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Abstract— In this paper we describe, without a pretense
of completeness, some modeling and identification techniques
which have been proposed recently for applications to computer
vision. The emphasis is on methods which, although sometimes
still in development, attempt to address specific issues of the
particular application area.
Keywords: Computer vision, subspace identification, recip-
rocal processes, dynamic factor analysis, dynamic textures.

I. INTRODUCTION

It is often claimed that one of the main aims of computer
vision is to understand images. There are many peculiar
characteristics of vision as a sensor as compared to other
sensing “devices”. The image formation process depends on
a large number of factors which include geometry (shape of
the scene, position of the camera, geometry of the imaging
device), photometry (illumination, reflectance properties of
the scene etc.) and dynamics (motion of the camera and/or
of the objects which compose the scene).

It turns out that, inferring at the same time geometry,
photometry and dynamics solely from sequences of images is
certainly an ill-posed problem. In our everyday life, however,
we manage to make decisions as to what is around us, where
it is and how it is moving. These decisions are accurate
enough so that we can move around, manipulate and rec-
ognized objects and so on. Most often this is accomplished
by using prior information concerning the human imaging
device (a stereo pair with a fixed baseline), the environment
(e.g. we have plenty of prior information concerning the
shape of surrounding objects, the material they are made
of) as well as on the position and motion of the objects (we
would not expect seeing an elephant moving as a bee nor a
car being parked in the middle of a lake).

Still, in many cases we are fooled by images or movies;
many well known visual illusions have been observed and
studied.

For this reason we shall not even attempt to construct
(“generative”) models which describe geometry, photometry
and motion but rather take a “black-box” approach typical of
System Identification: we regard images as two dimensional
signals having finite support and movies as time-indexed
collection of images.

As suggested by Neyman [46], models should be as simple
as possible while describing the phenomena we are interested
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in, at the level of accuracy which is needed to our purposes.
There does not exists a “right” model, but rather a model is
“good” if it describes well the data to the purpose at hand.
Hence, preliminary to model building, one should always
have in mind to which purpose the model is being built.

For our purpose, this means representing certain features
of interest in the image by mathematical models which can
be unambiguously interpreted and used, say, for map building
or guidance and control of a mobile robot, for manipulating
and grasping objects etc. At a first sight this task may
look similar to the problem of (say) voice modeling and
recognition in speech processing. However while when deal-
ing with one dimensional signals there is a rather standard
set of modeling approaches and identification techniques
to choose from, one immediately recognizes that in the
two-dimensional case there is both an incredible variety of
modeling possibilities and at the same time a huge amount
of data to be considered and eventually processed. The large
variety of possible mathematical models and the need of
nonstandard techniques for modeling and processing a large
size of data, make the problem of image modeling and
understanding very hard. One peculiar characteristic of the
modeling problem in computer vision is that there are several
(at least three) levels at which it can be approached. The
first level is just understanding (modeling) static images. Dis-
tinctive features here are that spatial models are intrinsically
not causal, contrary to the model classes used for describing
phenomena evolving in time, since there is no natural notion
of causality which enters in describing spatial correlation.
Also real images can almost never be globally described by a
unique model class. Different regions of the same image may
have very different spatial structures and call for different
model classes to realistically capture their structure. What
is usually done is to partition the scene into regions where
a specifically chosen model class is used to fit the data
within a specified accuracy. Separating these regions is the
segmentation problem, still a very active area of research in
the vision community.

The second level concerns temporal modeling of a flow
of images in time (a “movie”). A time-varying sequence
of images carries information on the 3-D structure of the
scene which cannot in general be gathered from a single
static image. Moreover the scene itself may undergo its own
dynamics which is often of interest to capture or estimate.
For example the relative motion of the camera with respect
to the scene and/or on the relative motion of various objects
in the scene.

Dynamic Vision is the discipline which studies the inverse
problem of recovering information on (i.e. estimating) the

Proceedings of the
47th IEEE Conference on Decision and Control
Cancun, Mexico, Dec. 9-11, 2008

ThTA05.2

978-1-4244-3124-3/08/$25.00 ©2008 IEEE 3935



scene and the relative motion, from a sequence of images.
Instead of inferring 3-D structure from a single image which
is a necessarily incomplete 2-D representation of the scene,
dynamic vision attempts to reconstruct the 3-D structure from
a sequence of images by exploiting both the spatial structure
and the temporal continuity of the scene. The general prob-
lem area may be seen as a chapter of nonlinear estimation
and/or identification theory but this general classification is
hardly of any help in practical solutions of the problem. It
is only by exploiting the peculiar geometric and dynamic
structure of the sequential inverse-projection problem of
dynamic vision that useful and practically implementable
solutions can be obtained.

So far temporal modeling and identification of image flows
has been approached only for very simple spatial structures,
e.g. dynamic texture modeling or temporal modeling of a
finite set of point features such as for example the joints of
moving kynematic chains. Examples of gait modeling will
be described in Section VI-A. A definitely more complex
task would be to model the spatio-temporal dynamics of an
image flow; i.e. the simultaneous evolution of spatial and
temporal coordinates (shape and time). This is however a
largely unexplored area.

II. STATIC IMAGE MODELING

Statistical modeling of images has been the subject of
intense research in the past three decades and forms now
a vast literature; see for example [25], [10], [2], [45], [65],
[67]. Most studied models in the literature are related to
the so-called Gibbs-Markov (G-M) random fields, borrowed
(with some adaptations) from statistical mechanics. Unfortu-
nately these models lead to extremely complicated estimation
problems which have to be approached by Monte-Carlo type
techniques, such as simulated annealing, MCMC, etc..

In this paper we shall discuss a simple class of stochastic
models, known as reciprocal processes. These are actually
a special class of G-M random fields which have been
studied in depth in 1-D; see e.g. [34], [35], [39], [38]. It
has been shown that stationary reciprocal processes admit
linear descriptor type representations with constant parame-
ters which can be seen as a natural non-causal extension of
the linear state space models common in time series analysis.
Stationary reciprocal processes may naturally live in a finite
region of the “time” line (or of the plane) and being described
by finitely parametrized linear models, lead (at least in in
principle) to much easier identification problems, solvable,
say, by “subspace” techniques, similar to those currently
widely used in identification of multivariate time series.

