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Abstract— The task of synchronising autonomous

agents is solved by a networked controller that steers

the agents towards a common trajectory. This paper

extends existing analysis and design methods for sets of

linear agents with individual dynamics. To formulate the

basic condition under which agents can be synchronised,

the notion of system inclusion is introduced. It is shown

that the agents can be synchronised in a leader-follower

structure by an appropriate networked controller if and

only if the dynamics of the extended agents include the

dynamics of the synchronous trajectory. The results are

illustrated by their application to vehicle platooning.

I. INTRODUCTION

Synchronisation is an important phenomenon occur-

ring in multi-agent systems. A networked controller

should be chosen so as to give all subsystems a coherent

behaviour. In this paper, synchronisation is investigated

as the process of moving the subsystem outputs yi(t),
(i = 1, 2, ..., N) onto a common trajectory ys(t).

The paper considers leader-follower synchronisation

where the synchronous trajectory is prescribed by some

reference system Σs (Fig. 1). The closed-loop system is

said to be synchronised, if the following requirements

are met:

1) Synchronous behaviour: For specific initial

states, all outputs yi(t) should follow a common

trajectory ys(t):

y1(t) = ... = yN (t) = ys(t), t ≥ 0. (1)

2) Asymptotic synchronisation: For all other initial

states, the networked controller should asympto-

tically synchronise the agents:

lim
t→∞

‖yi(t) − ys(t)‖ = 0, i = 1, 2, ..., N. (2)

An important issue of synchronisation is given by

the requirement that the agents should be able to

follow the synchronous trajectory ys(t) due to their

internal dynamics. On the synchronous trajectory (1)
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Fig. 1: Leader-follower synchronisation

the interactions established by the networked controller

are not active and the agents generate the synchronous

outputs independently from each other. This characte-

ristic distinguishes synchronisation from many control

problems, where a system is forced by its input to

follow a nominal trajectory.

Considering agents with arbitrary linear dynamics,

this paper answers the question under what conditions

agents are able to follow a reference trajectory ys(t).
The result is an internal-model principle for synchron-

sation, which claims that each agent Pi together with

its local controller Ci has to include the model Σs

of the reference trajectory. This fact was proved in

literature to be a necessary condition for the solution of

consensus problems. The present paper shows that it is

also sufficient in the sense that by using an appropriate

communication topology agents with internal reference

model can be synchronised.

This paper deals with the synchronisation problem

in a very general set-up:

• The agents Pi have individual dynamics,

• their local controllers Ci can have any dynamical

properties,

• only output information yi(t) is exchanged,
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• the communication topology K can be freely

chosen.

This set-up contrasts with the literature, where gene-

rally agents with identical dynamics are controlled by

some static feedback and the state information xi(t) is

communicated.

Literature survey. In the control literature on syn-

chronisation, the focus has been laid on the design of

distributed controllers for sets of identical subsystems

[4], [6], [8], [9]. The leader-follower structure has been

investigated e. g. in [1].

Identical agents can be synchronised, because they

possess the same dynamical properties. To synchro-

nise individual agents results in the new problem of

choosing appropriate controller dynamics. It has been

shown in [2], [12] that the agents have to possess an

internal model of the consensus trajectory. The current

paper distinguishes from these references in the control

structure. It considers networked systems in which

only the agent outputs yi(t) are communicated and

the agents are not extended by a common reference

generator.

The results are applied here to vehicle platooning,

which is an important practical example [5].

This paper is structured as follows. Section II defines

the agents with individual dynamics and the local

controllers. Section III introduces the notion of system

inclusion. The main result of this paper shows that

synchronisation occurs if and only if the controlled

agents include the reference system as an internal

model and the synchronisation conditions are satisfied

(Theorem 3). The results are illustrated by considering

vehicle platooning as a synchronisation problem.

II. MODELS

The agents Pi have linear dynamics

Pi :







ẋi(t) = Aixi(t) + Biui(t)
xi(0) = xi0

yi(t) = Cixi(t)
(3)

(i = 1, 2, ..., N) with ui(t) ∈ R
mi denoting the input,

xi(t) ∈ R
ni the state and yi(t) ∈ R

r the output.

The reference system Σs

Σs :

{
ẋs(t) = Asxs(t), xs(0) = xs0

ys(t) = Csxs(t)
(4)

has the state xs(t) ∈ R
ns and the output ys(t) ∈ R

r.

Note that the dimension r of the outputs of all agents

and of the reference system is the same. To avoid trivial

solutions, all eigenvalues λsi of As are assumed to have

a nonnegative real part.

