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Abstract— The main goal of this paper is to establish some
equivalence results on stability, recurrence between a piecewise
deterministic Markov process (PDMP for short) {X(t)} and
an embedded discrete-time Markov chain {Θn} generated by
a Markov kernel G that can be explicitly characterized in
terms of the three local characteristics of the PDMP contrary to
the resolvent kernel. First we establish some important results
characterizing {Θn} as a sampling of the PDMP {X(t)} and
deriving a connection between the probability of the first return
time to a set for the discrete-time Markov chains generated by
G and the resolvent kernel R of the PDMP. From these results
we obtain equivalence results regarding recurrence and positive
recurrence between {X(t)} and {Θn}

I. INTRODUCTION

Piecewise-deterministic Markov processes (PDMP’s for
short) have been introduced in the literature by M.H.A. Davis
[1] as a general class of stochastic models. PDMP’s are a
family of Markov processes involving deterministic motion
punctuated by random jumps. The motion of the PDMP
{X(t)} depends on three local characteristics, namely the
flow Φ, the jump rate λ and the transition measure Q, which
specifies the post-jump location. Starting from x the motion
of the process follows the flow Φ(x, t) until the first jump
time T1 which occurs either spontaneously in a Poisson-
like fashion with rate λ or when the flow Φ(x, t) hits the
boundary of the state-space. In either case the location of
the process at the jump time T1 is selected by the transition
measure Q(Φ(x, T1), .) and the motion restarts from this new
point as before.

Over the last decades a great deal of attention has been
given to the stability properties and related ergodic theory of
Markov processes. One of the main approaches to deal with
these problems is to show that the recurrence properties of
the Markov process under consideration are related to the
recurrence properties of an associated discrete-time Markov
chain obtained from a sampling of the original process, so
that the well known discrete-time Markov chains results
could be used (see for example the books [2], [3], [4] and
the references therein).

In the continuous-time context, J. Azéma et al [5], [6]
showed that a general Markov process and its associated
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resolvent admit the same recurrence properties. It was proved
by P. Tuominen and R. Tweedie [7] that the recurrence
structure of a Markov process {X(t)} with transition semi-
group {P t} and the Markov chain with kernel KF =∫
P tF (dt), where F is a distribution on [0,∞), are es-

sentially equivalent, provided that a continuity assumption
on {P t} is satisfied, an assumption later suppressed in a
fundamental paper by S. Meyn and R. Tweedie [8]. It must
be pointed out that these results are related to the sampling
of a continuous-time process {X(t)}, sampled at random
times defined by an independent undelayed renewal process.
This idea of randomized sampling was generalized to state
dependent sampling to provide some more powerful state
dependent drift criterions in order to ensure stability of the
original Markov process. Within this context, V. Malyšev
and M. Men’šikov [9] derived a modified Foster-Lyapunov
criterion to establish recurrence properties for discrete-time
Markov chains with countable state space. S. Meyn and R.
Tweedie [10] generalized this work to discrete-time Markov
chains with a general state space and furthermore obtained
state-dependent drift conditions to get geometric ergodic
properties. The generalization to continuous-time models
has been established by J. Dai and S. Meyn [11] in the
context of general state space Markovian queueing models.
In particular, they provided sufficient conditions for the
existence of bounds on the long-run average moments and
rates of convergence of the pth moments to their steady-state
values. Another paper related to this subject is [12].

The main goal of this paper is to establish equivalence
results on stability such as (Harris) recurrence and positive
(Harris) recurrence between a PDMP and a discrete-time
Markov chain generated by a kernel G (see equations (2)-
(4) for its definition) that can be explicitly characterized
in terms of the three local characteristics of the PDMP.
It should be noticed that the results developed in [6], [8],
[7] would be hard to be applied for the PDMP’s from the
practical point of view because the transition semigroup
of the PDMP as well as its associated resolvent kernel
cannot be explicitly calculated from its local characteristics,
as opposite to the kernel G. As shown in Theorem 3.1
below, G generates a Markov chain that corresponds to a
state dependent sampling of the PDMP {X(t)} providing
an interesting parallel between our work in the continuous-
time context and the results obtained in [10] in the discrete-
time setting. However, it must be stressed that [10] provides
general sufficient conditions to ensure that stability of the
sampled chain implies stability of the Markov process, but
not the converse. One of the main goals of our paper is
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to show the converse for PDMP’s and, in fact, that the
PDMP and the discrete-time Markov chain generated by this
tractable kernel G have an equivalent recurrence structure.
We show that the following equivalence results hold:
(i) The PDMP {X(t)} is irreducible if and only if the

Markov chain {Θn} associated to G is irreducible, see
Proposition 4.1.

