
Funnel control in mechatronics: An overview

C. M. Hackl0, A. G. Hofmann, and R. M. Kennel

Abstract— This overview presents a simple high-gain adap-
tive controller — the funnel controller — and its possible
applications in mechatronics. The funnel controller neither
identifies nor estimates the system under control and is appli-
cable for (nonlinear) systems being minimum-phase (or having
stable zero-dynamics in the nonlinear case), having relative
degree one or two and known sign of the high-frequency gain.
So only “structural system properties” must be satisfied to
allow for controller implementation. Moreover, control per-
formance is robust to parameter uncertainties or variations
not affecting the system structure. The proportional funnel
controller assures tracking of time-varying reference signals
with prescribed transient accuracy, i.e. the tracking error evolves
within a “funnel” with prescribed boundary (i.e. a continuous
function of time chosen by the control designer). To illustrate
applicability of funnel control in “real world” measurement
results are presented for speed and position control of an
unknown rotatory system subject to (varying) friction and load
disturbances. The results are compared with classical PI/PID
control.

I. INTRODUCTION

Many industrial applications are only “structurally”
known, i.e. the plant model is available in the form of an
differential equation (a lumped parameter model) whereas
the model parameters are uncertain. Moreover, mechatronic
systems are subject to dynamic nonlinearities (such as fric-
tion) and unknown load disturbances deteriorating control
performance. These effects and uncertainties (or variations)
of the system parameters imply a robust and so often a con-
servative control design. In the majority of cases “standard”
PI/PID controllers are implemented. To improve control
performance, disturbance observer and/or time-consuming
(cost-intensive) system identification strategies are necessary.
Both is involved and not desirable [1]. This overview re-
examines a robust, high-gain adaptive (time-varying) con-
trol concept—funnel control (FC)—as feasible alternative to
standard PI/PID controllers in mechatronics. Funnel control,
in general, is applicable to a wide class of (nonlinear) sys-
tems with relative degree one or two, stable zero-dynamics
(minimum-phase in the LTI case) and known sign of the
high-frequency gain1 [3], [4]. Moreover, measurement noise
and parameter uncertainties are tolerated. Identification or
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1The “high-frequency gain” or also “instantaneous gain” describes the
‘directional’ effect of the control input on the first or second derivative of
the system’s output [2, p. 334]. For LTI SISO systems “high-frequency gain”
denotes the “leading coefficient of the numerator of the transfer function.

estimation of system parameters is not necessary. This non-
identifier based adaptive controller guarantees global stability
and good tracking performance, i.e. prescribed transient
accuracy of the closed-loop system is achieved by ade-
quate boundary design such that e.g. minimum rise time,
maximum overshoot and minimum settling time (customer
specifications) are assured (if the control input is sufficiently
dimensioned [5], [3], [6], [7], [8], [9]). If constrained control
actions impose severe performance issues (neglected in this
paper), e.g. Saturated Input Compensation may be used [7],
[9]2. Funnel control is a ‘proportional’ (or memoryless)
approach (i.e. no dynamics in the controller) and so asymp-
totic tracking and/or disturbance rejection are not obtained
in general, therefore in addition a PI-like extension should
be implemented attaining both goals (at least) in steady-
state [10], [11]. All presented results are mathematically
proved (see e.g. [3], [10], [11], [12]).

The goal of this overview is twofold: (i) to introduce
funnel control as alternative to classical PI/PID control in
mechatronics and (ii) to give an overview on the state-of-
the-art and a comprehensive list on the literature of funnel
control.

We conclude this section with some remarks on notation:
N,R,C natural, real and complex numbers
[a, b) interval from a to b (excluded)
R≥0 := [0,∞) set of positive real numbers with zero
ℜ(s),ℑ(s) real and imaginary part of s ∈ C

v ∈ R
n column vector with n-entries, n ∈ N

M ∈ R
n×m matrix with n-rows & m-columns

det(M) determinant of matrix M ∈ R
n×n

In ∈ R
n×n identity matrix with rank n

f(·) a function, e.g. f : X → Y
f(x) the value of the function f(·) at x
f (i)(t) := di

dti f(t) the i-th (time) derivative of f(·)
Cn(X;Y ) space of n-times continuously differ-

entiable functions mapping X → Y
L∞
(loc)(X;Y ) space of measurable, (locally) essen-

tially bounded functions
Wk,∞(X;Y ) space of bounded locally absolutely

continuous functions with essen-
tially bounded derivatives f (i) ∈
L∞(X;Y ) for all i ∈ {1, . . . , k} and
norm:

‖f‖k,∞ :=
∑k
i=1‖f

(i)‖∞

2The strategy is not mathematically proven, hence not covered here. But
it shows promising results in simulations and measurements.
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II. HIGH-GAIN (ADAPTIVE) CONTROL

For n ∈ N consider the linear time-invariant (LTI) single-
input u(t) ∈ R single-output y(t) ∈ R (SISO) system given
by the ordinary differential equation

ẋ(t) = Ax(t) + bu(t)

y(t) = c⊤x(t), x(0) = x0 ∈ R
n.

