can be arbitrarily approximated to zero. This results in
the dominancy of the linear dynamics over their respectively
nonlinear dynamics. That is, signal v2 will be then selected as
a bounding function, where ε is given latter in our discussion.
In order to analyze the boundedness of both the state x3 and
the state x4, we consider the definite positive function given
by:

V1(x4, x3) =
1

2
(x3 − x4)2 +

1

2
x24. (12)

Differentiating (12) and taking into account (11) we have
that:

.

V 1(x4, x3) = −2x24 + x4v2. (13)

Now, given the assumption |v2| ≤ ε we have that
.

V 1 is in
fact bounded as follows:

.

V 1(x4, x3) ≤ − |x4| (−ε+ 2 |x4|) . (14)

Note that if |x4| > ε/2, then, from (14), we have that
.

V 1 <
0. Consequently, after a finite time T1 we have:

|x4(t)| < ε/2; ∀ t > T1. (15)

In a similar fashion, there exists a finite time T2 > T1 such
that:

|x3(t)| < ε; ∀ t > T2. (16)

It is important to remark that the right-hand side of (11) is
globally Lipschitz, then the states x1 and x2 remain bounded
in a finite time. Therefore, there does not exist a finite time
of escape (see [17]).

Remark 4: From (13) we have that the following inequal-
ity holds:

.

V 1(x4, x3) <
3

2
x24 +

v22
2
. (17a)

1For simplicity B(x34) =
√
x23 + x24.
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C. Stabilization of both the state x2 and the state x1
In order to stabilize the missing state variables we propose

the bounding control action v2 as follows:

v2 = −σm(x2)− kiσm(x1), (18)

with the control parameter ki being characterized by 0 <
ki < 1.

Remark 5: The function σm(x1) can substituted by any
saturation function.

On the other hand, we have that:

|v2| ≤ ε
4
= m(ki + 1). (19)

Then, after substituting the above controller into the second
equation of (11) we get:

.
x2 = −σm(x2)− kism(x1) + α(z3)x24. (20)

We introduce now the following positive definite function:

V2 =

∫ x2

0

σm(s)ds.

in order to verify the boundedness of the state x2. Differen-
tiating V2 and using (20) we have that:

.

V 2 = σm(x2)
(
−σm(x2)− kism(x1)− α(z3)x24

)
. (21)

Selecting m > kim + κ0ε
2/4 we can assure that

.

V 2 < 0,
if |x2| > ki + κ0ε

2/4m. Therefore, there is a finite time
T3 > T2 > 0 such that:

|x2(t)| ≤ km2

4
= ki +

κ0ε
2

4m
; ∀ t > T3.

We emphasize that the restriction m > kim + κ0ε
2/4 can

be always satisfied. Indeed, from the definition of ε given in
(19) we evidently have:

1 > ki +
κ0m

4
(1 + ki)

2 (22)

(just to illustrate how this inequality holds take for instance
ki = 2/3 and m = 1, for a given κ0 = 0.39). Finally, once
the state x2 is confined to move inside the region defined by
km2 , the linear saturation function no longer acts over this
state; that is, σm(x2) = x2. Therefore, v2 turns out to be
v2 = −x2 − kiσm(x1). In the same way, after t > T3, we
can claim that the model in (11) leads to:

.
x1 = −kiσm(x1) + 3α(z3)x24,.
x2 = −x2 − kiσm(x1) + α(z3)x24,.
x3 = −x3 − σm(x2)− kiσm(x1)
.
x4 = −x4 − x3 − σm(x2)− kiσm(x1).

(23)

Now, in instead of showing that the state x1 is bounded,
we show in what follows that, after a finite period of time
t > T3, all the states asymptotically converge to zero. Let us
first introduce the following useful Lemma.

Lemma 1: Consider the first two equation in (23) and the
following positive definite function:

Vm(x2, x1) =

∫ x2

0

σm(s)ds+ ki

∫ x1

0

σm(s)ds. (24)

After a finite period of time t > T3, the following inequity
holds

.

V m(x2, x1) ≤ Kmx
2
4 − 1

2

(
x22 + k2i σ

2
m(x1)

)
− 1

2v
2
2 ,

where Km
4
= mκ0(3ki + 1).

The Proof of this Lemma is given in the Appendix.

D. Asymptotic convergence to the origin of the whole state

From the above discussion we conclude that after the finite
time t > T3 > 0, the states x1, x2 and x3 are bounded in
some compact set, which defines the closed-loop stability
domain. To guarantee that all the states asymptotically con-
verge to zero we propose the Lyapunov function VT (x) =
V1(x4, x3) +Vm(x4, x3), where V1 and Vm were previously
defined in (12) and (24), respectively. Since functions V1(∗)
and Vm(∗) are strictly positive definite function, with their
respective arguments, we can claim that VT (x) qualifies as
a candidate Lyapunov function. So, in case that t > T3 we
have that the time derivative of VT satisfies the following
inequality (see Lemma 1 and Remark 4):

.