(ii) There is a one to one correspondence between the set
of invariant measures for the PDMP {X(t)} and for the
Markov chain {Θn} associated to G, see Theorem 4.2.

(iii) The PDMP {X(t)} is recurrent if and only if the
Markov chain {Θn} associated to G is recurrent, see
Theorem 4.7.

(iv) The PDMP is Harris recurrent if and only if the Markov
chain associated to G is Harris recurrent, see Theorem
4.9.

(v) The PDMP is positive recurrent (respectively, positive
Harris recurrent) if and only if the Markov chain asso-
ciated to G is recurrent (respectively Harris recurrent)
with invariant measure satisfying a boundedness condi-
tion, see Corollary 4.8 (respectively Corollary 4.11).

The paper is organized as follows. In section II we present
some basic definitions related to the motion of a PDMP,
introduce the Markov kernel G, and recall some classical def-
initions related with Markov processes both in the discrete-
time and continuous-time context. Some preliminary results
are derived in section III that will be important to obtain the
equivalence properties for the stability of the PDMP’s and
the Markov kernel G. In section IV, it will be established
that the stability and recurrence properties are equivalent for
the PDMP’s and the kernel G.

II. DEFINITION OF THE PDMP AND THE MARKOV
KERNEL G

In this section we first present some standard notation and
some basic definitions related to the motion of a PDMP
{X(t)}. For further details the reader is referred to [1].
Afterwards we introduce the Markov kernel G, which we
will use for characterizing the recurrence and the Harris
recurrence structure of the PDMP {X(t)}. At the end of
this section, we recall some classical definitions related with
Markov processes both in the discrete-time and continuous-
time context. For a complete exposition on the subject, the
reader is referred to the works of Meyn and Tweedie [2],
[13], [14], [15]. We follow closely the notation in Meyn and
Tweedie [2].

Let R+ be the set of nonnegative real numbers. The set of
natural numbers is denoted by N, and N∗ .= N−{0}. For any
metric space H , the borel σ-field of H is denoted by B(H).
The indicator of a set A is denoted by 1A (1A(x) = 1 if
x ∈ A, 1A(x) = 0 if x /∈ A). Let E and F be two metric
spaces. A kernel K on E×B(F ) is a map K : E×B(F ) −→
R+ ∪{+∞} such that for x ∈ E, K(x, .) is a nonnegative σ-
finite measure on (F,B(F )) and for any A ∈ B(F ), K(., A)
is a measurable function on E. The kernel IA on (E,B(E))
is defined for any set A ∈ B(E) by IA(x,B) = 1A∩B(x).

We present next the definition of the motion of a PDMP. Let
E0 be an open subset of Rn and ∂E0 its boundary. A PDMP
is determined by its local characteristics (X, λ,Q) where:
• X is a Lipschitz continuous vector field, X : Rn −→ Rn

which determines a flow Φ(x, t) such that ∂
∂tΦ(x, t) =

X(Φ(x, t)) and Φ(x, 0) = x for all x ∈ Rn.
Define Γ+ .= {x ∈ ∂E0 : x = Φ(y, t) for some y ∈ E0, t >
0, and Φ(y, s) ∈ E0,∀s ∈ [0, t[}, and Γ− .= {x ∈ ∂E0 :
x = Φ(y,−t) for some y ∈ E0, t > 0, and Φ(y,−s) ∈
E0,∀s ∈ [0, t[}. Γ+ ⊂ ∂E0 represents the boundary points
at which the flow exits from E0. Γ− ⊂ ∂E0 is characterized
by the fact that the flow starting from a point in Γ− will not
leave E0 immediately. Therefore it is natural to define the
state space for the PDMP by E .= E0∪Γ−−Γ−∩Γ+. For all
x in E, let us denote by t∗(x)

.= inf{t > 0 : Φ(x, t) ∈ ∂E0},
with the convention inf ∅ = ∞.
• The jump rate λ : E → R+ is assumed to be a
measurable function satisfying: (∀x ∈ E) (∃ε > 0) such

that
∫ ε

0

λ(Φ(x, s))ds <∞.