One important class of models which we shall not discuss
in this survey are multi-resolution models [4], [15], [5], [32],
[8]. Multi-resolution models are based on the use of the
wavelet transform. Taking advantage of the tree represen-
tation of the wavelet coefficients, a 2D signal is represented
as a stochastic process on a tree. We are not aware of any
serious attempt to perform identification of these models
from data.

Other approaches include “deterministic” modeling (see
e.g. [60]), which however will not be discussed in this paper.

III. TEXTURES

It is natural to think of an image on a finite 2-D lattice
of N × m pixels as a random field; i.e. a doubly indexed
stochastic process I = {I(k, h) ; k = 1, . . . , N, h =
1, . . . , m} describing the intensity of the image at each pixel.

For us a texture will then be just a spatially stationary
random field, see, e.g., figure 1.

Fig. 1. A stationary image (texture).

Everything will be assumed to be zero mean (for this to
hold, one actually may have to compute the average intensity
Ī and consider the logarithms log{I(k, h)/Ī}). Adopting
the usual wide-sense (Gaussian) modeling paradigm of sta-
tionary stochastic processes, it appears natural to model
textures by linear “2-D stochastic systems”. By looking
into the early literature in this area, one gets however the
impression that the existing 2-D system theory has mostly
been driven by an underlying desire of getting an orthodox
formal generalization/extension of 1-D systems. This has (in
our opinion) laid emphasis on superfluous issues, e.g. the
search for extensions to 2-D of the notion of causality, a
concept originated in 1-D temporal models which seems to
be hardly useful in our context.

In the present setting it seems natural to base the idea of
state of a 2-D stochastic model on that of a Markov Random
Field.

A n-dimensional random field {x(k, h)} on a (finite or
infinite) 2-D lattice is Markovian if for any closed bounded
contour Γ, the random variables in the interior of Γ are
conditionally independent of those in the exterior region,
given the boundary values xΓ := {x(k, h) ; (k, h) ∈ Γ}. See
e.g. [54] for an extensive discussion and precise definitions.
The Markov property leads directly to a “local model” of
the process. For the best linear estimate of x(k, h) given all
other x(k′, h′) ; (k′, h′) 6= (k, h) must depend only on the
value of the process on the pixels immediately surrounding
(k, h),

E {x(k, h) | x(k′, h′) ; (k′, h′) 6= (k, h)} =
Fo+x(k + 1, h) + Fo−x(k − 1, h)+
Fv+x(k, h + 1) + Fv−x(k, h− 1)

where the F ’s are n × n matrices (possibly dependent on
(k, h)). Introducing the conjugate process ([42])

d(k, h) := x(k, h)−E {x(k, h) | x(k′, h′) ; (k′, h′) 6= (k, h)}
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which by construction is uncorrelated with all random vari-
ables {x(k′, h′) ; (k′, h′) 6= (k, h)}, one readily arrives at
the linear model

x(k, h) = Fo+x(k + 1, h) + Fo−x(k − 1, h)+
Fv+x(k, h + 1) + Fv−x(k, h− 1) + d(k, h)

which should be coupled with suitable boundary conditions.
The concept of Markov field reduces in 1-D to that of a
reciprocal process, which is a generalization of 1-D Markov
process [35].

Definition 1: A n-dimensional process x := {x(k), k ∈
Z} is reciprocal if for all k ∈ (k0, k1) and h in the comple-
mentary interval (k0, k1)c x(k) and x(h) are conditionally
independent given the boundary values x(k0) and x(k1).

From now on we shall discuss one-dimensional reciprocal
models only. This, on one side, is done to reduce notational
complexity and to afford a cleaner exposition. On the other
hand, some extensions to 2-D of the procedures exposed
below still need to be worked out in full detail.

We may introduce 1-D modeling of an image by simply
considering the spatial evolution of the rows (or columns) of
the image. By introducing y(k) ≡ I(k, ·) one can describe
I as an m-dimensional stochastic process {y(k)(k), k =
1, 2, . . . , N} defined on the finite subinterval [1, N ] of the
integer line. see Fig 2.

k-th row y(k) ≡ I(k, ·)

IMAGE

-

Fig. 2. 1-D modeling of an image

We shall consider processes which are stationary on a
finite interval [1, N ]. Write y := {y(k), k = 1, 2, . . . , N}
as a column vector with N (m-dimensional) components and
introduce the covariance matrix R := Eyy>. We shall say
that y is stationary if R has the symmetric block-Toeplitz
structure,

R := Eyy> =




R(0) R(1)> . . . R(N−1)>

R(1) R(0) R(1)> . . .
. . . . . .

R(N−1) . . . R(1) R(0)




and say that y is of full rank (or minimal) if its covariance
matrix R := Eyy> is positive definite.

Assume now that y is a periodic stationary process of
period T defined on the integer line: y(k + νT ) := y(k)
for arbitrary ν ∈ Z. Such a process can equivalently be
thought of as being defined on the discrete group ZT :=
{1, 2, . . . , T} with arithmetics mod T . Its covariance matrix,
besides being block-Toeplitz, must obey the periodicity con-
straint

R(τ) = Ey(t + τ)y(t + T )> = R(τ − T ) = R(T − τ)>

which for example implies, R(1) = R(T − 1)> and so on.
Hence a stationary periodic process defined on the discrete
group ZT has a symmetric block-circulant covariance
matrix

R=Eyy>=




R0 R>1 . . . R>τ . . . Rτ . . . R1

R1 R0 R>1
. . . R>τ . . .

. . .
...

...
. . . . . . . . . R>1

R>1 . . . R>τ . . . Rτ . . . R1 R0




which we shall write

RT = Circ{R0, R1, . . . , Rτ , . . . , R>τ , . . . , R>1 } (III.1)

the subscript denoting the number of blocks.
Note that we can always extend the covariance function of

a stationary process defined on [1, N ] to an enlarged interval
of length (at most1 ) 2N to make it the covariance function
of a periodic process (i.e. making R symmetric block-
circulant). This extension does not require extra information
and can always be done on the basis of the available data.
Hence a stationary process defined on some finite interval,
may without loss of generality be assumed from the ouset
to be periodic of period N ≡ T .