(1)

where A ∈ R
n×n, b ∈ R

n and c ∈ R
n represent system

matrix, input and output coupling vector, resp. Now if
system (1) has the following properties:

(i) relative degree3 r = 1, i.e. c⊤b 6= 0;
(ii) known sign of high-frequency gain γ := c⊤b,

i.e. sign(γ) known and
(iii) minimum phase4, i.e. ∀ s ∈ C with ℜ(s) ≥ 0:

det

([
sIn −A b

c⊤ 0

])

6= 0 (see e.g. [13, pp. 9-12]),

then there exists a minimal k∗ > 0 (which depends on the
system data!), such that simple output feedback of the form

u(t) = − sign(γ)k y(t) = − sign(γ)k c⊤x(t) (2)

stabilizes system (1) for all k > k∗ [13]. If controller (2) is
implemented, k∗ must be known a priori and the output y(t)
must be available for feedback. This “high-gain property”
of systems of form (1) with properties (i)-(iii) is the basis
of high-gain adaptive control (for more details see the
pioneering contributions [14], [15], [16], [17] or the self-
contained surveys [18], [19]): in the adaptive case gain k
in (2) becomes time-varying, i.e. u(t) = − sign(γ)k(t)y(t)
where k̇(t) = y(t)2, k(0) = k0 > 0. It is easy to see that
the gain k(·) increases as long as y(·) is non-zero and hence
there exists a time t∗ ≥ 0, where k(t) ≥ k∗ for all t ≥ t∗

yielding asymptotic stabilization of the closed-loop system.
Due to dynamic adaption the controller gain is monotonically
increasing. Moreover, if the output is perturbed by bounded
measurement noise nm(·) ∈ L∞(R≥0;R) (i.e. k̇(t) =
(y(t) + nm(t))2) the gain might diverge. In contrast funnel
control allows for gain increase and decrease (see Sec. IV)
and therefore is more suitable for industrial application as for
most mechatronic systems permanently large gains are not
reasonable (e.g. noise amplification should be kept small).

Remark (Linear systems in the frequency domain). For

systems of form (1) the transfer function is derived as follows

FS(s) :=
y(s)

u(s)
= c⊤(sIn −A)−1b

:= γ
c0 + c1 s+ · · ·+ cm−1 s

m−1 + sm

a0 + a1 s+ · · ·+ an−1 sn−1 + sn
. (3)

It describes the linear system in the frequency domain, where

n ≥ m for proper systems. If (1) is a (minimal) realization

of (3), then the descriptions (1) and (3) are equivalent, and

3The relative degree r of a system of form (1) indicates which output time
derivative y(r)(t) is affected by control input u(t), e.g. i) r = 1: ẏ(t) =
c⊤Ax(t) + c⊤bu(t) or ii) r = 2: ÿ(t) = c⊤A

2
x(t) + c⊤Abu(t)

4In contrast to the classical definition of minimum-phase systems, in
the present work the systems might be unstable, i.e. the poles might have
positive real part. Only the zeros must have negative real part.
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Fig. 1: Root-loci for exemplary systems F1(s) and F2(s)
(the arrows indicate the pole shift for increasing gains).

analyzing transfer function (3) yields relative degree r =
n − m and high-frequency gain γ := lims→∞{sr FS(s)}.

System (3) is minimum-phase if and only if the roots of

the numerator polynomial have negative real parts. For

illustration consider the two examples given by the transfer

functions

F1(s) =
s2 + 6 s+ 8

s3 − s2 − s+ 1
and F2(s) =

s+ 8

s3 − s2 − s+ 1
,

resp. Both systems are unstable but minimum-phase5. Ex-

ample one with transfer function F1(s) has relative degree

r1 = 3 − 2 = 1, whereas F2(s) has relative degree r2 =
3 − 1 = 2. If output feedback (2)6 is used to control the

examples, the root-loci shown in Fig. 1 are obtained. The

closed-loop k · F1(s)/(1 + k · F1(s)) is stable for all gains

k > k∗ ≈ 2.5 (indicated by red squares), whereas the closed-

loop k · F2(s)/(1 + k · F2(s)) is unstable for all k ≥ 0. It

exhibits two poles with positive real parts (see black dashed

line in Fig. 1).