• Q : E ∪ Γ+ × B(E) → [0, 1] is a transition measure
satisfying the following property: (∀x ∈ E ∪ Γ+) Q(x,E −
{x}) = 1.

From these characteristics, it can be shown [1, p.
62-66] that there exists a filtered probability space
(Ω,F , {Ft}, {Px}x∈E) such that the motion of the process
{X(t)} starting from a point x ∈ E may be constructed as
follows. Take a random variable T1 such that

Px(T1 > t) .=

{
e−Λ(x,t) for t < t∗(x)
0 for t ≥ t∗(x)

where for x ∈ E and t ∈ [0, t∗(x)[

Λ(x, t) .=
∫ t

0

λ(Φ(x, s))ds. (1)

If T1 generated according to the above probability is equal to
infinity, then for t ∈ R+, X(t) = Φ(x, t). Otherwise select
independently an E-valued random variable (labelled X1)
having distribution Q(Φ(x, T1), .). The trajectory of {X(t)}
starting at x, for t ≤ T1 , is given by

X(t) .=

{
Φ(x, t) for t < T1,

X1 for t = T1.

Starting from X(T1) = X1, we now select the next inter-
jump time T2 − T1 and post-jump location X(T2) = X2 is
a similar way.

This gives a strong Markov process {X(t)} with jump times{
Tk

}
k∈N (where T0

.= 0). The transition semigroup of the
process {X(t)} is denoted by {P t}t∈R+ . We denote by
{FX

t }t∈R+ the filtration generated by the process {X(t)}.

It is assumed in all the paper that for all (t, x) ∈ R+ × E,
Ex

[∑
k

1{Tk≤t}

]
<∞ implying in particular that Tk →∞

47th IEEE CDC, Cancun, Mexico, Dec. 9-11, 2008 TuC09.4

1526



as k → ∞. This is a standard assumption, see for example
equations (24.4) or (24.8) in [1].

Now let us introduce the sub-stochastic kernels H and J and
the Markov kernel G:

H(x,A) .=
∫ t∗(x)

0

e−{s+Λ(x,s)}1A(Φ(x, s))ds, (2)

J(x,A) .=
∫ t∗(x)

0

λ(Φ(x, s))e−{s+Λ(x,s)}Q(Φ(x, s), A)ds

+ e−{t∗(x)+Λ(x,t∗(x))}Q(Φ(x, t∗(x)), A), (3)
G(x,A) .= J(x,A) +H(x,A). (4)

In [16], it was shown that G as defined in (4) is a Markov
kernel.
The resolvent kernel associated to the process {X(t)}t∈R+

is denoted by

R(x,A) .=
∫ ∞

0

P t(x,A)e−tdt. (5)

As shown in [16], R can be written in terms of H and J as
follows:

R =
∞∑

j=0

JjH. (6)

Let {Θn} (respectively {Υn}) be the Markov chain associ-
ated to the Markov kernel G (respectively R). In Theorem
3.1 below it will be shown how the Markov chain {Θn} can
be generated from the sample paths of the PDMP {X(t)}.

In what follows we will present some definitions consider-
ing a discrete-time Markov chain {χn} with Markov kernel
S that could be either {Θn} (with S = G) or {Υn} (with
S = R). The first return time of a set A ∈ B(E) for the
PDMP {X(t)} and for the Markov chain {χn} are defined
respectively as follows:

τX
A

.= inf{t > 0 : X(t) ∈ A}, τS
A
.= inf{n ≥ 1 : χn ∈ A}.