Next we consider n-dimensional stationary reciprocal pro-
cesses. Stationary reciprocal processes defined on [1, N ] may
always be assumed to be periodic of period N . For we have
the following basic representation result.

Theorem 3.1: Every stationary reciprocal process on
[1, N ] can be represented by a three terms recursion of the
following form

Mx(k) = F>x(k − 1) + Fx(k + 1) + e(k) (III.2)

where M, F are constant matrices and the associated bound-
ary conditions can be taken to be cyclic; i.e.

x(N + 1) = x(1) x(0) = x(N) . (III.3)

If x is of full rank, M is symmetric and positive definite and
e is a locally correlated process; i.e.

E e(k)e(h)> = 0 |k − h| > 1 , (III.4)

such that

Ex(k)e(k)> = I Ex(k)e(h)> = 0 k 6= h .
(III.5)

For full rank processes, the conjugate process e is a moving
average process of order one; i.e. e(k) = w(k)+Bw(k−1)
for some white noise w. For non full rank processes this
structure needs to be generalized.

The dynamical model (III.2) with boundary conditions
(III.3) can be written in matrix notation as




M −F 0 . . . 0 −F>

−F> M −F . . . 0 0
0 −F> M −F . . . 0

. . . . . . . . . . . . . . . 0
0 . . . . . . −F> M −F
−F . . . . . . . . . −F> M







x(1)
x(2)

...
x(N)


=




e(1)
e(2)

...
e(N)




1see [18].
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i.e. as Λx = e where the matrix Λ on the left is symmetric
block-circulant with a block-tridiagonal structure

Λ := Circ
{
M,−F, 0 , . . . , 0 , −F>

}
. (III.6)

The representation yields a fundamental characterization of
the covariance matrix of a full rank reciprocal process.

Theorem 3.2: The covariance of a full-rank reciprocal
stationary process x on ZN must be the inverse of a block-
tridiagonal circulant matrix.

Σ := Exx> = Λ−1 = Circ
[
M,−F, 0 , . . . , 0 , −F>

]−1
.

The proof follows by multiplying from the right Λx = e by
x>, whereby,

ΛExx> = E ex> = I ⇒ Exx> = Λ−1 .

IV. IDENTIFICATION OF RECIPROCAL MODELS

An m-dimensional stationary process y := {y(k), k ∈
[1, N ]} admits a reciprocal realization, if there is an n-
dimensional reciprocal stationary process x such that

y(k) = Cx(k) k ∈ [1, N ]

for a suitable constant matrix C. The dynamic equations of
a reciprocal realization are of the form

Mx(k) = F>x(k − 1) + Fx(k + 1) + e(k) (IV.1)
y(k) = Cx(k) (IV.2)

J. A. Sand [56] discusses conditions for minimality of a
reciprocal realization.

Determining whether such representations exist and com-
puting the parameters of a (minimal) realization, (C,M,F )
from the output covariance data R ≡ {R(k), k =
0, 1, . . . , N − 1} is so far an open problem (reciprocal
stochastic realization).

Note however that in our one-dimensional reformulation
of the texture modeling problem, the number of pixels in
each row (m) will be large and the state vector will generally
have a smaller dimension than the output: in other words the
matrix C will have n < m (independent) columns. Therefore
y(k) = Cx(k) implies that Yk := span {yi(k) ; i =
1, 2, . . . , m} = span {xi(k) ; i = 1, 2, . . . , n} := Xk and
hence, under these circumstances, the process y will itself be
reciprocal. The (nontrivial and so far unsolved) problem of
constructing the state for y can be bypassed alltogether. Note
that in general however y will be a singular (non full-rank)
reciprocal process. This last difficulty can be circumvented
as it will be explained later. The first step of estimating the C
matrix can be accomplished by a SVD decomposition. See
[12] for details.

Henceforth we may (and shall) just assume that our
measurement data is a sample of the x process. At first we
shall assume that the observed reciprocal process is of full
rank. So we are to solve the following problem;

Problem 1: Estimate the parameters (M,F ) of a descrip-
tor model (III.2) of an observed full-rank reciprocal process
x.

This identification problem has been approached from the
classical (maximum likelihood) point of view under the as-
sumption of a Gaussian distribution for x. The parametrized
density is

p(M, F )(x) =
1√

(2π)Ndet (Λ−1)
exp

(
−1

2
x>Λx

)
,

where the inverse covariance matrix Λ is parameterized by
M and F as in (III.6).

Assuming that T independent sample images of the same
texture x are available and denoting the sample sequence
by x :=

(
x(1), .., x(T )

)
, the log-likelihood function can be

written

L(M,F ) = log det (Λ)− Trace {MT0 (x)} −
− Trace {FT1 (x)} (IV.3)

which has an exponential class structure [3] with matrix
parameters (M, F ) and matrix-valued sufficient statistics T0

and T1 given by:

T0 (x) =
1
T

T∑
t=1

{
N∑

k=0

x(t)(k)
[
x(t)(k)

]>
}

T1 (x) =
2
T

T∑
t=1

{ 1
N

N∑

j=1

x(t)(k)
[
x(t)(k − 1)

]>
}

+
2
T

T∑
t=1

x(t)(0)
[
x(t)(N)

]>

From exponential class theory it follows that
Proposition 4.1: The statistics T0 and T1 are Maximum

Likelihood estimators for their expected values, namely

1
N

T0 = Σ̂(0) = M.L. Estimator of Ex(k)x(k)>

1
N

T1 = Σ̂(1) = M.L. Estimator of Ex(k + 1)x(k)>

In other words, we directly get the M.L. estimates of the main
and upper diagonal blocks of the state covariance matrix
Σ. However our original problem was to compute M.L.
estimates of the parameters M and F . Since there is a one
to one relation between Σ and (M, F ):

