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Abstract— Decentralized channel state information is uti-
lized to design a multichannel access algorithm for uplink
transmission with power adaptation. The base station does
not coordinate the transmissions of mobile users and hence
users employ random access transmission. The situation is
modeled as a non-cooperative game, where mobile users attempt
to maximize its individual throughput gain with the least
transmission power consumption. It is shown that each user
should access a channel with probability 1 if the channel
gain exceeds some threshold and the energy consumption with
threshold policy does not exceed randomized policy. The game

is reformulated as a channel gain threshold adaptation game,
whose Nash equilibrium is proven to exist and be unique with
mild conditions. At last a distributed iterative algorithm is
proposed for each user to find the optimal threshold without
knowing the channel state distribution and other users’ strate-
gies, and is proven to converge to the unique Nash equilibrium.

I. INTRODUCTION

This paper considers decentralized multichannel access

control with power adaptation for uplink transmission in a

cellular system. The objective is to maximize the throughput

reward with the least transmission power by exploiting fa-

vorable channel conditions. The challenges in achieving this

objective is that the implementation of a practical algorithm

should only rely on each mobile user’s local information

without knowing the distribution of time-varying channel

conditions.

The channel-aware channel access control has been exten-

sively studied in the past several years. To adapt the channel

access and transmission power to the time-varying channel

state information (CSI), the system throughput maximization

problem is usually formulated as a mixed integer program-

ming or convex optimization problem by allowing time

shared co-channel utilization [1]. Even if dual decomposition

method is employed to reduce the exponential computational

complexity in the related mixed integer programming, a

substantial amount of message passing between the base
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station (BS) and mobile users is still needed (see e.g. [2]).

Recently, [3] proposed a threshold-based schedule scheme,

where mobile terminals transmit only when their channel

gains exceed pre-defined thresholds. However, their solution

method requires mobile users have the same channel gain

distribution. Similar threshold-based scheduler was proposed

by [4] to maximize the total logarithmic throughput in the

case of heterogenous CSI distribution. However, the loga-

rithmic transformation and variable substitution techniques

in [4] can not decompose the variable coupling in the sum

of product form in multichannel model in this paper. Non-

cooperative game theory is a powerful tool to tackle the

variable coupling, since a player or a user in a game always

makes decision in reaction to others without considering its

effects of decision making to others. The most related works

include [5] and [6]. The authors in [5] consider the channel

access game with the objective of minimizing the access

probabilities of mobile users while satisfying rate constraint.

We have different problem formulation and algorithm design

in this paper. The tradeoff between throughput gain and

energy consumption is also considered in [6]. There are

several features distinguish this paper from [6]. Time-varying

power consumption for channel contention and its analytical

evaluation are considered and sufficient conditions for unique

Nash equilibrium is established in this paper. A distributed

algorithm is proposed and its convergence is proven. Thus,

more smooth convergence process can be obtained compared

with the numerical method in [6] and best response update

in [5].

The rest of the paper is organized as follows. In section

II the problem of multichannel throughput maximization

with the least power consumption is formulated as a non-

cooperative game. The threshold-based policy is proven to be

optimal in solving this game in section III. Furthermore, its

energy consumption is compared with the randomized chan-

nel access strategies. In section IV, a distributed algorithm

is proposed to approach the optimal channel gain threshold

without knowing channel gain distribution. In section V,

the performance of proposed algorithm is evaluated and

compared with other results. Conclusion remarks are given

in section VI.

II. MULTICHANNEL ACCESS MODEL AND PROBLEM

FORMULATION

In this section, we define the multichannel access model

considered in this paper. We formulate the channel access

problem as a non-cooperative game considering energy effi-

cient transmission.
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A. Network Model

We considered a model of uplink transmission in a

multichannel wireless network with a set of users U =
{1, · · · ,U}. The whole frequency band is divided into a set

of channels C = {1, · · · ,C}. Time is divided into frames

identified by an index t. We assume that for each user, the

channel gain h is constant in each channel and each frame,

but varies independently between frames, users and channels.