Associated to these first return times, we have the return time
probability of a set A ∈ B(E) for the PDMP {X(t)} and
for the Markov chain {χn}, given respectively by

LX(x,A) .= Px(τX
A <∞), LS(x,A) .= Px(τS

A <∞).

The number of visits to a set A is defined for the PMDP
{X(t)} and for the Markov chain {χn} respectively as

ηX
A

.=
∫ ∞

0

1A(X(t))dt, ηS
A
.=

∞∑
n=1

1A(χn).

If F is a probability distribution on R+ (respectively b
is a probability on N∗), then the stochastic kernel KX

F

(respectively KS
b ) associated to {X(t)} (respectively {χn})

is defined on E × B(E), ∀x ∈ E, ∀A ∈ B(E), by:

KX
F (x,A) .=

∫ ∞

0

P t(x,A)F (dt), (7)

KS
b (x,A) .=

∞∑
k=0

b(k)Sk(x,A). (8)

A set C ∈ B(E) is called a petite set for {X(t)} (respectively
for {χn}) if there exist a probability distribution F on
R+ (respectively a probability b on N∗), and a non-trivial
measure ν on (E,B(E)) such that (∀A ∈ B(E)), (∀x ∈ C),
KX

F (x,A) ≥ ν(A) (respectively (∀A ∈ B(E)), (∀x ∈ C),
KS

b (x,A) ≥ ν(A)).

A positive measure µ (respectively π) is called invariant
for the PMDP {X(t)} (respectively for the Markov chain
{χn}) if it is a σ-finite measure satisfying µ = µP t for all
t ≥ 0 (respectively π = πS).

The next definitions apply for both the continuous-time as
well as the discrete-time process, and therefore we suppress
the superscript X or S. A Markov process is called ϕ-
irreducible (and ϕ an irreducibility measure) if for some σ-
finite measure ϕ, we have that Ex(ηA) > 0 for all x ∈ E
whenever ϕ(A) > 0. A set A ∈ B(E) is said to be full if
ϕ(Ac) = 0. An irreducibility measure ψ is called maximal
irreducible if for any other ϕ irreducibility measure, we have
that ψ � ϕ. A Markov process is called recurrent if for some
σ-finite measure ϕ, we have that Ex(ηA) = ∞ for all x ∈ E
whenever ϕ(A) > 0, and Harris recurrent if Ex(ηA) = ∞
is replaced by Px(ηA = ∞) = 1. If the Markov process is
Harris recurrent then there exists a unique (up to constant
multiples) invariant measure. The Markov process is said to
be positive Harris recurrent if it is Harris recurrent and the
invariant measure is finite.

III. PRELIMINARY RESULTS

In this section we present some preliminary results that
will be very important to characterize the recurrence and
Harris recurrence structure of the PDMP {X(t)}. First in
Theorem 3.1 the Markov chain {Θn} generated by the kernel
G is shown to be related to the sample path of the PDMP. It
is interesting to remark that {Θn} corresponds to a sampling
of the continuous-time process {X(t)} at random times that
depends on a combination of a sequence of independent and
identically distributed exponential times with the sequence
{Tk} of jump times of the PDMP {X(t)}. Moreover it must
be pointed out that the Markov kernel G does not correspond
to a generalized resolvent, as studied in the fundamental
paper of Meyn and Tweedie [8]. An easy consequence of
Theorem 3.1 presented in Corollary 3.2 is that if the first
return time of the Markov chain {Θn} to a set A is finite
then the first return time of the PDMP {X(t)} to the same set
A is finite. Consequently, it will be easy to deduce from the
this result that if the Markov chain {Θn} is Harris recurrent
then so is the process {X(t)}. The last two theorems of this
section show that:
• the probability of the first return time of {Θn} to a set
A to be finite is bounded below by the probability of
the first return time of {Υn} to the same set A to be
finite (see Theorem 3.3).

• the average number of visits of {Θn} to a set A is
bounded below by the average number of visits of the
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Markov chain {Υn} (generated by the resolvent) to the
same set A (see Theorem 3.4).