Σ−1 = Λ := Circ
[
M,−F, 0 , . . . , 0 , −F>

] 1 : 1⇔ (M, F )

from well-known properties of maximum likelihood, we see
that it must be possible to obtain the estimates M̂ and F̂
uniquely from Σ̂(0), Σ̂(1). This leads to an instance of the
famous,
Covariance Selection Problem (A. P. DEMPSTER, [19]):
Determine the (ML) estimates of (M,F ) from Σ̂(0) and
Σ̂(1) by solving

Σ̂ := Λ̂−1 = Circ
[
M̂,−F̂ , 0 , . . . ,−F̂>

]−1

in particular impose that the blocks Λ̂i,j should be zero
exactly where the blocks Λi,j are zero.
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From the general theory in [19] it is known that the selec-
tion problem has a unique solution. Dempster’s original algo-
rithm for solving covariance selection problems is however
computationally very intensive; it requires repeated inversion
of matrices of size O(N ×n). It does not seem to be useful
for real size images. One may resort to approximations, as
discussed in the paper [12]. Another way of proceeding is
to make connection with matrix extension problems studied
in linear algebra. See [28, vol II] for a survey. Given the
covariance estimates Σ̂(0), Σ̂(1), one wants to complete the
block-Toeplitz matrix




Σ̂(0) Σ̂(1)> . . . ? ? ?
Σ̂(1) Σ̂(0) Σ̂(1)> . . . ? ?

... Σ̂(1) Σ̂(0) Σ̂(1)> . . . ?

? . . .
. . . . . . . . .

? ? . . . Σ̂(1) Σ̂(0) Σ̂(1)>

? ? ? . . . Σ̂(1) Σ̂(0)




in such a way that the inverse Λ̂ = Σ̂
−1

has a symmetric
block-tridiagonal-circulant structure. This can be seen as a
particular band extension problem of the type dealt in, say
[22]. A description of this approach is however outside the
scope of this survey and will be found elsewhere [51].

As previously pointed out, the above identification proce-
dure does not generally apply to the one-dimensional texture
modeling problem, since the (reciprocal) state process for
this example is in general not of full rank. Rank deficiency
of the reciprocal state process turns actually out to be
rather commonly encountered in applications so we must
briefly address the issue. In case of non full rank, it can
be shown that the components of x(t) can all be expressed
as delayed versions of a smaller dimensional process z(t)
which is of full rank and admits a general nearest neighbor
representation of the type

ν∑

k=−ν

Mk z(t + k) + ez(t) t ∈ ZN (IV.4)

where M0 is symmetric positive definite, M−k = M>
k and

ez is the (normalized) conjugate process of z, [42] such that

E z(k)ez(k)> = I , E z(k)ez(h)> = 0 k 6= h

In this case ez must be a locally correlated process with a
correlation window of width ν,

E ez(k)ez(h)> = 0 |k − h| > ν

which implies that {ez(k)} is an MA type process of order
ν,

ez(k) = w(k) + B1w(k − 1) + . . . + Bνw(k − ν)

for some white noise w.
The model (IV.4) is a natural generalization of the 1-lag

descriptor model (III.2). It makes connection with Gaussian
Gibbs-Markov models once we interpret Λ = Σ−1 as the
Potential Matrix.

In (IV.4) the spatial evolution of each scalar component
zj(k) ; j = 1, . . . , r is influenced by that of its nearest
neighbors, in particular by 2νj neighboring values of the
same component, where νj may vary with j. The indices
νj , j = 1, . . . , r, of which ν is by definition the largest,
are structural indices of the model related to the Kronecker
(observability) indices of linear system theory. This obser-
vation (which needs to be better substantiated) shows the
conceptual advantage of the system identification approach
as compared to the “physical” a priori modeling approach
by Gibbs-Markov models where the structure of the nearest
neighbor interaction potential must usually be presumed from
the beginning and there is no way to relate it experimentally
to the actual data to be described.

The dynamical equation (IV.4) can be written in matrix
form as



M0 M>
1 . . . M>

ν 0 (∗)>
M1 M0 M1 . . . M>

ν 0
... M1 M0 M>

1 . . . M>
ν

Mν . . .
. . . . . . . . .

0 Mν . . . M1 M0 M>
1

(∗) 0 Mν . . . M1 M0







z(1)
z(2)

...
z(N)


=




ez(1)
ez(2)

...
ez(N)




where the asteriscs on the upper and lower corners denote
the circulant completion of the matrix. See e.g. [30] for many
examples with scalar entries. This matrix, denoted Λ :=
Circ

[
M0,M1, . . . , Mν , 0, . . . , 0 , M>

ν ,M>
ν−1, . . . , M>

1

]
is a symmetric banded block-circulant matrix.

Estimation of these models can be done by generalizing
what was done for the 1-lag descriptor model for a full rank
process. Now the log-likelihood depends on ν + 1 matrix
parameters {Mk}; i.e.

L(M0, . . . ,Mν) = log det (Λ)−
ν∑

k=0

Trace {MkTk (x)}

where the matrix-valued statistics Tk , k = 0, . . . , ν are
generalized sample covariances. By exponential class theory
they are in fact the ML estimates of the true state covariances

1
N T0 = Σ̂(0) = M.L. Estimator of E z(k)z(k)>

...
1
N Tν = Σ̂(ν) = M.L. Estimator of E z(k + ν)z(k)>

The covariance selection problem now becomes: To com-
pute the (unique) ML estimates of (M0, M1, . . . , Mν) from
Σ̂(0) . . . , Σ̂(ν), by solving

Σ̂
−1

= Circ
[
M̂0, . . . , M̂ν , 0, . . . , 0, M̂>

ν , . . . , M̂>
1

]

i.e by imposing that the inverse Λ̂ = Σ̂
−1

should have a
symmetric banded block -circulant structure of bandwith ν.
This again can be rephrased as a particular band extension
problem for block circulant matrices: Complete the esti-
mated covariances Σ̂(0), . . . , Σ̂(ν) with a sequence Σ̂(ν +
1), ...Σ̂(N−1) in such a way that the inverse Λ̂ = Σ̂

−1
has a

symmetric banded block-circulant structure of bandwidth ν.
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Figures 3 and 4 give an idea of what can be achieved by
these modeling techniques. Both images are identified with
an index one (ν = 1) reciprocal model.