The channel gain probability density function (PDF) for user

u on channel c is f c
u (hc

u). It is assumed that each user can

transmit on all channels simultaneously by using orthogo-

nal frequency-division multiplexing (OFDM) techniques. We

consider saturated time division duplex (TDD) systems, i.e.,

all users always have data to transmit to the BS. Thus, the

channel gains between users and the BS can be estimated at

each user through a periodically-transmitted beacon signal

from the BS. The BS can successfully receive the information

bits on the channels given that there is no collision. Data

is transmitted in frames and each frame consists of three

periods: contention period, acknowledgment (ACK) period,

and data transmission period. After the contention period,

each user receives an instantaneous feedback from the BS

for each contended channel during the ACK period. The

address of the successful user is broadcasted through the

ACK message. In the data transmission period, the successful

user transmits its data packets.

To take the advantage of time-varying CSI, each user

should adapt its channel access strategy to the de-

centralized CSI to save energy and improve through-

put. For each user u, define the transmission vector as

su (hu)=̂
[

s1
u

(

h1
u

)

, · · · ,sC
u

(

hC
u

)]T
∈ [0,1]C 1, where the cth en-

try corresponds to user u’s channel access probability on

channel c. The rate function of physical layer is denoted

as Rc
u (hc

u) , ∀u ∈ U , ∀c ∈ C , which is assumed to be

continuously increasing over [0,∞).

B. Problem Formulation

Since multiple users contend for channel access, con-

tention of user u in a frame t on channel c is successful if

and only if user u is sending channel request. If the channel

request from user u is successfully received by the BS, the

average transmission rate for user u given current channel

state h is

∑
c∈C

rc
u (hc) ,

where rc
u (hc) = sc

u (hc
u)Π j∈U \{u}

(

1− sc
j

(

hc
j

))

Rc
u (hc

u) is

user u’s average rate on channel c with current channel state.

Since the access strategy depends on the time-varying chan-

1Hereafter, we use bold letter to denote a vector. We use x−u to represent
a vector except the uth component.

nel state, we are more interested in the expected throughput

Eh

{

∑
c∈C

rc
u (hc)

}

= ∑
c∈C

∫ ∞

0
sc

u (hc
u)Rc

u (hc
u) f c

u (hc
u)dhc

u

×Π j∈U \{u}

(

1−

∫ ∞

0
sc

j

(

hc
j

)

f c
j

(

hc
j

)

dhc
j

)

,

where the above computation is due to the assumption that

the channel gains of different users are independent over

different channels and channel gains of the same user on

the same channel are independent and identically distributed

with PDF f c
u (·). To map the time-varying CSI into a trans-

mission opportunity is not only for throughput gain but

also for energy saving consideration. Each user u should

send the channel request with the smallest possible power
Pr
hc

u
to guarantee the received power Pr at the BS allows

the channel request to be successfully detected when there

are no collisions. Then the expected power consumption

for user u to contend on channel c with strategy sc
u (hc

u) is

Ehc
u
{pc

u (sc
u (hc

u))} =
∫ ∞

0 sc
u (hc

u)
Pr
hc

u
f c
u (hc

u)dhc
u

2.
Under the above description, each user adapts its transmis-

sion opportunity to the time-varying channel gain in order

to maximize its long-term throughput gain and minimize the

energy consumption at the same time. This multi-objective

optimization problem is formulated as a noncooperative

game, namely energy-aware channel access game:

GEACA =
{

U ,{Su}u∈U
,{Wu}u∈U

}

,

where U denotes the set of users contending a set of C

channels, Su = [0,1]C and Wu denote the user u’s strategy

profile and payoff function, respectively. The payoff function

in eq. (1) consists of both user u’s throughput gain and

energy cost:

Wu (s) = α1
u Eh

{

∑
c∈C

rc
u (hc)

}

−α2
u ∑

c∈C

Ehc
u
{pc

u (hc
u)} . (1)

In our context,
(

α1
u ,α2

u

)

≻ 0 represents user u’s reward for

throughput gain and cost of dispensing one Joule energy for

sending the channel request.

Given other users channel access strategies s−u, the op-

portunistic channel access problem faced by each user u is

max
su∈Su

Wu (s)

The equilibrium strategy profile s∗ = [s∗1, · · · ,s
∗
U ] is a Nash

equilibrium (NE) if no user can benefit by unilaterally devi-

ating from which while the other users keep their strategies

fixed, i.e.,

s∗u = arg max
su∈Su

Wu

(

su,s
∗
−u

)

, ∀u ∈ U , (2)

where
{

s∗−u

}

denotes the set of transmission policies of all

nodes other than u.