Theorem 3.4 will be used in the next section to show that if
the process {X(t)} is recurrent then so is the Markov chain
{Θn}. An important consequence of Theorem 3.3 is that if
the process {X(t)} is Harris recurrent then so is the Markov
chain {Θn}. Theorem 3.3 is surprising and far from trivial
to show.

We have the following result, proved in [17], which shows
how the Markov chain {Θn} could be generated from the
sample path realizations of {X(t)}.

Theorem 3.1: On the probability space (Ω,FX
t ,F , Px)

let {sn}n≥0 be a sequence of independent and identically
distributed R+-valued random variables with exponential
distribution with parameter equal to 1 such that ∨t≥0FX

t

and σ{sk : k ≥ 0} are independent. Let the sequence of
stopping times

{
τn

}
n∈N be defined as follows: τ0 = 0, and

τn+1
.=

n∑
k=0

1{Tk≤τn<Tk+1}

[
(τn + sn+1) ∧ Tk+1

]
.(9)

Then {X(τn)} is Markov chain with transition probability
given by G.

Proof: The proof of this result is presented in [17].

Without loss of generality, it can be considered that Θn =
X(τn) since {Θn} was defined in section II as a Markov
chain generated by G and from the previous theorem, {Θn}
and {X(τn)} have the same probability distribution. An
important corollary of the previous theorem is the following
inclusion for the first return times of the Markov chain {Θn}
and the process {X(t)}:

Corollary 3.2: For any set A ∈ B(E),{
τG
A <∞

}
⊂

{
τX
A <∞

}
. (10)

Proof: This is a straightforward consequence from the
fact that we can consider Θn = X(τn), as shown in Theorem
3.1.

We have the following important theorem establishing a
link between the probability of the first return time to a set
for the Markov chains {Θn} and {Υn}.

Theorem 3.3: For every x ∈ E, and A ∈ B(E),

LG(x,A) ≥ LR(x,A). (11)
Proof: The proof of this result is presented in [17].

Combining (10) and (11) we have, for every x ∈ E and
A ∈ B(E), the following important inequalities:

LR(x,A) ≤ LG(x,A) ≤ LX(x,A).

We conclude this section with the following theorem, pro-
viding a link between the average numbers of visits for the
Markov chains generated by the kernel G and R.

Theorem 3.4: For every x ∈ E, and A ∈ B(E),

UG(x,A) ≥ UR(x,A). (12)
Proof: The proof of this result is presented in [17].

IV. CHARACTERIZATION OF THE RECURRENCE AND
HARRIS RECURRENCE STRUCTURE OF THE PDMP IN

TERMS OF THE MARKOV KERNEL G

The aim of this section is to characterize the (Harris)
recurrence properties between the PMDP {X(t)} and the
Markov chain {Θn} generated by the kernel G. First, it
is proved in Proposition 4.1 that {X(t)} is irreducible if
and only if {Θn} is irreducible. Then a generalization of
Theorem 3.5 in [16] is presented in Theorem 4.2 giving a one
to one correspondence between the invariant (positive and σ-
finite) measures for the PDMP {X(t)} and the Markov chain
{Θn}. Using the preliminary results derived in the previous
section, it is shown in Theorem 4.7 and 4.9 that the PDMP
{X(t)} is recurrent (respectively Harris recurrent) if and only
if the Markov chain {Θn} is recurrent (respectively Harris
recurrent). One would expect a natural generalization of
such equivalence results for positivity between the processes
{X(t)} and {Θn}. In fact, this result does not hold. Indeed,
it is shown in Corollary 4.8 that the positive recurrence
of the process {X(t)} is equivalent to a weaker form of
stability for the Markov chain {Θn}. Namely, {X(t)} is
positive recurrent if and only if {Θn} is recurrent and its
unique invariant measure π satisfies the condition given by
πH(E) < ∞ which is far less demanding than positive
recurrence for {Θn}. A similar result will be proved for the
positive Harris recurrence of {X(t)} (see Corollary 4.11).

We have the following proposition characterizing the irre-
ducibility of the process

{
X(t)

}
and the Markov chain

{Θn}.