Fig. 3. Trees image: original texture (bottom) and synthesized (top).

Fig. 4. Steam image: original texture (bottom) and synthesized
(top).

V. DYNAMIC MODELS FOR VISUAL PROCESSES

As explained in the introduction we regard a movie (a
sequence of images) as a discrete-time signal I(x, t) : X ×
N→ R+. For digital images (finite number of pixels) the set
X is a finite lattice of the form X := {(i, j) : i = 1, .., r, j =
1, .., c} where r and c are the number of rows an columns
in the image2. For simplicity we consider graylevel movies,
so that I(x, t), for each fixed t, is a matrix whose entries
take values in R+. Of course it would be straightforward to
extend the results in this paper to color images by considering
vector valued signals.

In this section we shall be mainly interested in describing
the dynamical properties of the sequence, i.e. our models
should capture how the image changes over time. Examples
of visual phenomena we are interested in modeling are
dynamic textures [20] and gaits (e.g. walking, running etc.).
In fact, dynamics has proven to be of paramount importance
in extracting information from videos, see for instance the
Johansson experiment [36].

At a given time t, the image I(·, t) can be thought of as
a vector process whose dimension is equal to the number
of pixel in the image; for instance, if we are interested in
modeling a “dynamic texture” (see figure 5 for an example)
we shall consider the signal y(t) := vec(I(·, t)), obtaining
by vectorizing the image I . Sometimes, the specific problem
may suggest that only certain functions of the image inten-
sity are of interest. For instance, when modeling a person

2In Section III these were denoted N and m; here we shall reserve these
symbols to denote other quantities.

walking, the signal of interest y(t) shall contain a description
(which is extracted from the image I(·, t)) of the posture like,
e.g., the positions of markers from a motion capture system
or angles of the person’s joints (knees, ankles, shoulders,
elbows etc.) [6]. We regard the extraction of y from the
rough image I as a pre-processing phase which shall not
address in this paper.

In any case, it is typical that, regardless of the specific
modeling task, the signal extracted from the image intensities
I(·, t), which describes the phenomena of interest, forms a
vector say, y(t) ∈ Rm with a “large” number (from tens to
thousands), of components.

We are interested, therefore, in classes of models (and
identification methodologies thereof) which are suited for
high dimensional data. Note also that the number N of
samples (i.e. t = 1, .., N ) is very often of the same order (and
sometimes smaller) than the data dimensionality (N < m).
For instance, in dynamic textures modeling, the number N
of images in the sequences is of the order of a few hundreds
while m (which is equal to the number of pixels of the
image) is certainly of the order of a few tens of thousands.
It is therefore apparent that some sort of dimensionality
reduction is absolutely needed in this context. Motivated
by this requirement, we shall look for an r dimensional
(r ¿ m) white noise input w ∈ Rr with unit covariance
matrix Ew(t)w>(t) = I , and a rational transfer function
H(z), possibly of “low” McMillan degree n, which describe
the output process according to the scheme,

y(t) = H(z)w(t) + v(t)
= f(t) + v(t). (V.1)

called Dynamic Factor Models (DFM). The process v(t)
(sometimes called idiosyncratic noise) represents the mis-
match between the observed data y(t) and the “ideal model”
H(z)w(t). It is assumed to be independent of w(t), zero
mean and with uncorrelated components (diagonal covari-
ance matrix).

This latter assumption hinges on the fact that all the
“common dynamics” (cross-correlation) in the components
of the output process y should be captured by the factor
f(t) := H(z)w(t). Dynamic Factor Models models can be
though of as dynamic versions of the factor analysis model
in statistics. Usually, the dimension m of y(t) is called the
cross-sectional dimension, w(t) is called the latent variable
and f(t) = H(z)w(t) is called the common factor.

Sometimes the noise process v is also assumed to be
temporally white. This we shall assume also in this paper.

Factor analysis models have been first developed by
psychologists [59], [9]; dynamic version of factor models
have attracted a remarkable attention in the statistical and
econometric literature, see e.g. [27], [57], [48], [33] and ref-
erences therein. It is also fair to say that, with a few notable
exceptions [37], [62], [50], [52], [16], less attention has been
payed to these models in the control engineering community.
Recently, a generalization of these models allowing the cross-
sectional dimension to go to infinity have been studied; these
models are called Generalized DFM (GDFM)(see e.g. [24]
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and references therein). This class of models could turn out
to be useful in modeling visual signals since, as discussed
above, often the cross-sectional dimension can be very large
(tens of thousands or larger).

Identification of these models has been addressed by
several authors, we refer the reader to [17], [49] for recent
surveys.

In this paper we shall adopt a slightly different approach,
using ideas from stochastic realization theory [40], [52] and
subspace methods [61], [41], [14].

The identification procedure used in [20] can be seen as
a simplified version of this approach.

VI. IDENTIFICATION

From now on we shall refer to a model class of the
form (V.1) where we shall always assume that v(t) has
uncorrelated and temporally white components. Furthermore,
we shall assume that the transfer function H(z) admits a
factorization of the form

H(z) = L ·G(z) L ∈ Rm×p (VI.1)

where p ¿ m. This just says that that a first dimensionality
reduction can be achieved by a static transformation. Without
loss of generality we can assume3 p ≥ r and L>L = I . We
postpone to future work an in-depth study of this condition
as well as how it relates to similar ones encountered in the
literature, see e.g. [49], [24], [48], [33], [17] and references
therein.

Condition (VI.1) implies that the common dynamic factor
f(t) = H(z)w(t) can be reduced, by a static transformation,
to a lower (p) dimensional process4 fr(t) := L†H(z)w(t) =
G(z)w(t). The multiplicity of the “reduced” factor will
however not change and still be r ≤ p. It will be part of
the identification procedure to estimate the matrix L as well
as the dimensions p and r.