2If h = 0 is detected, the user will refuse to access the considered channel
in order to avoid infinite energy consumption.
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III. THRESHOLD STRATEGIES AND PROPERTIES OF NASH

EQUILIBRIA

A. Optimality of Threshold Strategies

Since the fading channel state takes on a continuum of

variables, the problem (2) is an infinite-dimensional opti-

mization problem. The following theorem gives a guideline

to find the optimal solution to (2) .
Theorem 1: There exists a threshold strategy (3) that

maximizes each user’s payoff (1).

sc∗
u (hc

u) =

{

1, hc
u ≥ Hc

u

0, hc
u < Hc

u

,∀u,∀c, (3)

where Hc
u ∈ (0,∞) is the channel gain threshold.

Proof: Recall that the payoff function in (1) can be

rewritten into (4) since there is no correlation between

different user’s channel state.

Wu (s) = α1
u ∑

c∈C

∫ ∞

0
sc

u (hc
u)Φc

u

(

hc
u,s

c
−u

)

f c
u (hc

u)dhc
u,(4)

where Φc
u

(

hc
u,s

c
−u

)

=̂ −
α2

u

α1
u

Pr
hc

u
+ Rc

u (hc
u)Π j∈U \{u}(1 −

∫ ∞
0 sc

j

(

hc
j

)

f c
j

(

hc
j

)

dhc
j). To maximize Wu (s), we have

two implications related to design of access strategy

s∗u = argmaxsu∈Su
Wu

(

su,s
∗
−u

)

: (i) if Φc
u

(

hc
u,s

c
−u

)

> 0 then

sc∗
u (hc

u) = 1; and (ii) if sc∗
u (hc

u) = 1, then Φc
u

(

hc
u,s

c
−u

)

≥ 0.
To prove that the optimal channel access is a threshold

rule it is sufficient to prove that if sc∗
u (hc

u) = 1 for some

given hc
u then sc∗

u

(

ĥc
u

)

= 1 for any ĥc
u > hc

u. It is easy to

check that Φc
u

(

hc
u,s

c
−u

)

is an increasing function of hc
u

given other users strategies. Thus, if sc∗
u (hc

u) = 1, we have

Φc
u

(

hc
u,s

c
−u

)

≥ 0 and Φc
u

(

ĥc
u,s

c
−u

)

> Φc
u

(

hc
u,s

c
−u

)

≥ 0 for

any ĥc
u > hc

u. According to the implication (i) we have

sc∗
u

(

ĥc
u

)

= 1 for any ĥc
u > hc

u. That the optimal channel

access is a threshold strategy is proven.

The effectiveness of threshold strategy (3) can be strength-

ened by comparing its power consumption with randomized

strategies. Before we state our results, the following defini-

tion is given.

Definition 2 ([7]): Let M and N be two cumulative

distribution functions (CDFs). M is strongly stochastically

smaller than N, written as M <st N, if their complementary

CDFs satisfy M̄ (x) < N̄ (x) for all x ∈ R. For random

variables X , Y with distributions M and N respectively, we

will write X <st Y as synonym for M <st N. The following

theorem characterizes the stochastic ordering.

Theorem 3 ([7]): M ≤st N if and only if
∫ ∞

−∞
φ (x)dM (x) ≤

∫ ∞

−∞
φ (x)dN (x) (5)

for all increasing functions φ , for which the integrals exist.

Corollary 4: M ≤st N if and only if
∫ ∞

−∞
ϕ (x)dM (x) ≥

∫ ∞

−∞
ϕ (x)dN (x) (6)

for all decreasing functions ϕ , for which the integrals exist.

Proof: By multiplying both sides of (5) by −1 and

letting ϕ (x) = −φ (x) , the proof follows from Theorem 3

directly.

Theorem 5: With the same expected access probability,

i.e.
∫ ∞

H f (h)dh =
∫ ∞

0 s(h) f (h)dh = Q, the power consump-

tion with threshold strategy (3) is not greater than that with

randomized strategy s ∈ [0,1]U×C , i.e.
∫ ∞

Hc
u

Pr
hc

u
f c
u (hc

u)dhc
u ≤

∫ ∞
0 sc

u (hc
u)

Pr
hc

u
f c
u (hc

u)dhc
u, ∀u ∈ U ,∀c ∈ C .