Proposition 4.1: The PDMP
{
X(t)

}
is irreducible if and

only if the Markov chain {Θn} is irreducible.
Proof: Suppose that the Markov chain {Θn} is ϕ-

irreducible. From Proposition 4.2.1 in [2], page 87, whenever
ϕ(A) > 0 for any A ∈ B(E) we have that LG(x,A) > 0
for all x ∈ E. From (10) we have that LX(x,A) > 0 for
all x ∈ E whenever ϕ(A) > 0 for A ∈ B(E). By using
Proposition 2.1 in [15], it follows that the PDMP

{
X(t)

}
is

µ-irreducible with µ = ϕR, where we recall that R is the
resolvent defined in (5).
Now suppose that {X(t)} is Ψ-irreducible. Then for A ∈
B(E) with Ψ(A) > 0, we have for all x ∈ E, Ex

[
ηX

A

]
> 0.

Since Ex

[
ηX

A

]
= UR(x,A) (see, for instance, [7]), it implies

that LR(x,A) > 0. From Theorem 3.3, we get the result.

Recall that by definition an invariant measure is always
σ-finite and positive. The next result shows that there exists
a one to one correspondence between the set of invariant
measures for the PDMP {X(t)} and the set of invariant
measures for the Markov chain {Θn} generated by G. It
extends Theorem 3.5 in [16] that was restricted to the set of
invariant probability measures for the PDMP’s.
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Theorem 4.2: i) If µ is an invariant measure for {X(t)}
then µ

∑∞
j=0 J

j is invariant for {Θn} and µ
∑∞

j=0 J
jH = µ.

ii) If π is an invariant measure for {Θn} then πH is invariant
for {X(t)} and πH

∑∞
j=0 J

j = π.
Proof: Let us show i). Let µ be an invariant measure

for {X(t)} and set π =
∑∞

j=0 µJ
j . Let us show that

π is σ-finite. Since µ is σ-finite, there exists a partition
{Ai} of E such that µ(Ai) < ∞. Define Cn =

⋃n
i=1Ai,

and Bn,m = {y ∈ E : H(y, Cn) > 1
m} for m ∈ N∗.

Notice now that for every x ∈ E, we have that 0 <
H(x,E) < 1, and so

⋃
n,mBn,m = E. From (6) we have

that µ = µR =
∑∞

j=0 µJ
jH = πH , so that ∞ > µ(Cn) =∫

E
H(y, Cn)π(dy) ≥

∫
Bn,m

H(y, Cn)π(dy) ≥ 1
mπ(Bn,m)

showing that π is σ-finite. Finally notice from (4) and (6)
that πG = πJ + πH =

∑∞
j=1 µJ

j + µR =
∑∞

j=1 µJ
j + µ

=
∑∞

j=0 µJ
j = π showing that π is invariant for {Θn}.

Moreover, µ
∑∞

j=0 J
jH = µR = µ completing the proof of

i).

Let us show now ii). Let π be an invariant measure
for {Θn}. For any n ∈ N∗, we have π

∑n
j=1 J

jH +
πH = πG

∑n
j=0 J

jH = π
∑n

j=1 J
jH + πJn+1H

+πH
∑n

j=0 J
jH . In order to cancel out the identical term

π
∑n

j=1 J
jH on both sides of the previous equation one first

need to check that all the measures under consideration are σ-
finite. Since π = πG = πH+πJ , it can be shown easily by
induction that πJjH ≤ π and so πJjH is σ-finite for all j ∈
N. Consequently, for all j ∈ N∗, the measures π

∑n
j=1 J

jH ,
πH , πJn+1H , and πH

∑n
j=0 J

jH are σ-finite, implying
that πH = πJn+1H + πH

∑n
j=0 J

jH . Moreover, it can
be shown that Jn(x,A) = Ex

[
e−Tn1A[X(Tn)]

]
for all

n ∈ N∗, x ∈ E and A ∈ B(E). By using the dominated
convergence theorem and the fact that lim

n→∞
Tn = +∞,

it follows that for all A ∈ B(E) limn→∞ πJn(A) = 0.
Combining these equations, we have that µ = πH =
πH

∑∞
j=0 J

jH = µR, and from Lemma 1 in [5] it follows
that µ is an invariant measure for {X(t)}. Now we have
that πH

∑n
j=0 J

j +πJn+1 +π
∑n

j=1 J
j = π+π

∑n
j=1 J

j .
It follows that πH

∑n
j=0 J

j + πJn+1 = π by using the
same arguments as above. Thus limn→∞ πH

∑n
j=0 J

j = π,
showing ii).