III. SYSTEM CLASS

Funnel control is not limited to LTI SISO systems of
form (1) it may be applied to a wider class of systems
with relative degree one and two described by functional
differential equations. To give a precise notion (sufficient for
this overview) first introduce the following

Definition III.1 (Operator class T ).
An operator T is element of class T if and only if for

some h ≥ 0 and n,m ∈ N, the following hold: (op1) T :
C([−h,∞);Rn) → L∞

loc(R≥0;R
m), (op2) bounded-input

bounded-output: for every δ > 0, there exists ∆ > 0, such

that, for all ζ(·) ∈ C([−h,∞);Rn): J supt∈[−h,∞) ‖ζ(t)‖ <
δ ⇒ ‖(Tζ)(t)‖ ≤ ∆ for a.a. t ≥ 0 K, (op3)

for all t ≥ 0, the following hold: (a) causality: for all

ζ(·), ξ(·) ∈ C([−h,∞);Rn): J ζ(·) ≡ ξ(·) on [−h, t] ⇒
(Tζ)(s) = (Tξ)(s) for a.a. s ∈ [0, t] K and (b) locally

Lipschitz: for all β(·) ∈ C([−h, t];Rn) there exist τ, δ, c0 >
0, such that, for all ζ(·), ξ(·) ∈ C([−h,∞),Rn) with

5The Routh-Hurwitz criterion [20, pp. 304-306] is violated for the
denominator and is fulfilled for the numerator.

6The control law (2) becomes e.g. u(s) = −k y(s) + v(s) in the
frequency domain for some auxiliary input v(s).
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ζ|[−h,t] = β = ξ|[−h,t] and ζ(s), ξ(s) ∈ B
n
δ (β(t)) and for

all s ∈ [t, t + τ ]: ess-sups∈[t,t+τ ] ‖(Tζ)(s)− (Tξ)(s)‖ ≤
c0 sups∈[t,t+τ ] ‖ζ(s)− ξ(s)‖.

Here h ≥ 0 quantifies the “memory” of the operator. As
was shown in e.g. [21] nonlinear dynamic friction (com-
mon in mechatronics) is covered by the operator class T .
Moreover it subsumes e.g. relay, backlash, elasto-plastic and
Preisach hysteresis or nonlinear delay systems (see [22],
[23]). Now we are in the position to introduce the following

Definition III.2 (System class Sr, r ∈ {1, 2}).
Let n,m ∈ N (unknown), h ≥ 0, (A, b, c) ∈ R

n×n × R
n ×

R
n and BT ∈ R

n×m. A system given by the functional

differential equation

ẋ(t)=Ax(t) + b
(
u(t) + ud(t)

)
+BT

(
(Tx)(t) + d(t)

)

y(t)= c⊤x(t), x|[−h,0] = x0(·) ∈ C
(
[−h, 0]; Rn

)

}

(4)
with (measurable) disturbances ud(·) and d(·), operator

T : C([−h,∞);Rn) → L∞(R≥0;R
m) and (measurable)

control input u(·), is of Class Sr, if the following hold:

(sp1) known relative degree

(a) r = 1, i.e. γ := c⊤b 6= 0;

(b) r = 2, i.e. c⊤b = 0, c⊤BT = 0, γ := c⊤Ab 6= 0;

(sp2) known sign of high-frequency gain, i.e. sign(γ) known;

(sp3) minimum-phase (as in (ii));

(sp4) globally bounded operator of class

T , i.e. T ∈ T and MT :=
sup {‖(Tξ)(t)‖ | t ≥ 0, ξ(·) ∈ C([−h,∞),Rn)} <
∞;

(sp5) bounded disturbances, i.e. ud(·) ∈ L∞([−h,∞);R)
and d(·) ∈ L∞([−h,∞);Rm).

For a generalization to a wide class of nonlinear systems
with the high-gain property see e.g. [3], [4], [23].

IV. FUNNEL CONTROL

A. Funnel control for relative-degree-one systems

The idea of tracking with prescribed transient accuracy
was initially presented in [26] utilizing a high-gain based
switching controller which “provides an arbitrarily good
transient and steady-state response”. However, this controller
has a non-decreasing gain and invokes switching, both is not
desirable for industrial application. Whereas funnel control
for systems with relative degree one (i.e. r = 1), developed
by Ilchmann et al. in 2002 [3], is also high-gain based but
has a continuous gain which might decrease again. Funnel
control may be applied to systems of class S1. It em-
ploys an adjustable time-varying gain k0(t, e(t)) to stabilize
systems of form (4) with properties (sp1)(a), (sp2)–(sp5).
Furthermore, prescribed transient and asymptotic tracking of
a (absolutely) continuous and bounded reference yref(·) ∈
W1,∞(R≥0;R) is assured. The tracking (or control) error

e(t) = yref(t)− y(t)− nm(t) (5)

perturbed by bounded measurement noise nm(·) ∈
W1,∞(R≥0;R) evolves within the prescribed funnel (i.e. the

set given by {(t, e) ∈ R≥0×R | |e| < ψ0(t)}) with boundary
ψ0(·) ∈ W1,∞(R≥0; [λ0,∞)) where λ0 > 0 represents the
prescribed asymptotic accuracy (see Fig. 2a). More formerly,
the following holds |e(t)| < ψ0(t) for all t ≥ 0, if the initial
error |e(0)| < ψ0(0) ‘starts’ inside the funnel. The funnel
controller generates the control action

u(t) = k0 (t, e(t)) · e(t) (FC1)

where k0 (t, e(t)) =
s0(t)