Proof: The expected power consumption with random-

ized strategies for user u on channel c is

EMc
u(·) {pc

u (hc
u)}=̂Qc

u

∫ ∞

0

1

Qc
u

sc
u (hc

u)
Pr

hc
u

f c
u (hc

u)dhc
u,

where Mc
u (hc

u)=̂
1

Qc
u

∫ hc
u

0 sc
u (x) f c

u (x)dx is the CDF for energy

consumption. Since sc
u (hc

u) ∈ [0,1] we have

M̄c
u (hc

u) =̂
1

Qc
u

∫ ∞

hc
u

sc
u (x) f c

u (x)dx

≤
1

Qc
u

∫ ∞

hc
u

f c
u (x)dx=̂

1

Qc
u

Fc
u (hc

u) ,

where M̄c
u (hc

u) is the complementary CDF of expected power

consumption. Thus

M̄c
u (hc

u) ≤ min
{

Qc−1
u Fc

u (hc
u) ,1

}

. (7)

Consider the threshold strategy

sc
u (hc

u) =

{

1 hc
u ≥ Hc

u

0 hc
u < Hc

u

,

where Hc
u is determined by

∫ ∞
Hc

u
f (hc

u)dhc
u = Qc

u = Fc
u (Hc

u) .
The corresponding complementary CDF for energy con-

sumption with threshold strategy is

N̄c
u (hc

u) =

{

Qc−1
u Fc

u (Hc
u) hc

u ≥ Hc
u

1 hc
u < Hc

u

(8)

Comparing (7) and (8), we deduce that M̄c
u (hc

u) ≤ N̄c
u (hc

u) ,
and Mc

u ≤st Nc
u ∀u ∈ U ,∀c ∈ C . Therefore, it follows from

Corollary 4 that
∫ ∞

Hc
u

Pr
hc

u
f c
u (hc

u)dhc
u ≤

∫ ∞
0 sc

u (x) Pr
hc

u
f c
u (hc

u)dhc
u

since the instantaneous transmission power Pr
h

is a decreasing

function of h.

B. Existence and Uniqueness of Equilibrium Point

Due to the optimality of threshold based channel ac-

cess strategy we reformulate the GEACA game allowing

only threshold-based channel access. Then the reformulated

problem is how to adapt thresholds {Hc
u} for each user

over all channels to maximize its own payoff. In light of

qc
u (Hc

u)=̂
∫ ∞

Hc
u

f c
u (hc

u)dhc
u=̂Fc

u (Hc
u) (or Hc

u = Fc−1
u (qc

u)), the

reformulated game GT−EACA is defined as:

max
qu∈Qu

W̄u

(

qu,q
∗
−u

)

, ∀u ∈ U

where the payoff W̄u is defined as

W̄u (q) (9)

= −α2
u ∑

c∈C

∫ ∞

Fc−1
u (qc

u)

Pr

hc
u

f c
u (hc

u)dhc
u

+α1
u ∑

c∈C

∫ ∞

Fc−1
u (qc

u)
Rc

u (hc
u) f c

u (hc
u)dhc

u ∏
j∈U \{u}

(

1−qc
j

)
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with

Qu =
{

qu ∈ R
C
∣

∣

∣
0 < qmin

u ≤ qc
u ≤ qmax

u < 1,∀c ∈ C

}

. (10)

Here qmin
u is set to be non-zero to avoid time out in long

time backoff.

The equilibrium strategy profile q∗ = [q∗
1, · · · ,q

∗
U ] at the

NE satisfies the following conditions simultaneously, i.e.,

q∗
u = arg max

qu∈Qu

W̄u

(

qu,q
∗
−u

)

, ∀u ∈ U . (11)

Having reformulated the game, we provide results of exis-

tence and uniqueness of NE for the game GT−EACA.
Theorem 6: A NE exists in the game GT−EACA.

Proof: The proof is based on Theorem 4.3 in [8].