Remark 4.3: A straightforward consequence of Theorem
4.2 is the following result: There exists a finite invariant
measure for {X(t)} if and only if there exists an invariant
measure π for {Θn} satisfying πH(E) <∞. Note that this
result was already proved in Theorem 3.5 in [16].

The next two results show that if the PDMP is recurrent
then so is the Markov chain generated by G and vice versa.

Proposition 4.4: If H ∈ B(E) is recurrent for the process
{X(t)} then H is recurrent for the Markov chain {Θn}.

Proof: If H ∈ B(E) is recurrent for {X(t)} then there
exists a measure ν on (H,B(H)) such that for all A ∈ B(H)

with ν(A) > 0, Ex

[
ηX

A

]
= UR(x,A) = ∞ for every x ∈ H .

From Theorem 3.4, it follows that UG(x,A) = ∞, showing
the result.

Proposition 4.5: If A is an absorbing set for G then
i) for all n ∈ N∗ IAJnf(x) = IA(JIA)nf(x) for every

bounded positive measurable function f .
ii) A is an absorbing set for R.

Proof: Since A is an absorbing set for G, then for
all x ∈ E, IAG(x,Ac) = 0, consequently IAH1Ac(x) =
0 and IAJ1Ac(x) = 0. Let us show now i) by in-
duction on n. Consider a positive measurable function
f bounded by a constant c. For n = 1 we have that
IAJf(x) = IAJIAf(x) + IAJIAcf(x) = IAJIAf(x)
since IAJIAcf(x) ≤ cIAJ1Ac(x) = 0. Suppose now that
IAJ

nf(x) = IA(JIA)nf(x). We have that IAJn+1f(x) =
IAJ

nJf(x) = IA(JIA)nJf(x) = (IAJ)nIAJf(x) =
(IAJ)nIAJIAf(x) = IA(JIA)n+1f(x), showing item i).

Let us show now that R(x,A) = 1 for every x ∈ A. For all
x ∈ E, we have

IAR1Ac(x) = IA

∞∑
k=0

JkH1Ac(x) = 0,

showing the last part of the result.

Let A be an absorbing set for a discrete-time Markov chain
{χn} with Markov kernel S. Then define

A∞S
.= {x ∈ E : LS(x,A) = 1}.

An absorbing set A is called maximal absorbing if A = A∞S .

Corollary 4.6: If H is maximal absorbing set for G then
H is a maximal absorbing set for R

Proof: From Proposition 4.5, it follows that H is an
absorbing set for R. Consequently, H ⊂ H∞

R
.= {x ∈ E :

LR(x,H) = 1}. By definition, we have H = H∞
G

.= {x ∈
E : LG(x,H) = 1}. However, from Theorem 3.3 we have
H∞

R ⊂ H∞
G , implying H = H∞

G = H∞
R

Theorem 4.7: The PDMP {X(t)} is recurrent if and only
if the Markov chain {Θn} associated to G is recurrent.

Proof: Suppose that {Θn} is recurrent. Let ϕ a maximal
irreducibility measure for {Θn}. Then from Proposition 9.0.1
in [2], E = H ∪T where T ∈ B(E) is ϕ-null and transient
for {Θn} and H ∈ B(E) is non-empty and maximal ab-
sorbing for {Θn} and every subset of H in B(E)+ .= {A ∈
B(E) : ϕ(A) > 0} is Harris recurrent. Combining Corollary
4.6, and a slight modification of Proposition 2.1 in [7], it
follows that H is a closed set for the process {X(t)}: (∀x ∈
H), Px

(
X(t) ∈ H, for all t ∈ R+

)
= 1. Consequently, for

all A ∈ B(H)+, (∀x ∈ H), 1 = LG(x,A) ≤ LX(x,A) and
by using Theorem 1.1 in [8] the process {X(t)} restricted to
H is Harris recurrent. Therefore, {X(t)} is recurrent on E.
The converse follows from Proposition 4.4, giving the result.
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The next corollary emphasizes a split with the previous
equivalence results. Indeed it is shown that the process is
positive recurrent if and only if {Θn} satisfies a weaker
condition: recurrence and a technical condition for its unique
(σ-finite) invariant measure.