ψ0(t)− |e(t)|
. (6)

The time-varying gain7 k0 (t, e(t)) is instantaneously ad-
justed and is inversely proportional to the vertical8 distance
ψ0(t) − |e(t)| for all t ≥ 0 (see Fig. 2a). For m0 > 0, the
bounded ‘scaling function’ s0(·) ∈ W1,∞(R≥0; [m0,∞))
e.g. allows to fix a minimal control gain m0/‖ψ0‖∞ > 0.

Gain “adaption” (6) ensures that error e(·) evolves within
the funnel limited by boundary ψ0(·): gain k0(t, e(t)) in-
creases, if error e(t) draws close to boundary ψ0(t) (more
aggressive control) and decreases, if error e(t) becomes small
(more relaxed control). In [3] it is proved that both, gain k0(·)
and error e(·), stay bounded, if control input u(·) can adopt
sufficiently large but finite values.

A proper choice of the funnel boundary is e.g. given by

ψ0(t) = ψE(t) := (Λ0 − λ0) exp (−t/TE) + λ0 (7)

with initial value ψE(0) = Λ0 > |e(0)| enclosing the initial
error, prescribed time constant TE > 0 and asymptotic
accuracy λ0 = limt→∞ ψE(t) > 0. Note that the boundary
may also increase temporarily (see Fig. 2). If e.g. sudden
and drastic changes in reference and/or disturbance are to be
expected or known a priori, then an increasing boundary is
reasonable to avoid (too) large control actions.

To design the boundary properly the initial value of the
error must be known a priori. For mechatronic applications
this holds true for any given and bounded reference with
yref(0) and given output y(0) + nm(0). Theoretically this
condition may be relaxed by choosing an “infinite” boundary
‘starting at ψ0(0) = ∞’ [3], [4].

Clearly, costumer specifications (β0, τβ0
, λ0) — where

β0 > 0 is the accuracy at time τβ0
≥ 0 and λ0 > 0 is the de-

sired asymptotic accuracy (see Fig. 2a) — can be easily met
by adequate boundary design, i.e. ψ0(τβ0

) = β0 > |e(t)| for
all t ≥ τβ0

and limt→∞ ψ0(t) = λ0 > lim supt→∞ |e(t)|.

B. Funnel control for relative-degree-two systems

It is well known (from e.g. the root locus method) that
systems with relative degree two (i.e. r = 2), in general,
might not be stabilizable by simple output feedback (2)
or (FC1) [18]. Over eight years it has been an unanswered
question, if funnel control may be extended to the relative-
degree-two case without the use of backstepping yielding
an undesirable complex controller and gains occurring with

7The functions ψ0(·) and s0(·) are functions of time, hence the abbre-
viated definition of the gain k(·, e(·)) is correct.

8The minimal future distance dF (tF , e(t)) :=
mintF≥t

√

(ψ0(tF )− |e(t)|)2 + (tF − t)2 at some future time
tF ≥ t is also admissible [4], [6], [8].
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e(·)

e(0) ψ0(·)

ψ0(0)

−ψ0(0)

e(t)
ψ0(t)

−λ0

−β0

τβ0

t time t [s]

(a) Funnel for error

ė(·)

ė(0)

ψ1(·)

ψ1(0)

−ψ1(0)

ė(t)

ψ1(t) ≥ − d
dt ψ0(t) + δ

−λ1
t time t [s]

(b) Funnel for error derivative

Fig. 2: Funnels for relative degree one and two. r = 1: Funnel for error e(·) with boundary ψ0(·) (see (a)) and r = 2:
Funnels for error e(·) and derivative ė(·) with boundaries ψ0(·) and ψ1(·), resp. (see (a) and (b)). Asymmetric funnels with
upper ψ+

0 (·) and lower ψ−
0 (·) boundary, where ψ+

0 (t) > ψ−
0 (t) for all t ≥ 0, are admissible (but neglected here) [24], [25].

k(t)7 [27]. The recent works [12] and [28] give an af-
firmative answer: if derivative feedback is admissible and
two funnel boundaries ψ0(·) ∈ W1,∞(R≥0; [λ0,∞)) and
ψ1(·) ∈ W1,∞(R≥0; [λ1,∞)) where λ0, λ1 > 0 (one for
error e as in (5) and one for error derivative ė = ẏref+ẏ+ṅm,
see Fig. 2a & b) are employed, then the extended funnel
controller

u(t) = k0(t, e(t))
2 e(t) + k0(t, e(t)) k1(t, ė(t)) ė(t), (FC2)

where ki(t, e(i)(t)) =
si(t)