The agents Pi are controlled by local controllers Ci,

which communicate over a network (Fig. 1):

Ci :







ẋri(t) = Arixri(t) + Briei(t)
xri(0) = xri0

ui(t) = Krixri(t) + Keiei(t).
(5)

The communication among the agents is restricted to

a transfer of the agent outputs yi(t), (i = 1, 2, ..., N)
and of the reference trajectory ys(t). The generalised

synchronisation error ei(t) is given by

ei(t) =

N∑

j=1,j �=i

kij(yj(t) − yi(t)) + kis(ys(t) − yi(t))

=

N∑

j=1

kijyj(t) + kisys(t), i = 1, 2, .., N

with

kii = −

N∑

j=1,j �=i

kij − kis. (6)

It merely refers to the relative outputs yj(t) − yi(t).
The matrix with the elements kij , (i, j = 1, 2, ..., N ) is

denoted by K. With ks = (k1s ... kNs)
T the synchro-

nisation error e = (eT
1
(t) ...eT

N (t))T is given by

e(t) = (K ⊗ Ir)y(t) + ks ⊗ ys(t). (7)

where ⊗ denotes the Kronecker product.

Extended agents. If the agent model (3) is combined

with the controller (5), the extended agent is obtained
(

ẋi(t)

ẋri(t)

)

=

(

Ai BiKri

O Ari

)

︸ ︷︷ ︸

A0i

(

xi(t)

xri(t)

)

︸ ︷︷ ︸

x̄i(t)

+

(

BiKei

Bri

)

︸ ︷︷ ︸

B0i

ei(t)

yi(t) = (Ci O)
︸ ︷︷ ︸

C0i

(

xi(t)

xri(t)

)

(8)

and abbreviated as

Σ0i :

{
d

dt
x̄i(t) = A0ix̄i(t) + B0iei(t)
yi(t) = C0ix̄i(t).

(9)

It is assumed that all extended agents are completely

controllable and completely observable.
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Model of the overall system. The overall system

consists of N extended agents (9) that are coupled by

eqn. (7). The model ΣF of the interacting followers is

ΣF :

{
d

dt
x̄(t) = Āx̄(t) + B̄ys(t)
y(t) = C̄x̄(t)

(10)

with

x̄(t) = (x̄T

1 (t) ... x̄T

N (t))T, y(t) = (yT

1 (t) ...yT

N (t))T

Ā =






A01

. . .

A0N




 (11)

+






B01

. . .

B0N




 (K ⊗ Ir)






C01

. . .

C0N






B̄ =








k1sB01

k2sB02

...

kNsB0N








, C̄ =






C01

. . .

C0N




 . (12)

This model is combined with the reference system (4)

to get the overall leader-follower system

ΣLF :







d
dt

(

xs(t)

x̄(t)

)

=

(

As O

B̄Cs Ā

) (

xs(t)

x̄(t)

)

y(t) = (O C̄)

(

xs(t)

x̄(t)

)

.

The design problem is to find a networked controller

for which all agents follow the trajectory ys(t).

III. SYSTEM INCLUSION

This section defines the notion of system inclusion

that describes systems having some dynamics in com-

mon. Consider the two systems

Σs :

{
ẋs(t) = Asxs(t), xs(0) = xs0

ys(t) = Csxs(t)
(13)

Σ :

{
ẋ(t) = Ax(t), x(0) = x0

y(t) = Cx(t)
(14)

with dimxs =ns, dimx = n and dimy = dimys = r.

Definition 3.1: (System inclusion) The system Σ is

said to include the system Σs (in symbols: Σs ⊆ Σ) if

for every initial state xs0 ∈ R
ns there exists an initial

state x0 ∈ R
n such the outputs are identical:

y(t) = ys(t), t ≥ 0. (15)

System inclusion can be tested as follows:

Theorem 1: (System inclusion) The system Σ in-

cludes the system Σs if and only if there exists an

(n × ns)-matrix P such that the following relations

hold:

AP = PAs (16)

CP = Cs. (17)

The sufficiency of these relations follow from the

initial state x0 = Pxs0 for which eqn. (15) holds.

The necessity of (17) results from the requirement

y(0) = ys(0), which claims the existence of P . Then

the consideration of the derivatives of y(t) and ys(t)
leads to the condition (16).

Remark. The notion of system inclusion is less restric-

tive than the notion of system equivalence introduced

in [13]. The latter is symmetric requiring for any

state of one system the existence of a state of the

other system for which both systems have the same

output. The notions of simulation and bisimulation

investigated in [7], [10] extensively use the freedom

given by a disturbance input to both systems, which is

not available here.