Corollary 4.8: The PDMP {X(t)} is positive recurrent
if and only if the Markov chain {Θn} associated to G is
recurrent with invariant measure π satisfying πH(E) <∞.

Proof: The result easily follows from Remark 4.3 and
Theorem 4.7.

We prove now that the Harris recurrent properties are
equivalent for {X(t)} and {Θn}.

Theorem 4.9: The PDMP {X(t)} is Harris recurrent if
and only if the Markov chain {Θn} is Harris recurrent.

Proof: Suppose that the Markov chain {Θn} is Harris
recurrent. Denote by ΨG a maximal irreducibility measure
for the Markov chain {Θn}. Then for any set A ∈ B(E)
satisfying ΨG(A) > 0 it follows from Corollary 3.2 that
1 = LG(x,A) ≤ LX(x,A) for all x ∈ E. Therefore, {X(t)}
is Harris recurrent by using Theorem 1.1 in [8].

Now assume that the PDMP {X(t)} is Harris recurrent.
From the equivalence results in [7], if the PDMP {X(t)}
is Harris recurrent then the Markov chain {Υn} associated
to the resolvent R is Harris recurrent. Moreover, by using
Proposition 4.1 {Θn} is irreducible. Let us denote by ΨG

(respectively ΨR) a maximal irreducible measure for {Θn}
(respectively {Υn}). According to the definition of Harris
recurrence (see [2, page 200]), we want to show that if
ΨG(A) > 0 then Px

( ∞
∩

j=1

∞
∪

n=j
{Θn ∈ A}

)
= 1 for all x ∈ E.

From (ii) and (iii) of Proposition 5.5.5 in [2], it follows that
there exists an increasing sequence of petite sets

{
Ck

}
k∈N

for {Θn} such that E = ∪k∈N Ck with ΨG(Ck) > 0 and
ΨR(Ck) > 0 for all k ∈ N. Since {Υn} is Harris recurrent
we have for all k ∈ N that LR(x,Ck) = 1 for all x ∈ Ck.
From Theorem 3.3 we have that LG(x,Ck) = 1, for all
x ∈ Ck, and from Proposition 9.1.1 in [2], it follows that
Ck is Harris recurrent for {Θn}. The remaining of the proof
follows now the same steps as the end of the proof of
Theorem 9.1.4 in [2], and it will be presented for the sake
of completeness. From Lemma 5.5.1 in [2], we have that for
all A ∈ B(E) with ΨG(A) > 0, there exists δ > 0 such
that inf

x∈Ck

LG(x,A) > δ. However Ck is Harris recurrent for

{Θn} and from Theorem 9.1.3 (i) in [2], we have that for
all x ∈ Ck, Px

( ∞
∩

j=1

∞
∪

n=j
{Θn ∈ A}

)
= 1. The result follows

after recalling that E = ∪
k∈N

Ck.

Remark 4.10: In the previous proof note that if A is a set
such that ψG(A) > 0 then it does not necessarily imply that
ψR(A) > 0. That is why we needed to proceed through the
tool of petite sets.

As for the positive recurrence property, the following result
points out the split with the previous theorem by showing that

the positive Harris recurrence is equivalent to a weaker form
of stability for the chain {Θn}.

Corollary 4.11: The PDMP {X(t)} is positive Harris
recurrent if and only if the Markov chain {Θn} associated
to G is Harris recurrent with invariant measure π satisfying
πH(E) <∞.

Proof: Combining Remark 4.3 and Theorem 4.9, we
obtain the result.
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