ψi(t)− |e(i)(t)|
for i = 0, 1 (8)

assures prescribed transient accuracy for systems of class S2

with properties (sp1)(b), (sp2)–(sp5). Again, for m0,m1 >
0, gains k0(·) and k1(·) may include bounded ‘scaling
functions’ s0(·) ∈ W1,∞(R≥0, [m0,∞)) and s1(·) ∈
W1,∞(R≥0, [m1,∞)), resp., to allow for more degrees of
freedom in the controller design. In contrast to the relative-
degree-one funnel controller (FC1), the relative-degree-two
funnel controller (FC2) ensures, that error e(·) and derivative
ė(·) evolve within their respective funnels with boundaries
ψ0(·) and ψ1(·), if ψ0(0) > |e(0)| and ψ1(0) > |ė(0)|,
resp. Again customer specifications (β0, τβ0

, λ0) can be met
by adequate boundary design. The funnel controller (FC2)
is a slight modified version of the originally introduced
controller u(t) = k0(t, e(t))

2 e(t) + k1(t, e(t)) ė(t) in [12].
The modification in (FC2) allows for a better damped closed-
loop system response (without overshoot, see [28]) and a
more effective use of the control action (peaks in drive torque
are reduced, see Fig. 10 in [29]).

Important to note that for the relative-degree-two case two
more conditions are imposed on reference and boundary:
(a) yref(·) ∈ W2,∞(R≥0;R) and (b) for some δ > 0 the
‘second’ boundary must satisfy ψ1(t) ≥ − d

dt ψ0(t) + δ
for all t ≥ 0 [12]. The second condition is obvious: to
allow for errors e(t) departing from the boundary ψ0(t)
an error derivative with sign(e(t)) ė(t) < d

dt ψ0(t) must be
admissible. For ψ0(t) = ψE(t) as in (7) and δ := λ1 > 0,
following choice for the ‘derivative’ boundary

ψ1(t) = (Λ0 − λ0) /TE exp (−t/TE) + λ1 (9)

is admissible, since ψ1(t) = − d
dt ψE(t) + λ1.

C. Funnel control and steady-state accuracy

The condition ‘ψ0(t) ≥ λ0 for all t ≥ 0’ possibly
yields non-vanishing steady-state errors lim supt→∞ |e(t)| >
0. This drawback is typically for proportional controllers
without integral control action (see [30]) and hence is not
a specific drawback of funnel control. For kP , kI > 0 and
u(t) as in (FC1) or (FC2), this drawback may be overcome
by introducing a PI-like extension given by

v(t) = kPu(t) + kI

∫ t

0

u(τ) dτ , (PI)

and connecting it in series to system (4) (see Fig. 3), which
assures asymptotic accuracy and disturbance rejection for
constant reference and disturbance signals if steady-state is
reached [28].

e u v y

extended system

FC PI system

Fig. 3: Serial interconnection of funnel controller (FC1)
or (FC2), PI-like extension (PI) and system (4).

The extension (PI) can be considered as simple internal
model and does not deteriorate the affiliation to class Sr,
r ∈ {1, 2} [10], [11], [28]. In the frequency domain this is
easy to understand where (PI) becomes

FPI(s) = kP + kI/s = kP (s+ kI/kP )/s. (10)

which has relative degree rPI = deg(kP s + kI) −
deg(s) = 0 and positive high-frequency gain γPI :=
lims→∞ srPIFPI = kP > 0. It is minimum-phase since
kI/kP > 0. For any LTI SISO system of form (1) with
properties (i)–(iii) described by transfer function (3) with
relative degree r = n−m = 1 or r = n−m = 2, positive
high-frequency gain γ > 0, it is easy to see that the serial
interconnection FPI(s) · FS(s) is still minimum-phase and
has ‘overall’ positive high-frequency gain γ ·kP and relative
degree rPI + r = r. The same holds true for systems of the
form (4) [10], [11], [28].

Remark (Remaining difficulties concerning implementa-
tion). Most modern controllers are implemented digitally
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on realtime platforms with limited computing power and

sampling time: increasing gains accelerate the closed-loop

system response, but to assure Shannon’s theorem the sam-

pling time might have to be decreased accordingly; yielding

possibly non-realtime applicability of funnel control. Several

experiments using funnel control in mechatronics did not

reveal real-time issues if boundary design is not too demand-

ing (see e.g. [11], [25], [12]). But still this is theoretically

an open problem, first results (for λ-tracking) are presented

in [31]. Nearly all actuator are saturated due to security

reasons or power limitations. Funnel control with saturation

is possible, see the theoretical results in [32], [33], [12],

[24] for relative degree one and two: a (possibly very)

conservative feasibility condition gives a sufficient lower

bound on the required control input, however this bound

is often not reasonable for application. More realistic and

intuitive results for the relative-degree-one case — but only

empirically examined — are proposed in [9], [7].