The payoff function W̄u (q) in (9) is continuous on ×u∈U Qu

and strictly concave in qu by showing that

∇2
ququ

W̄u = diag{wc
uu (qc) ,∀c ∈ C }

is negative definite, since wc
uu (qc) =

−α1
u

dRc
u(h

c
u)

dhc
u

∣

∣

∣hc
u=Fc−1

u (qc
u) ×

1

f c
u(Fc−1

u (qc
u))

×Π j∈U \{u}

(

1−qc
j

)

−

α2
u

Pr

(Fc−1
u (qc

u))
2

f c
u(Fc−1

u (qc
u))

< 0. In addition, Qu in (10) is

a non-empty compact and convex subset of a finite-

dimensional Euclidean space. According to Theorem 4.3 in

[8], the game GT−EACA has a NE.

To study the uniqueness of NE, let’s differentiate the

payoff function W̄u (q) with respect to qc
u, ∀u,∀c,

∂W̄u (q)

∂qc
u

= α1
u Rc

u

(

Fc−1
u (qc

u)
)

Π j∈U \{u}

(

1−qc
j

)

−α2
u

Pr

Fc−1
u (qc

u)

=̂ Gc
u (qc) .

Define the Jacobian matrix Jc (qc) =
[

Jc
u j (qc)

]

, ∀c where

Jc
u j (q

c) =







∂Gc
u(qc)

∂qc
u

, if u = j
∂Gc

u(qc)
∂qc

j
if u 6= j

. It has been proven in [9]

that the NE is unique regardless of whether it is an inner solu-

tion or a boundary solution, if the symmetric matrix Jc (qc)+

Jc (qc)T
is negative definite, where Jc (qc)=̂

[

Jc
u j (q

c)
]

and

Jc (qc)T
is its transposed matrix.

Theorem 7: If

|Jc
uu (qc)| > max

(

∑
j∈U \{u}

∣

∣Jc
u j (q

c)
∣

∣ , ∑
j∈U \{u}

∣

∣Jc
ju (qc)

∣

∣

)

(12)

the game GT−EACA has a unique NE.

Proof: (12) indicates that the matrices Jc (qc) and

Jc (qc)T
are both strictly diagonally dominant. Following

Gershgorin’s theorem [10], all the eigenvalues of Jc (qc)+
Jc (qc)T

are negative due to Jc
uu (qc) < 0, for all u. Therefore

the matrices Jc (qc)+ Jc (qc)T
are negative definite and the

game GT−EACA has a unique NE.

Remark 8: For each user u, if it imposes a larger ration

α2
u /α1

u , i.e. users are more sensitive to energy consumption

than throughput gain, the condition (12) is more easily to

meet.

In the following, we assume the game GT−EACA has a

unique NE q∗ (or equivalently H∗ = F−1 (q∗)).

IV. THRESHOLD ADAPTATION

Since each user’s payoff function (9) is concave with

respect to qc
u, the necessary condition for q∗ being a NE:

∂W̄u

(

qu,q
∗
−u

)

∂qc
u

|
qc

u=qc∗
u

= α1
u Rc

u

(

Fc−1
u (qc∗

u )
)

Π j∈U \{u}

(

1−qc∗
j

)

−α2
u

Pr

Fc−1
u (qc∗

u )
= 0 (13)

is also a sufficient condition. Eq. (13) means that at equi-

librium the marginal throughput reward is equal to the

instantaneous power cost. Since it is difficult to compute the

NE explicitly without knowing the channel state distribution,

we propose an iterative algorithm for each user to compute

the equilibrium. Recalling the one-to-one mapping Hc
u =

Fc−1
u (qc

u) and the first order necessary condition (13) , we

propose the following iteration to update the channel gain

threshold for each user on each channel:

Hc
u (t + 1)

= [Hc
u (t)+ δ (

αuPr

Rc
u (Hc

u (t))Hc
u (t)

− ∏
j∈U \{u}

(

1−qc
j

(

Hc
j (t)
))

)]
Hmax

u

Hmin
u

(14)

where [x]ba =̂max{min{x,b} ,a} , δ ∈ (0,1) is the stepsize

and αu = α2
u /α1

u . Here the boundary 0 < Hmin
u ≤ Hc

u ≤ Hmax
u

corresponds to qmin
u ≤ qc

u ≤ qmax
u equivalently for each u and

c. The engineering implication behind (14) is that each user

raises its channel threshold if the energy cost of unique

rate cannot be compensated by the offered transmission

opportunity Π j∈U \{u}

(

1−qc
j

(

Hc
j (t)
))

, and the threshold

is decreased vice versa. Note that the iteration (14) is

used to find q∗
u solving (11) equivalently in light of Hc∗

u =
Fc−1

u (qc∗
u ) .