IV. LEADER-FOLLOWER SYNCHRONISATION

A. Basic leader-follower structure

The main idea of synchronisation analysis is first

demonstrated by considering the basic structure shown

in Fig. 2 consisting of the agent P and the local

controller C, which are described in the sequel by

eqns. (3) and (5) without index i:

P :

{
ẋ(t) = Ax(t) + Bu(t)
y(t) = Cx(t)

(18)

C :

{
ẋr(t) = Arxr(t) + Bre(t)
u(t) = Krxr(t) + Kee(t).

(19)

The synchronisation error is given by

e(t) = ys(t) − y(t). (20)

The extended agent Σ0 has the model (9)

Σ0 :

{
d

dt
x̄(t) = A0x̄(t) + B0e(t)
y(t) = C0x̄(t)

(21)
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Fig. 2: Basic leader-follower structure

with x̄(t) = (xT(t), xT
r (t))T and

A0 =

(

A BKr

O Ar

)

, B0 =

(

BKe

Br

)

,

C0 = (C O).

The controlled agent Σ̄ results from combining

eqns. (20) and (21):

Σ̄ :

{
d

dt
x̄(t) = (A0 − B0C0)x̄(t) + B0ys(t)
y(t) = C0x̄(t).

(22)

The controller C should be chosen so that the control-

led agent (22) together with the leader (4) satisfies the

requirements (1) and (2) (without index i).

B. Internal-model principle for synchronisation

If the condition (1) is satisfied, the synchronisation

error e(t) vanishes and the systems Σs and Σ0 do not

interact. Hence, the (open-loop) follower Σ0 has to

include the leader Σs.

Theorem 2: (Internal-model principle for the ba-

sic leader-follower structure) If the closed-loop agent

Σ̄ is synchronised with the leader Σs = (As, Cs), then

the extended follower Σ0 = (A0, C0) includes the

leader:

Σs ⊆ Σ0. (23)

The part of the extended agent Σ0, which after

some state transformation P coincides with the pair

(As, Cs), is called an internal model of the leader

in analogy to multivariable control, where the open-

loop system has to include an internal model of the

command signal generator. For the initial state x0 =
Pxs0 the follower generates the state trajectory of the

leader and, hence, satisfies the requirement (1).

C. Control structures satisfying the internal-model

principle

If the agent (18) includes the leader (Σs ⊆ P ),
the internal-model principle is satisfied. Otherwise, the

controller C has to introduce the internal model into

the extended agent Σ0. If the agent (18) is combined

with the controller

CIM :

{
ẋr(t) = Asxr(t) + Bre(t)
u(t) = Krxr(t) + Kee(t),

(24)

the extended agent satisfies eqn. (23) if the relation

Rank(C(λsiI − A)−1B) = r (25)

holds, which means that the eigenvalues λsi must not

be transmission zeros of the agent (18) [3].

D. Leader-follower synchronisation of agents with in-

dividual dynamics

The conditions for the synchronism in the basic

leader-follower structure are extended now for a set of

N followers (3) with individual dynamics. Theorem 2

applies to all followers (9) separately:

Σs ⊆ Σ0i, i = 1, 2, ..., N. (26)

The following investigations show which additional

requirements the overall system has to possess in order

to be synchronised.

Synchronisation error. If eqn. (1) is not satisfied,

synchronisation errors

eis(t) = ys(t) − yi(t), i = 1, 2, ..., N (27)

occur and the followers interact over the

communication network with each other and with the

leader. The following lemma gives a representation of

the synchronisation error es(t) = (e1s(t)
T ...eNs(t))

T.

Lemma 1: The synchronisation error es(t) appea-

ring in the leader-follower system ΣLF is described by

ΣE :

{
d

dt
x̌(t) = Āx̌(t), x̌(0) = x̌0

es(t) = −C̄x̌(t)
(28)

with the matrices Ā and C̄ defined in eqns. (11) and

(12) for some initial state x̌0.

The proof is given in [3].

The important aspect of this model is the fact

that the matrices Ā and C̄ are the same as in the

model (10) of the interacting followers. The pair

(Ā, C̄) is completely observable and the model may
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have any initial state x̌0 ∈ R
n̄ in the state space

of the model (28). Hence, the synchronisation error

es(t) vanishes if and only if Ā is asymptotically stable.

Theorem 3: (Leader-follower synchronisation)

The set of extended followers Σ0i, (i = 1, 2, ..., N)
described by eqn. (9) is synchronised with the leader Σs

by the interconnection (7) if and only if the following

conditions are satisfied:

1) All extended agents Σ0i = (A0i, B0i, C0i) in-

clude the leader (cf. eqn. (26)).

2) The interacting followers ΣF = (Ā, B̄, C̄) are

asymptotically stable.

Note that this condition applies to arbitrary commu-

nication topologies. The next section, however, shows

that cycle-free topologies are sufficient for synchroni-

sation and lead to simpler synchronisation conditions.