V. APPLICATION: SPEED AND POSITION CONTROL

A. Model of the plant

A simple rotatory model (translational is similar) for the
standard speed or position control problem is presented.
The model describes the laboratory setup consisting of
two stiff coupled electrical machines with (overall) inertia
Θ > 0

[
kgm2

]
, see Figure 5. Motor drive and load drive

induce accelerating (drive) torque u(·) = mM (·) [Nm] and
load torque mL(·) ∈ L∞(R≥0;R) [Nm], resp. To allow for
(ideal) gears the gear ratio gr ∈ R \ {0} [1]9 is included in
the model, whereas backlash in the gear is neglected.

The mechanical system is subject to friction on motor
side with ν1ω(·) + (F1ω)(·) [Nm] and on the gear side with
ν2/gr ω(·)+(F2ω/gr)(·) [Nm] (see Fig. 4). For viscous fric-
tion coefficients ν1, ν2 ≥ 0 [Nms/rad], the friction charac-
teristics are split into unbounded viscous friction (i.e. ν1ω(·)
and ν2ω(·)/gr) and bounded friction (i.e. F1,F2 ∈ T with
MF1

,MF2
< ∞, including e.g. Stribeck effect, stiction

and Coulomb friction). The operators F1 and F2 allow for
modeling of dynamic friction effects such as pre-sliding
displacement and frictional lag (see e.g. [12], [34] or the
survey [35]). For position control the mathematical model
of the stiff coupled mechanical system with state variable
x(t)⊤ :=

(
φ(t), ω(t)

)
, representing angle φ(t) [rad] and

speed ω(t) [rad/s] at time t ≥ 0 [s], is given by

ẋ(t) = Ax(t) + b
(

mM (t)− (F1ω)(t)−
1
gr
(mL(t) + (F2

ω
gr
)(t)

)

y(t) = c
⊤
x(t) = φ(t)/gr, x(0) = (φ0, ω0)⊤

(11)
where ν1, ν2 ≥ 0, gr ∈ R \ {0}, Θ > 0,

A =

[

0 1

0 −
ν1+ν2/g

2

r

Θ

]

, b =

(

0
1
Θ

)

and c
⊤ =

( 1
gr

0
)

. (12)

For speed control we obtain a simplified mathematical model

ẋ(t) = Ax(t) + b
(

mM (t)− (F1ω)(t)−
1
gr
(mL(t) + (F2

ω
gr
)(t)

)

y(t) = cx(t) = ω(t)/gr, x(0) = ω0

(13)
with state variable x(t) := ω(t) and the scalars

A = −(ν1 + ν2/g
2
r)/Θ, b = 1/Θ and c = 1/gr. (14)

9In e.g. robotics exist gears with ratio gr < 0.

The mechanical models (11) and (13) neglect the electrical
drive (actuator) generating drive torque mM (·). The mapping
mref 7→ mM , see Figure 4, is actually a saturated actu-
ator comprising inverter and machine (with current/torque
control-loop). That is a nonlinear dynamical system. Since
its dynamics are very fast (compared to the mechanical
model, see e.g. [36, pp. 775-779]), it may be modeled by
mM (t) = satm(mref(t) + ud(t)) where saturation satm(·)
with m > 0 [Nm] ensures that |mM (t)| ≤ m for all
t ≥ 0. mref(·) and ud(·) ∈ L∞(R≥0;R) represent ‘reference
torque’ and (actuator) disturbance, resp. In the following,
we neglect the influence of constrained control inputs and
assume that |mM (t)| ≈ |mref(t)| ≤ m for all t ≥ 0.
The control objectives for the controller in the closed-loop
system (see Fig. 6) are speed or position reference tracking
and disturbance rejection, where the references are given
by yref(·) = ωref(·)/gr ∈ W1,∞(R≥0;R) and yref(·) =
φref(·)/gr ∈ W2,∞(R≥0;R), resp.

Remark (Linear models for speed and position control in the
frequency domain). Neglecting the bounded friction terms
(i.e. F1 = F2 = 0) in (11) and (13) yields the transfer
functions, resp., for speed control

Fω(s) =
ω(s)/gr
mM (s)

= c(s−A)−1b =
1/(grΘ)

s+
ν1+ν2/g2r

Θ

(15)

and for position control

Fφ(s) =
φ(s)/gr
mM (s)

= c
⊤(sI2 −A)−1

b =
1/(grΘ)

s(s+
ν1+ν2/g2r

Θ
)
.