Each user will contend multiple channels based on the

comparison of measured channel gain and threshold up-

dated at each time in (14) . Iteration (14) shows that the

update of threshold only depends on each user’s local in-

formation on each channel. The transmission opportunity

Π j∈U \{u}

(

1−qc
j

(

Hc
j (t)
))

for each user u can be estimated

via the channel idle probability Π j∈U

(

1−qc
j

(

Hc
j (t)
))

,

whose local computation method has been given in [11].

Each user’s backoff probability (1−qc
u (Hc

u (t))) can be

obtained by counting the number of times Nc
u that the

actual channel gain hc
u (t) is smaller than the threshold

Hc
u (t) within the last several transmission attempts Nmax

u ,
i.e. (1−qc

u (Hc
u (t))) = Nc

u/Nmax
u . Note that this computation

can be further elaborated by an exponential weighted average

between the current backoff probability and history value to

smooth the estimated value.
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We now show the convergence of (14) to the unique NE

H∗. Our analysis follows the technique in [12].

Theorem 9: Suppose the game GT−EACA has a unique

inner NE point H∗, (14) converges to the unique NE, if (15)
holds ∀u ∈ U ,∀c ∈ C

αuPr

(

Hc
u

dRc
u(Hc

u )
dHc

u
+ Rc

u (Hc
u)
)

Hc2
u (Rc

u (Hc
u))2

> ∑
k∈U \{u}

Π j∈U \{u,k}

(

1−qc
j

(

Hc
j

)

f c
k (Hc

k )
)

(15)

and δ is sufficiently small.

Proof: Define a function xc
u (τ) : [0,1] → R for user u

on channel c as

xc
u (τ) (16)

= τHc
u (t)+ (1− τ)Hc∗

u + δ (
αuPr

Rc
u (Hc

u)Hc
u

−Π j∈U \{u}

(

1−qc
j

(

Hc
j

))

)
∣

∣

Hc=τHc(t)+(1−τ)Hc∗ ,

where the unique NE Hc∗
u , which corresponds to Hc∗

u =
Fc−1

u (qc∗
u ) in (11) is the fixed point of the mapping Hc

u (t)→
Hc

u (t + 1) in (14) . By (14) and (16), we have

|Hc
u (t + 1)−Hc∗

u |

≤ |xc
u (1)− xc

u (0)|

=

∣

∣

∣

∣

∫ 1

0

dxc
u (τ)

dτ
dτ

∣

∣

∣

∣

≤
∫ 1

0

∣

∣

∣

∣

dxc
u (τ)

dτ

∣

∣

∣

∣

dτ

≤ max
τ∈[0,1]

∣

∣

∣

∣

dxc
u (τ)

dτ

∣

∣

∣

∣

Noticing that δ is usually sufficiently small, we have
∣

∣

∣

∣

dxc
u (τ)

dτ

∣

∣

∣

∣

≤ |1− δ
αuPr

(

Hc
u

dRc
u(H

c
u )

dHc
u

+ Rc
u (Hc

u)
)

Hc2
u (Rc

u (Hc
u))2

+δ ∑
k 6=u

Π j 6=u,k

(

1−qc
j

(

Hc
j

)

f c
k (Hc

k )
)

|‖Hc (t)−Hc∗‖∞

where ‖Hc (t)−Hc∗‖∞ =̂maxu |H
c
u (t)−Hc∗

u | . The suffi-

ciently small δ is used to guarantee that

δ
αuPr

(

Hc
u

dRc
u(Hc

u )
dHc

u
+ Rc

u (Hc
u)
)

Hc2
u (Rc

u (Hc
u))2

< 1

for all Hc
u ∈
[

Hmin
u ,Hmax

u

]

. Furthermore, if condition (15) is

satisfied, we have

max
τ∈[0,1]

∣

∣

∣

∣

dxc
u (τ)

dτ

∣

∣

∣

∣

≤ Ψc
u ‖Hc (t)−Hc∗‖∞ , (17)

where 0 < Ψc
u = 1 − δ (

αuPr

(

Hc
u+Rc

u(H
c
u )

dRc
u(Hc

u )
dHc

u

)

Hc2
u (Rc

u(Hc
u ))2 dRc

u(Hc
u )

dHc
u

−

∑k∈U \{u} Π j∈U \{u,k}

(

1−qc
j

(

Hc
j

)

f c
k

(

Hc
k

)

)

) < 1. Given

(15) and sufficiently small δ it can easily be proved that

the synchronous update (14) converges to the unique inner

NE as t → ∞.