For future use let us observe that the covariance function
of the process y(t) takes the form:

Σy(0) = LΣfr (0)L> + Σv (VI.2)

and
Σy(k) = LΣfr (k)L> k 6= 0 (VI.3)

The identification algorithm used in [20], [23] can be
summarized as follows:
• Compute the SVD of Σy(0). An orthonormal basis

L̂ for the principal subspace (of dimension p) of this
matrix is used as estimator of L.
This corresponds to computing a Karhunen-Loeve ex-
pansion ŷ(t) of y(t) using p principal components:

ŷ(t) = L̂L̂>y(t)

• The coefficients of the PCA expansion are computed as

z(t) := L̂>y(t) = fr(t) + L̂>v(t) (VI.4)

3If this was not the case the model (V.1) could be written with a smaller
number of latent variables w(t).

4The superscript † denotes Moore-Penrose pseudoinverse.

• An AR(1) model for the PCA coefficients is estimated
solving the linear equation

z(t) = Az(t− 1) + e(t) (VI.5)

in the least squares sense.
In this last step an ARMA model could be estimated

instead, and subspace techniques can be used to this purpose
[61], [11]; this is done, for instance, in gait modeling
[6]. The simple model (VI.5) has been used in dynamic
textures since, experimentally, it provides good performance
in both synthesis and recognition [20], [21] while being
simple enough. Sample images from both the original and
synthesized sequence using this method are reported in figure
5.

As we shall discuss in the next section, some applications
such as gaits modeling call for dynamical models which
include also periodic modes (simple unreachable eigenvalues
on the unit circle). Subspace methods can indeed be extended
to this purpose, see [6] and Section VI-A.

A few remarks are now in order concerning this procedure:
a) the first PCA step provides a consistent estimator of

L only under the assumption Σv = σ2I . Similarly
to the approach suggested in [49], instead, L could
be estimated from Singular Value Decomposition of
Σy(k), k > 0. This is consistent regardless of the
matrix Σv and only relies on whiteness of v(t).

b) Even under consistent estimation of L, the PCA coef-
ficients (VI.4) are the sum of the common (reduced)
factor fr(t) and the noise component L̂>v(t). There-
fore, even under assumption (VI.1), z(t) is a full rank
process which could be modeled, with some care, using
a standard DFM of the form (V.1) itself.

c) The first dimensionality reduction using PCA is nec-
essary because in computer vision problems the cross-
sectional dimension m is often much larger than the
number of data itself. Still, even after this reduction,
z can be high dimensional. For instance, in the case
of dynamic texture a reasonable number of principal
components ranges in the interval 30− 50 for images
whose size is of the order of 400 × 300 pixels, see
e.g. [20]. Unfortunately the last step in the algorithm
above does not seek for a low dimensional input (latent
variable) as prescribed by DFM; in fact, generically,
e(t) in (VI.5) is a full rank process.

We shall now attempt to outline a procedure which over-
comes the shortcomings mentioned above and fully exploits
the structure of DFM (V.1) under the additional assumption
(VI.1). We shall not enter into the fine details required for
the actual implementation; this is actually subject of ongoing
research.

The main conceptual steps could be enumerated as fol-
lows:

1) Perform a first dimensionality reduction as in (VI.1).
As suggested in [33], [49] the matrix L can be esti-
mated from PCA of the covariance matrix (VI.3), for
some k > 0. This provides a consistent estimator of
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(the column space of) L under the condition that v(t)
is white noise.

2) Compute the reduced output z(t) as in (VI.4).
3) The reduced output component satisfies

z(t) = L̂>LG(z)w(t) + L̂>v(t).

Let (A,B, C,D) be a state space realization of
L̂>LG(z), i.e. L̂>LG(z) = C(zI−A)−1B+D. Then
z(t) can be given a realization of the form

x(t + 1) = Ax(t) + Bw(t)
z(t) = Cx(t) + Dw(t) + L̂>v(t)

(VI.6)

where w(t) and L̂>v(t) are uncorrelated white noise
processes of dimension r and p respectively.
Using subspace techniques [61], [41], [11] we can re-
cover the matrices A,C, C̄, Σz(0) where C̄ := Ez(t−
1)x>(t) and Σz(0) := Ez(t)z>(t).
It is well known that all minimal (stochastic) realiza-
tions of the process z(t) can be parametrized by the
symmetric positive definite solutions P = P> > 0 of
the LMI (positive real lemma)

[
P −APA> C̄> −APC>

C̄ − CPA> Σz(0)− CPC>

]
≥ 0 (VI.7)

Usually one is interested in the stable, minimum phase
model (spectral factor) for z(t) which corresponds to
the minimal solution P− of the LMI (VI.7). Instead,
here, we are interested in models for which the dimen-
sion r of white input in the state equation is as small
as possible (this is called multiplicity of x(t) in the
literature of stochastic processes [55]). This is achieved
by finding solutions P which minimize the rank of the
matrix Q := P −APA>. Under suitable assumptions
the “model noise” Bw(t) and the “measurement noise”
L̂>v(t) are uncorrelated, hence there exist solutions
P which make C̄> − APC> = 0. This we call a
“diagonalizing” P . In particular this certainly holds if
G(∞) = D = 0.
This is in general a difficult problem and further
investigation is needed. We shall now give for granted
that such a P has been found.

4) The matrices B, D and the output noise variance
L̂>ΣvL̂ can be found as follows.
Since P is solution of (VI.7) there exist matrices B̄
and D̄ satisfying

B̄B̄> = P −APA>

B̄D̄> = C̄> −APC>

D̄D̄> = Σz(0)− CPC>

If P − APA> is rank deficient, w.l.o.g. B̄ can be
chosen in the form B̄ = [B 0]. Let also D̄ = [D D̃].
It thus follows that

BB> = P −APA>

BD> = C̄> −APC>

DD> + D̃D̃> = Σz(0)− CPC>

Hence L̂>ΣvL̂ = D̃D̃>.

There are a number of (statistical) issues related to the pro-
cedure outlined above, among which the decision concerning
the rank of P − APA>, which are not discussed here but
are of paramount importance for the actual implementation
when using sample moments and estimators Â, Ĉ, ˆ̄C. We
postpone discussion of these aspects to future work.

Also the relation of this procedure with state-of-the art
techniques for identification of DFM, see e.g. [17], [33], [49],
[24], is outside the scope of this tutorial paper and will be
addressed elsewhere.