(16)

B. Speed control

Funnel control with PI-extension (FC1)+(PI): To show
applicability of speed funnel control of (13), the system
properties (sp1)(a), (sp2) –(sp5) of class S1 must be verified.
For the system data as in (14) and known sign of gear ratio
gr (normally the value can be read off on the gear box), we
compute c b = 1/(grΘ) 6= 0 where sign(1/(grΘ)) is known,
which shows (sp1)(a) and (sp2), resp. Moreover, note that the
following holds

det

[
s−A b
c 0

]

= det

[

s+
ν1+ν2/g

2

r

Θ
1
Θ

1
gr

0

]

=
−1

grΘ

(14)
6= 0

hence (sp3) is satisfied. By assumption we have mL(·) ∈
L∞(R≥0;R), Fi ∈ T and |Fi| ≤MFi

<∞ for i ∈ {1, 2}10

and therefore (sp4) and (sp5) also hold. Concluding, funnel
control with PI-extension is admissible for speed control
of (13).

Classical PI control (PI): If we apply controller (PI) to
the (linear) system (15), we obtain the closed-loop transfer
function

Fω,CL(s) :=
y(s)

yref(s)
=

FPI(s)Fω(s)

1 + FPI(s)Fω(s)
(17)

=

kP

grΘ
(s+ kI/kP )

s2 +
(

ν1+ν2/g2r
Θ

+ kP

grΘ

)

s+ kI

grΘ

. (18)

10considering actuator disturbance ud(·) ∈ L∞(R≥0;R) as bounded
input disturbance in (4) is also possible.
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Fig. 6: Closed-loop system

which, using the Routh-Hurwitz criterion [20, pp. 304-306],
is stable if sign(kP ) = sign(kI) = sign(gr).

C. Position control

Funnel control with PI-extension (FC2)+(PI): Now we
need to verify properties (sp1)(b), (sp2)–(sp5) of class S2. For
system (11) with data (12) and known sign of gr, we obtain
c⊤Ab = 1/(grΘ) 6= 0 and, for BT := b, c⊤BTb = 0
which shows (sp1)(b). Moreover, note that sign(1/(grΘ)) is
known whence (sp2). Property (sp3) also holds since11

det

[

sI2 −A b

c
⊤ 0

]

= det





s −1 0

0 s+
ν1+ν2/g

2

r

Θ
1
Θ

1
gr

0 0



 =
−1

grΘ

(12)
6= 0

Again since mL(·) ∈ L∞(R≥0;R), Fi ∈ T and |Fi| ≤
MFi

< ∞ for i ∈ {1, 2} also system properties (sp4)
and (sp5) hold, resp. Concluding, funnel control with PI-
extension is also admissible for position control of (12).

Classical PID control: For position error e(t) =
1/gr(φref(t)− φ(t) and its derivative ė(t) = 1/gr(ωref(t)−
ω(t)) PID feedback with feedforward control uF (·) ∈
Linf(R≥0;R) is given by

u(t) = kP e(t) + kI

∫ t

0

e(τ) dτ + kD ė(t) + uF (t) (PID)

with transfer function (neglecting uF )

FPID(s) =
u(s)

e(s)
= (kP + kI/s+ kD s) . (19)

Applying the PID controller (19) to linear system (16) yields
the closed-loop transfer function

Fφ,CL(s) :=
y(s)

yref(s)
=

FPID(s)Fφ(s)

1 + FPID(s)Fφ(s)
(20)

=

1
grΘ

(

kI + kP s+ kD s2
)

s3 +
(

ν1+ν2/g2r
Θ

+ kD

grΘ

)

s2 + kP

grΘ
s+ kI

grΘ

. (21)

which is Hurwitz stable for sign(kP ) = sign(kI) =
sign(kD) = sign(gr) and sign(gr)kI ≤ kP · kD/(grΘ) <
kP · (kD + ν1 + ν2/g

2
r)/(grΘ). The numerator in (21)

(differentiating action) causes an overshoot of the closed-
loop system response, if e.g. a step reference is to be tracked.
This overshoot may be avoided by adequate (constant) feed-
forward control (see measurement results in Fig. 9 or [38]).

11using Laplace’s Theorem to compute the determinant [37, pp. 36-37].

description symbols & values (without dimensions)

inertia, gear Θ = 0.3421, gr = 1
initial values φ0 = 0, ω0 = 0
disturbances ‖ud‖∞ ≤ 0.56, ‖ML‖∞ = 10

speed control:
(FC1)+(PI) Λ0 = 30, λ0 = 1, TE = 0.124,

s0(t) = 1.46 · ψE(t), kP = 1, kI = 4
(PI) kP = 2.2, kI = 7.0

position control:
(FC2)+(PI) Λ0 = 2π, λ0 = 0.09π, TE = 0.35,

λ1 = 10, s0(t) = 1.33 · ψE(t)
s1(t) = 2 · ψ1(t), kP = 1, kI = 5

(PID) kP = 11, kI = 7, kD = 4, uF = −12.6

TABLE I: System, implementation and controller data.