In the iteration (14) , each user updates its channel gain

threshold at the same time instance. A practical general-

ization is the asynchronous update scheme where only a

random subset of users perform update at a given time. The

proof for asynchronous convergence of a nonlinear iterative

mapping consists of two well known sufficient conditions

and is omitted here. Detailed proof can be found in [12].

V. NUMERICAL EXAMPLES

The considered simulation scenario is the same as in [13].

The channels are modeled as independent 3-tap Rayleigh

fading channels with an exponential power delay profile.

Each frame contains 48 OFDM symbols. There are total 256

subcarriers, and among which 64 subcarriers are grouped into

one sub-channel. Only 32 subcarriers are used to transmit

contention packet. Within one frame, the first phase is

dedicated to contention, which consists of K mini-slots. At

the end of contention, the BS takes one mini-slot to feed back

ACK. Since one mini-slot is set to be 1/2 of one OFDM

symbol duration, the length of the data transmission period

is L = 2×48−K−1 mini-slots, where ”1” denotes one mini-

slot used by BS to feed back ACK. In our algorithm we set

K = 1. The received power required by the BS to detect the

channel request successfully is set to Pr = 1.

We first show the convergence property of our proposed

algorithms. There are 10 users deployed in the above network

scenario. The convergence of the adaptation of channel gain

threshold in the selected channel is shown in Fig. 1. The

convergence of channel gain adaptation on the other three

channles has the similar properties as in Fig. 1.

Then we compare the system throughput obtained by dif-

ferent algorithms in the same simulation scenario except for

the number of users. The simulation was obtained by running

100,000 independent frames. It was shown in [13] that CAC

algorithm can achieve the best results that approach the ideal

centralized OFDMA scheme in this simulation scenario with

K = 7. The basic principle of CAC algorithms in single chan-

nel is to distributively set channel gain threshold for each user

on one mini-time slot by solving a system throughput max-

imization problem. For multichannel case, the principle in

single channel will be repeated over the selected subchannels.

It can be found in Fig. 2 that the system throughput of CAC

with K = 7 can achieve the best results since multiple rounds

of contention in a single transmission frame may increase the

possibility of successful contention. Fig. 2 also shows that

the system throughput of CAC algorithm highly depends on

the number of contention before formal data transmission.

The performance of proposed algorithm can approach CAC

(K = 7) and outperforms random channel selection schemes

and CAC (K = 1). Since we take into account the energy

consumption explicitly in the payoff function, the effects

of energy saving with the proposed algorithm is notable

in Fig. 3. Although multiple rounds of contention before

formal data transmission can increase system throughput,

CAC algorithms ignore the energy consumption for channel

contention, which consumes more energy as shown in Fig. 3.

Fig. 3 also illustrate that the proposed algorithm can achieve
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a better tradeoff between energy consumption and system

throughput.

To understand the effects of parameter αu on the

throughput-energy tradeoff, we plot Fig. 4. With the incre-

ment of α , each user is more sensitive to energy consumption

and thus we have the monotonically decreasing energy con-

sumption with respect to α . On the contrary, the equilibrium

channel gain threshold is increasing with the increment of

α , which results in less channel access opportunity and less

system throughput.
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VI. CONCLUSIONS

Energy-aware multi-channel access control is considered

in this paper. The design of decentralized channel ac-

cess adapting to time-varying CSI is formulated to a non-

cooperative game. The optimal strategy is shown to have

threshold structure, with which each user contends the chan-

nel if its actual channel gain exceeds the threshold. The

existence and uniqueness of Nash equilibrium of the game is
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Fig. 4. Energy-throughput tradeoff with 20 users

proven under certain conditions. A distributed algorithm is

proposed for each user to update the channel gain threshold

without knowing the distribution of channel gain and its

convergence is proven. Simulation results verify that the

tradeoff between system throughput and energy consumption

can be achieved by each user’s local tuning parameter.
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