A. Modeling with purely deterministic components

In certain vision application such as textures and gaits it is
desirable to model signals with periodic components. People
in vision have sometimes used ad-hoc remedies to enforce
periodic modes in dynamic textures models, see e.g. [66].
Other work (see e.g. [1]) have postulated a strictly periodic
structure of the data by assuming that the eigenvalues of A
are uniformly spaced on the unit circle. This corresponds
exactly to performing Discrete Fourier Transform of the
sequence to be modeled, yielding a completely equivalent
representation of the data itself.

In [6] subspace methods have been extended in order
to model signals which contains both periodic and purely
“stochastic” components. We shall briefly overview this
approach here. In this Section we shall assume that the first
(PCA based) dimensionality reduction has been performed
and we therefore work with the reduced signal z(t). We use
the notation ẑ(t|t−1) to denote the best (minimum variance)
linear predictor of z(t) given its past history {z(t−1), z(t−
2), .....}. It is well known (first part of Wold’s decomposition
theorem [55], [47]) that every stationary random process z(t)
can be decomposed into two parts

z(t) = zd(t) + zs(t) (VI.8)

where zd(t) is a purely deterministic (PD) process which can
be predicted exactly as a linear combination of its past (i.e.
zd(t) = ẑd(t|t−1)) , and zs(t) is a purely non-deterministic
(PND) process (or “purely stochastic,” hence the choice of
subscript s), uncorrelated from zd(t), for which the one
step ahead prediction error zs(t) − ẑs(t|t − 1) has positive
definite variance. From Wold’s decomposition theorem [55],
the PND part can be given an infinite moving average
representation of the form zs(t) =

∑∞
τ=0 W (τ)e(t − τ),

where W (τ) is a sequence of matrices such that W (0) =
I ,

∑∞
τ=0 ‖W (τ)‖2 < ∞ and e(t) is the innovation process

e(t) := zs(t)− ẑs(t|t− 1).
Note however that, as in the previous section, we are not

necessarily interested in the minimum-phase model for zs.
Hence we consider the decomposition:

zs(t) =
∞∑

τ=0

G(τ)w(t− τ) + L̂>v(t) (VI.9)

where G(0) = Ds ,
∑∞

τ=0 ‖G(τ)‖2 < ∞ and w(t) is
a normalized white noise process with uncorrelated compo-
nents. In general W (τ) needs not be equal to G(τ), as we
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shall discuss in the next section. In fact this freedom can be
used to match higher order statistics which might in turn be
useful both to the purpose of synthesis and recognition.

It is possible to show that the PD component zd(t) can be
represented as the superposition of (possibly infinitely many)
sinusoidal signals. However, from a practical standpoint, we
can assume that zd(t) is the superposition of a finite number
of sinusoids and hence can be represented, for t > t0, as the
output of an autonomous system of state dimension nd

{
xd(t + 1) = Adxd(t)

zd(t) = Cdxd(t)
(VI.10)

with the constraint that Ad has eigenvalues on the unit cir-
cle and is diagonalizable. Without loss of generality the pair
(Ad, Cd) can be taken to be observable. From stationarity of
zd, xd(t) is also stationary and Pd = Var {xd(t)} satisfies
the homogeneous Lyapunov equation Pd = AdPdA

>
d . Since

the choice of basis in the state space is arbitrary, one can
choose it so that Pd = I; with this canonical choice, we
have

AdA
>
d = I (VI.11)

showing that, in this particular basis, Ad needs to be orthog-
onal.

Similarly, it is possible to give a state space realization to
the representation (VI.9) in the form

{
xs(t + 1) = Asxs(t) + Bsw(t)

xs(t) = Csxs(t) + Dsw(t) (VI.12)

where xs(t) ∈ Rns . Defining the aggregate state x(t) =
[x>d (t) x>s (t)]>, x(t) ∈ Rn, we obtain a generative model
of the the stationary process z(t) ∈ Rm in state-space form
(V I.6) with

A =
[

Ad 0
0 As

]
B =

[
0

Bs

]

C =
[

Cd Cs

]
D = Ds

|λi(Ad)| = 1, i = 1, .., nd |λj(As)| < 1, j = 1, .., ns

x(t) =
[

xd(t)
xs(t)

]
, xd(t) ∈ Rnd , xs(t) ∈ Rns

E [w(t)] = 0 , E
[
w(t)w(t)>

]
= I. (VI.13)

where xd(t) and xs(t) are the deterministic and stochastic
components of the state corresponding to (VI.8) and [x0 =[

x>0d x>0s

]>
is the initial condition.

Estimation of sinusoidal components (corrupted by white
noise) is addressed by standard algorithms such as MUSIC
[58] and ESPRIT [53]; however these algorithms disregard
non-periodic components which are instead of considerable
importance for tasks such as synthesis and/or recognition. In
the paper [6] we have discussed a modification of subspace
methods which allows to handle critically stable systems as
(VI.13); further work is indeed needed to investigate the
statistical properties of the algorithm proposed. We shall just
give an outline of the algorithm and refer the reader to [6]
for the details.

1) From z(t) estimate the state space x̂(t) and the matri-
ces Â, K̂ and Ĉ of the innovation model

x(t + 1) = Ax(t) + Ke(t)
z(t) = Cx(t) + e(t)

using the subspace method in [61], [11].
2) Change the basis in the estimated state space ac-

cording to the eigenvalue decomposition of Â. Let
T̂ x̂(t) := [x̂>d (t) x̂>s (t)]> be the state basis which
(block) diagonalizes the state transition matrix

T̂ ÂT̂−1 =
[

Â1 0
0 Â2

]

where Â1 has eigenvalues “close” to the unit circle
and its principal subspace is “almost unreachable”. The
decision as to whether an eigenvalue is close to the unit
circle and/or its corresponding eigenspace is almost
unreachable ought to be based on statistical properties
of the estimators Â, K̂ which we shall not discuss
here. Statistical properties [13] of subspace methods
may turn out to be useful to this purpose.
Without loss of generality the state transformation T̂
can be chosen so that the sample covariance matrix
of x̂d is the identity. With this choice of basis it is
known (see eq. (VI.11)) that the matrix Ad should be
orthogonal. Then Âd can be estimated by solving5

Âd = min
Ad∈O(nd)

‖x̂d(t + 1)−Adx̂d(t)‖2F .