V T (x) ≤ −(
3

2
−Km)x24 −

1

2

(
x22 + k2i s

2
m(x1)

)
. (25)

Selecting Km < 3/2 we have that
.

V T (x) ≤ 0.2 From
Lyapunov’s direct method we ensure the stability of the
whole state in the Lyapunov sense. In order to prove now
asymptotic stability, we use the well-known LaSalle’s theo-
rem [17]. In the region defined as:

S = {x ∈ R4 :
.

V T (x) = 0}

we have that x4(t) = 0, x2(t) = 0 and x1(t) = 0. Thus, in
the set S, we also have v2 = 0. Now, from the four chained
integrators model (11) we have x3(t) = 0, in the set S.
Therefore, the largest invariant set M ⊂ S is given by x =
0. Thus, according to LaSalle’s theorem all the trajectories
of system (23) asymptotically converge towards the largest
invariant set defined by M = {x = 0}.

We summarize our previous discussion with the next
proposition, which corresponds to our main result:

Proposition 1: Consider the closed-loop cart-pendulum
system as described by model (7) with:

v = −z3−2z4−σm(z2+2z3+z4)−kiσm(z1+3z2+3z3+z4).
(26)

Then the closed-loop system is globally asymptotically stable
and locally exponentially stable, provided that the parameters
m and ki satisfy the inequalities 1 > ki + κ0m

4 (ki + 1)2 and
mκ0(3ki + 1) < 3

2 . �
Remark 6: Note that in order to simplify as much as

possible the previous stability analysis we use the proposed
v2 = −σm(x2)− kiσm(x1), which is formed using a linear
saturation function. However, the control action is not unique
since nonlinear saturation functions can also be used.

Taking into account this remark we introduce the following
result:

Proposition 2: Consider the cart-pendulum model given
by (7) and apply the feedback control law v = −z3 −

2For example, ki = 2/3 and m = 1, for a given κ0 = 0.39.

1762



2z4 − sm(z2 + 2z3 + z4) − kism(z1 + 3z2 + 3z3 + z4).
Then, the closed-loop system can be globally asymptotically
stable and locally exponentially stable, for a suitable set of
the parameters m and ki. �
The Proof of this Proposition can be found in the Appendix.

In what follows we illustrate our results through the
numerical simulation of a closed-loop control scheme.

E. An illustrative example

In order to show the effectiveness of our proposed nonlin-
ear control strategy we chose the controller parameter values
to be m = 1 and ki = 0.666. As far as the initial conditions
are concerned we take (θ,

.

θ, q,
.
q) = (1.15[rad], 0, 1, 0.25).

We consider two cases, the first one taking into account
a linear saturation function (LSF), while the second case
takes into account a nonlinear saturation function (NSF).
Notice that these cases correspond to the results given
by Proposition 1 and Proposition 2, respectively. Figure 2
shows the results coming out from the numerical simulations.
Notice that the selected nonlinear saturation function is fixed
as sm(x) = tanh(x). As can be seen we have, as expected,
a quite effective performance for both controllers. Also, we
can observe that the closed-loop behavior for both control
schemes is in fact very similar, nevertheless the NSF strategy
displays a more smoother response. We conclude now our
discussion with some final comments.

IV. CONCLUDING REMARKS

In this paper a new simple control strategy is proposed
in order to solve the well-known cart-pendulum regulation
problem, assuming that the pendulum is initialized in the
upper half plane. Our control strategy used a control-oriented
model of the considered system (a model consisted of a
nonlinearly perturbed linear system consisted of a chain of
four integrators), previously introduced in [13]. The model
choice let us to design a simple composite stabilizer consisted
of two control actions. The first control action characterizes
a bounded linear controller, devoted to bring the nonactuated
coordinate (that is, both the angular position and the angular
velocity) near to the unstable vertical position and keep
it inside of a small vicinity which defines the closed-loop
stability domain. The second control action is a bounded
nonlinear controller which, in conjunction with the linear
bounded control action, ensures that the closed-loop whole
state of the system asymptotically converges to the origin.
The combined control law ensures then the regulation of the
system. As discussed, our proposed control strategy can be
displayed in two different versions. The first version concerns
a bounded controller which uses a linear saturation function,
while the second version uses a nonlinear saturation func-
tion. Our stability analysis was carried out using standard
arguments from linear systems theory in conjunction with
the traditional Lyapunov method and the famous LaSalle’s
theorem. We strongly believe that many other nonlinear
underactuated dynamical systems can be stabilized using our
simple control approach. We must point out that a main
advantage of this work is that we did not need to solve

PDE, nonlinear differential equations and nested saturation
functions. Finally, the numerical experiments carried out with
an academic example illustrated the effectivity of our control
strategy.