VI. IMPLEMENTATION AND MEASUREMENT RESULTS

Now, we apply the different controllers to the labo-
ratory setup, i.e. (FC1)+(PI) and (PI) for speed control
and (FC2)+(PI) and (PID) for position control (see Fig. 5
and 6). We implement the controllers using Matlab/Simulink
and a xPC-Target PC with sampling time h = 1 [ms].
The laboratory setup consists of two permanent magnetic
synchronous machines, each driven by its own inverter
such that drive torque mM and load torque mL can be
induced independently. HEIDENHAIN RON 3350 encoders
measure angular position (with 2048 lines per revolution
and 12-bit interpolation) and, by numeric differentiation, the
capturing device (I/O board) provides speed information.
For the comparison, we design all controllers such that the
available torque m = 22 [Nm] is not exceeded during the
experiment. Moreover, all controllers are designed such that
u(0) = mM (0) = 22 [Nm] holds. With these constraints
the (PI) and (PID) controllers are designed as fast as possible
with minimal overshoot (tuning is performed empirically,
then (linear) stability presuppositions are checked). The
funnel controllers (FC1)+(PI) and (FC2)+(PI) are designed
with the exponential boundaries as in (7) and (7),(9), resp.
Implementation, system and controller data is collected in
Tab. I (system data is not used for design of the funnel
controllers!).

Speed control: Fig. 7 (step-response) and Fig. 8 (long-
run) show the measurement results for speed control. During
the initial phase 0− 7s set-point tracking of 10

[
rad
s

]
is the

control task. Load torques are induced at 3, 10 and 30 [s] (see
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Fig. 7: Measurement results for speed control (step-
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Fig. 8: Measurement results for speed control (long-run):
(FC1)+(PI) and (PI) (from top to bottom: measured

speed ω(·) + ṅm, error e(·), proportional gain k0(·), kP and
torque u(·) = mM (·)).

Fig. 8). Both controllers show good tracking performance
and disturbance rejection. The (FC1)+(PI) controller reacts
slightly faster on reference changes and disturbances (see
Fig. 7 and 8). For (FC1)+(PI), the control error evolves
within the funnel whereas, for (PI), the error leaves the
prescribed region (during load action).

Position control: Fig. 9 (step-response) and Fig. 10 (long-
run) show the measurement results for position control.
During the first 10 [s] the control-loops have to track a set-
point of π [rad] then smoothed ramps12. Load steps at 5, 15
and 35 [s] disturb the closed-loop systems (see Fig. 10).
(FC2)+(PI) and (PID) controller attain a comparable per-
formance without overshoot (see Fig. 10). For (FC2)+(PI),
the error and its derivative evolve within their corresponding
funnels whereas, for (PID), it leaves the prescribed regions
(during load action and reference changes).

Remark. Obviously, the PI/PID controllers could be de-

signed more properly, using e.g. anti-wind up strategies, such

12The position reference is low-pass filtered to obtain a signal element
of W2,∞(R≥0;R).

time t [s]

φ
+
n

m
[π

ra
d
]

0 1 2 3 4 5 6 7 8 9 10

0

0.2

0.4

0.6

0.8

1.0

φref(·) φref (·) ±ψ0(·)

Fig. 9: Measurement results for position control (step-
response): measured position φ(·) + nm(·) (FC2)+(PI)
and (PID).

that a better tracking and disturbance performance is to be

expected. But for the presented comparison, we intended to

show the limits of classical PI/PID control with constant

gains, if the generated control action u(·) should not exceed

the available torque m = 22 [Nm].

VII. CONCLUSION

This overview introduced and showed possible applica-
tions of a time-varying (adaptive) proportional funnel con-
troller for speed and position control of a (stiff) mechatronic
servo-system. The presented funnel controllers instanta-
neously adjust their time-varying gains inversely proportional
to the distances between measured output and prescribed
funnel boundary. This “adaption” guarantees that error (and
its derivative) evolves within the prescribed funnel(s). Funnel
control is applicable to systems with relative degree one or
two, stable zero-dynamics (minimum-phase) and known sign
of the high-frequency gain. Since only structural assumptions
on the system must hold for controller implementation,
funnel control is inherently robust to parameter uncertainties.
Measurement results illustrate that the funnel controllers can
keep up with the control performance and the disturbance
rejection of classical PI/PID controllers. Moreover, when
unknown load disturbances deteriorate control performance,
then the funnel controllers guarantee tracking with prescribed
transient behavior in contrast to the PI/PID controllers.
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ė
[r
a
d
/
s]

−10

−5

0

5

10
±ψ1(·)

k
0
k
1
,
k

D
[N

m
s

ra
d

]

0

5

10

15

time t [s]

m
M

[N
m

]

0 10 20 30 40 50
0
5

10
15
20

−mL(·)

Fig. 10: Measurement results for position control (long-run):
(FC2)+(PI) and (PID) (from top to bottom: mea-

sured position φ(·) + nm(·), error e(·), error derivative ė(·),
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