This is called “matrix Procrustes problem” [64], [29]
and its solution can be obtained from Singular Value
Decomposition USV = Σ̂x̂

′
dx̂d

of the sample covari-

ance between x̂d(t + 1) and x̂d(t) as Âd = UV >.
3) Define [Ĉd Ĉ2] := CT̂−1. Using the estimators Âd

and Ĉd estimate the initial condition x̂d(0) solving

x̂d(0) := arg min‖
N∑

t=0

z(t)− ĈdÂ
t
dxd(0)‖2F

4) Estimate the stochastic component ẑs(t) := z(t) −
ĈdÂ

t
dx̂d(0). Apply the subspace algorithm in [61],

[11] to ẑs(t) and compute estimates Âs, Ĉs, K̂s of
the innovation model

xs(t + 1) = Asxs(t) + Kse(t)
zs(t) = Csx(t) + e(t)

B. Matching high order statistics

Experience with texture and gait modeling [20], [21], [6],
[7] shows that, often, linear models are not rich enough to
the purpose of synthesis and recognition. However, tests in
[6] suggest that for human gait data the linearity assump-
tion cannot be ruled out if also higher order statistics are
considered.

In fact, while the linear (minimum phase) model captures
the second order statistics of the data, proper choices of the

5O(nd) is the orthogonal group of nd × nd matrices and the subscript
F denotes Frobenius norm.
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input distribution as well as of the particular spectral factor
(parametrized by the solutions P of the LMI (VI.7)) may be
used to model also higher order statistics of the data. For
reasons of space, in this short tutorial, we shall not enter
into the details of how this can be done and intead refer
the reader to [6] and references therein. Suffices here to say
that, indeed, these richer models which consider also non-
Gaussian inputs and non-minimum phase models do improve
linear models described in the previous Section. Along these
lines, we also refer the reader to the work [43] for a non-
linear, Monte Carlo based, approach to texture synthesis.

VII. CLASSIFICATION

Measuring the “distance” between data sequences is a
prerequisite for performing classification (and recognition)
tasks. A straightforward approach would be, perhaps, to
compare the sequences of data themselves, e.g. measuring
their L2 distance. Of course there are several problems
with this approach; for instance it might become hard if
the data sequences have different lengths, if some data are
missing, if two sequences of data are measurements of the
same phenomena using different “sensors”, like, e.g. two
movies of the same person walking taken from two different
viewpoints.

A common approach in statistics is to assume that the
data have been generated according to a probabilistic model
in a given class. Then estimation of the model (within the
chosen class) which best describes the data and classification
are intimately related. The recent paper [26] discusses how
distances can be measured when one is only interested in
second order statistical properties, i.e. power spectra.

Other approaches which have been recently proposed at
the interface between of control and computer vision include
deterministic approaches (model validation based), such as
[44], [1].

In this short tutorial we shall discuss a possible method-
ology which is tailored to the model considered in the
previous sections, i.e. linear state space models with given
initial conditions and, possibly, non-Gaussian inputs. The
modeling stage aims at capturing the invariant properties of
the sequence, while describing its variability. These invariant
properties are encoded in the dynamical model, but also in
the initial condition and in the input distribution. In [6], the
Kernel based distance introduced in [63], has been extended
to account for dynamical properties, initial conditions and
input distribution.

A. Kernel-based distance

In this section we shall refer to a model M as a collection
M := {A,B, C,D, x0, pu}, which include the system pa-
rameters (A,B, C, D), the initial condition x0 and the input
distribution pw. These will be outcomes of the identification
experiment. The space of models M (say of all M ’s giving
rise to stationary output processes y) can be endowed with
an inner product as follows. Let y(t) and y

′
(t) be output

process of M and M ′. Let us assume, for a moment, that

models M and M ′ have the same input6 w with probability
density function pw. Following [63], for a suitable positive
definite matrix W ,

k(M, M ′) := maxτEpw

( ∞∑

i=0

e−λty>(t)Wy
′
(t− τ)

)

Using the Binet-Cauchy theorem, it has been shown in [63]
that this is indeed a “valid” inner product. The maximization
over τ is necessary in order to “align” sequences which differ
only up to a phase shift. Computational aspects and details
can be found in [6], where also the extension to the case
in which the two models M and M ′ have different input
distribution is discussed.

The inner product k(M, M ′) induces a distance between
models defined as

d(M, M ′) := k(M,M) + k(M ′,M ′)− 2k(M,M ′)

This distance can be effectively used to compare video
sequences encoded through the models M and M ′. Some
results are reported in figure 6 (taken from [6]).

VIII. CONCLUSIONS AND FUTURE WORK

In this paper we have discussed some modeling and
identification techniques which have been proposed recently
for applications to computer vision. In most cases there are
a number of open issues which we have been listed along
the way; our future work will address these open questions.
We would also like to remark that, besides the few cases
dealt with in this paper, Computer Vision poses challenging
problems which can be cast in the framework of system
identification and data analysis; many of these cannot be
solved using off-the-shelf tools thus providing inspiration for
future work.
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Fig. 5. Original (3 snapshots) dynamic texture: flame sequence. Top: original, bottom synthesized.

Fig. 6. State and input kernel distances. We show the confusion matrices representing trace kernel distances between non-Gaussian linear models learned
from walking sequences in the Mobo dataset [31]. There are 4 motion classes and 24 individuals performing these motions, for a total of 96 sequences.
For each sequence we learn a linear model and then measure distance between models by the trace kernels. On the left we show results using kernels on
initial states only, on the right we display the confusion matrix obtained from the trace kernels that include the effect of the input. For each row a cross
indicates the nearest neighbor. It is clear how the additional information provided by the input statistics results in improved gait classification performances:
we have 17 (17.7%) nearest neighbors mismatches (i.e. closest models that do not belong to the same gait class) using the state-only distance, while only
9 (9.3%) with the complete trace kernel distance.
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