APPENDIX

Proof of Lemma 1
We must remark that the time derivative of Vm (24) around

the trajectories defined by the first two equation of (23) is
given by:

.

V m =

$0(x)︷ ︸︸ ︷
α(z3)x24 (3kiσm(x1) + σm(x2)) +

$1(x,v2)︷ ︸︸ ︷
kiσm(x1)x2 − v22 .

(27)
Then after t > T3 we must have v2 = −x2 − kiσm(x1).
Therefore, $1(x, v2) can be expressed as:

$1(x, v2) = −1

2

(
x22 + k2i σ

2
m(x1)

)
− 1

2
v22 (28)

and evidently $0(x) can be bounded by:

|$0(x)| ≤ Kmx
2
4
4
= mκ0(3ki + 1)x24. (29)

Substituting (28) and (29) into (27), we get the inequity
shown in Lema 1, which concludes this proof �
Proof of Proposition 2

For the sake of simplicity we use the sigmoidal function
introduced by Definition 2, which is to say sm(x) =
m tanh(x). That is, v is formed as:

v =

v1︷ ︸︸ ︷
(−x3 − x4)

v2

+
︷ ︸︸ ︷
(−m tanh(x2)− kim tanh(x1)) .

Selecting v1 and the bound for v2 as discussed in Section
III, and taking into account the expressions (10) and (19), we
guarantee that there exists a time t > T2, such that |x4(t)| <
ε
2 = m(ki+1)

2 ; ∀ t > T2 > T1. Therefore, the first and the
second equations of (23) become:

.
x1 = x2 −m tanh(x2)− kim tanh(x1) + 3α(z3)x24,.
x2 = −m tanh(x2)− kim tanh(x1) + α(z3)x24.

(30)
To analyze the boundedness of x2, we use the positive
definite function E2 = x22/2, whose time derivative can be
bounded as:

.

E2 = −mx2 tanh(x2)− kimx2 tanh(x1) + x2α(z3)x24

≤ −m |x2|
(
|tanh(x2)| − ki − κ0m(ki+1)2

4

)
.

(31)
Hence, selecting m and ki, such that ki + κ0m(ki+1)2

4

4
=

ηmki < 1. Therefore, there is a time t > T3 such that
|x2| < tanh−1(ηmki)

4
= xmki ; for all t > T3. Indeed,

it follows because, if tanh(x2) > ηmki , then
.

E2 < 0.
Notice that the state x2 can be confined to move inside of
a compact set relying on the bound xmki . Note that this
bound can be manipulated, almost, as desired. Then we can
select for instance xmki < 1.9 to make |x− tanh(x)| <
|tanh(x)| ; for all |x| < 1.9 to hold. Simple geometric
arguments can be applied to prove this inequality. Until now
we have only provided sufficient conditions to guarantee that
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Fig. 2. Comparison between the closed-loop responses of both control strategies: LSF and NLS.

x2, x3 and x4 are bounded (with the corresponding bounds
being freely fixed). Now we are in conditions to proof that the
whole state asymptotically converges to the origin. We first
choose a positive function (similar to the one used in Lemma
1) defined as Em(x2, x1) =

∫ x2

0
sm(s)ds+ ki

∫ x1

0
sm(s)ds.

Differentiating the above equation with respect to (30),
we have, after using simple algebra as in Lemma 1, the
following inequity:

.

Em(x2, x1) ≤ Kmx
2
4

+

$(x)︷ ︸︸ ︷
ki tanh(x1)x2 −

1

2
(tanh(x2) + ki tanh(x1))

2

− 1
2v

2
2 .

(32)

Notice that $(x) can be expressed as $(w) =

− 1
2 tanh2(x2) − k2i

2 tanh2(x1) + ki tanh(x1)(x2 −
tanh(x2)). Now, under the assumption t > T3,
selecting xmki < 1.9, we have $(w) ≤
− 1

2 tanh2(x2)− k2i
2 tanh2(x1) + ki |tanh(x1)| |tanh(x2)| ≤

− 1
2 (|tanh(x2)|+ ki |tanh(x1)|)2. Thus,

.

Em can be
bounded as:

.

Em(x2, x1) ≤ Kmx
2
4

− 1
2 (|tanh(x2)|+ ki |tanh(x1)|)2 − 1

2v
2
2 .

(33)

We built now the candidate Lyapunov function ET =
Em + V1, with V1 defined as in (12). Then, using some
simple algebra and Remark 4 it is easy to show that
.

ET can be bounded as
.

ET (x) ≤ −( 3
2 − Km)x24 −

1
2 (|tanh(x2)|+ ki |tanh(x1)|)2. Selecting Km < 3/2 (as
in Proposition 1), we have that

.

E is semi-definite negative.
Hence all the states are bounded. Finally, invoking the
LaSalle’s thorem, and following standard standard argu-
ments, we can show that the whole state of the closed-
loop system asymptotically converges to the origin. This
concludes the proof. �
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