E. Cycle-free communication topologies

Equation (11) shows that the structure of the matrix

Ā depends upon the communication topology descri-

bed by the matrix K. If the communication graph does

not have any cycle, then there exists a permutation

matrix P such that the matrix K̂ = PKP T is a

triangular matrix. After the enumeration of the agents

has been changed accordingly, the matrix Ā has block-

triangular form with the diagonal blocks

Āii = A0i + k̂iiB0iC0i, i = 1, 2, ..., N (29)

and off-diagonal blocks Āij = O for i ≤ j.

Hence, the interacting followers are asymptotically

stable if and only if all the controlled agents Σ̄i are

asymptotically stable.

Corollary 1: (Synchronisation with cycle-free

communication) Consider leader-follower systems

with cycle-free communication structures. Such

systems are synchronised if and only if the following

conditions are satisfied:

• All the extended agents Σ0i, (i = 1, 2, ..., N)
include the leader.

• All the controlled followers Σ̄i, (i = 1, 2, ..., N)
are asymptotically stable.

• The communication graph has a spanning tree

with the leader as root node.

The synchronisation condition is simplified consi-

derably, because now it refers only to the matrices Aii,

(i = 1, 2, ..., N) given in eqn. (29) rather than to the

overall system matrix Ā defined in eqn. (11).

V. EXAMPLE: CONTROL OF A VEHICLE PLATOON

In vehicle platooning, the vehicles should be syn-

chronised with respect the (scalar) trajectory

ys(t) = s0 + v̄t, (30)

which is given by the leading vehicle. The initial state

of the reference system

Σs :







(

ẋs1(t)

ẋs2(t)

)

=

(

0 1

0 0

)

︸ ︷︷ ︸

As

(

xs1(t)

xs2(t)

)

(

xs1(0)

xs2(0)

)

=

(

s0

v̄

)

ys(t) = (1 0)
︸ ︷︷ ︸

Cs

(

xs1(t)

xs2(t)

)

(31)

fixes the initial position s0 and the velocity v̄. The i-

th vehicle should follow this trajectory with the inter-

vehicle distance s̄i.

The vehicles Pi have a velocity controller that adapts

the velocity vi(t) to the reference velocity ui(t), which

is the input used by the networked controller. The

position si(t) is obtained by integrating the velocity

vi(t). The i-th vehicle has the model
(

ẏi

ẋai

)

=

(

0 cT
ai

0 Aai

)

︸ ︷︷ ︸

Ai

(

yi(t)

xai(t)

)

︸ ︷︷ ︸

xi(t)

+

(

0

bai

)

︸ ︷︷ ︸

Bi

ui(t)

yi(t) = (1 0
T)

︸ ︷︷ ︸

Ci

(

yi(t)

xai(t)

)

.

The vehicles distinguish with respect to the matrix Aai

and the vectors bai and cT
ai.

Application of the internal-model principle. The

vehicles do not include the reference system Σs because

they have only one vanishing eigenvalue whereas the

reference system has two of them. Hence, the local

controllers Ci have to include one vanishing eigenvalue.

For the control law

Ci :

{
ẋri(t) = briei(t), xri(0) = xri0

ui(t) = krixri(t) + keiei(t)
(32)

the internal-model principle is satisfied. The controller

structure does not depend upon the vehicle parameters.
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Fig. 3: Synchronisation with communication of si(t)

Leader-follower synchronisation. Figure 3 shows

the synchronisation of ten vehicles with random initial

position and initial velocity and with information ex-

change among the neighbouring vehicles. The vehicles

synchronise after about 400 s.

0 50 100 150

0

1000

2000
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Fig. 4: Synchronisation with communication of

(si(t), vi(t))

The performance of the synchronisation can be con-

siderably improved if not only the position si(t) but

also the velocity vi(t) is communicated among the

vehicles (which means that yi(t) = (si(t), vi(t))
T

holds). Figure 4 shows the system behaviour with the

same communication topology and initial states as in

Fig. 3. The vehicles are already synchronised after

120 s.

VI. CONCLUSIONS

This paper has solved the synchronisation problem

for sets of agents with arbitrary linear dynamics. The

main results are the internal-model principle for syn-

chronisation and a necessary and sufficient synchro-

nisation condition. For uni-directional communication

structures, the synchronisation conditions can be stated

as separate conditions on the controlled agents.

These results show that synchronisation of agents

with individual dynamics is possible for very sim-

ple communication topologies like the uni-directional

communication from the leader to all followers. The

least requirement that the communication structure has

to satisfy is the existence of a spanning tree in the

communication graph with the leader as the root node.

The result of this paper can be extended for leader-

less synchronisation, where the synchronous trajectory

is a weighted average of the agent trajectories [3].
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