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Abstract

It is well known that the nonlinear filtering problem
has important applications in both military and com-
mercial industries. The central problem of nonlinear
filtering is to solve the DMZ equation in real time and
memoryless manner. The purpose of this paper is to
show that, under very mild conditions (which essentially
say that the growth of the observation |h| is greater than
the growth of the drift |f |), the DMZ equation admits
a unique nonnegative weak solution u which can be
approximated by a solution uR of the DMZ equation
on the ball BR with uR

∣∣
∂BR

= 0. The error of this
approximation is bounded by a function of R which
tends to zero as R goes to infinity. The solution uR
can in turn be approximated efficiently by an algorithm
depending only on solving the observation-independent
Kolmogorov equation on BR. In theory, our algorithm
can solve basically all engineering problems in real time
manner. Specifically, we show that the solution obtained
from our algorithms converges to the solution of the
DMZ equation in L1-sense. Equally important, we have
a precise error estimate of this convergence which is
important in numerical computation.

I. INTRODUCTION

In 1961, Kalman-Bucy [16] first established the finite
dimensional filter for the linear filtering model with
Gaussian initial distribution which is highly influential in
modern industry. Since then filtering theory has proved
useful in Science and Engineering, for example, the
navigational and guidance systems, radar tracking, sonar
ranging, and satellite and airplane orbit determination.
Despite of its usefulness, however, the Kalman-Bucy
filter is not perfect. The main weakness is that it is
restricted only to the linear dynamical system with
Gaussian initial distribution. Therefore there has been
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tremendous interests in solving the nonlinear filtering
problem which involves the estimation of a stochastic
process x = {xt} (called the signal or state process) that
cannot be observed directly. Information containing x is
obtained from observations of a related process y = {yt}
(the observation process). The goal of nonlinear filtering
is to determine the conditional density ρ(t, x) of xt
given the observation history of {ys : 0 ≤ s ≤ t}. In
the late 1960s, Duncan [9], Mortensen [20] and Zakai
[29] independently derived the Duncan-Mortensen-Zakai
(DMZ) equation for the nonlinear filtering theory which
the conditional probability density ρ(t, x) has to satisfy.
The central problem of nonlinear filtering theory is to
solve the DMZ equation in real time and memoryless
way.

In 2000, we [28] proposed a novel algorithm to
solve the DMZ equation in real time and memoryless
way. Under the assumptions that the drift terms fi(x)
1 ≤ i ≤ n, and their first and second derivatives, and
the observation terms hi(x), 1 ≤ i ≤ m, and their
first derivatives, have linear growth, we showed that the
solution obtained from our algorithms converges to the
true solution of the DMZ equation. Although the above
approach is quite successful, so far it cannot handle the
famous cubic sensor in engineering where f(x) = 0
and h(x) = x3. It is well known that there is no finite
dimensional filter for cubic sensor [27].

The purpose of this paper is to show that under
very mild conditions (4.2), (4.5) and (4.13) (which
essentially say that the growth of |h| is greater than
the growth of |f |), the DMZ equation admits a unique
nonnegative solution u ∈ W 1,1

0 ((0, T ) × Rn) which
can be approximated by solutions uR of the DMZ

equation on the ball BR with uR

∣∣∣∣
∂BR

= 0. The

rate of convergence can be efficiently estimated in L1

norm. The solution uR can in turn be approximated
efficiently by an algorithm depending only on solving
the time independent Kolmogorov equation on BR. Our
algorithm can solve practically all engineering problems
including the cubic sensor problem in real time and
memoryless way. Specifically we show that the solution
obtained from our algorithms converges to the solution
of the DMZ equation in L1 sense. Equally important, we
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have precise error estimate of this convergence which is
important in numerical computation.

The splitting up method has been used extensively
by many authors. This technique is like the Trotter
product formula from semigroup theory. Hopkins and
Wong [13] used the Trotter product formula to study
nonlinear filtering. The approximation method proposed
for the DMZ equation, that of operator splitting, has a
history going back to Bensoussan, Glowinski, and Ras-
canu [3], [4]. More recent articles on operator splitting
methods in nonlinear filtering are [12], [21], [14], [15].
Rates of convergence and “true” numerical schemes are
developed in [10], [14], and [15]. As pointed out by
Bensoussan, Glowinski, and Rascanu [3, section 4.3,
p. 1431] the method bears the serious limitation that
h must be bounded. The numerics of the Kushner–
Stratonovitch equations were studied by many people.
Two highly competitive classes of methods are “particle
methods” (see, for example, [8] and [6]), in which
particles move according to the signal dynamics and
are weighted, killed, or duplicated according to their
likelihood, and “discrete state” approximations (see, for
example, [17] and [22]). These methods work nicely
under the assumption that h is bounded (cf. [8, p. 348]).

II. SOME BASIC CONCEPTS

The filtering problem considered here is based on the
signal observation model{

dx(t) = f(x(t)) dt+ dv(t), x(0) = x0

dy(t) = h(x(t)) dt+ dw(t), y(0) = 0
(2.1)

in which x, v, y and w are respectively Rn,Rn,Rm and
Rm valued processes and v and w have components
that are independent, standard Brownian processes. We
further assume that f and h are C∞ smooth vector-
valued. We shall refer to x(t) as the state of the system
at time t and y(t) as the observation at time t.

Let ρ(t, x) denote the conditional probability density
of the state given the observation {y(s) : 0 ≤ s ≤ t}.
It is well known that ρ(t, x) is given by normalizing a
function, σ(t, x), which satisfies the following Duncan-
Mortensen-Zakai equation:dσ(t, x) = L0σ(t, x) dt+

n∑
i=1

Liσ(t, x)dyi(t)

σ(0, x) = σ0

(2.2)
where

L0 =
1
2

n∑
i=1

∂2

∂x2
i

−
n∑
i=1

fi
∂

∂xi
−

n∑
i=1

∂fi
∂xi
− 1

2

m∑
i=1

h2
i ,

(2.3)

and for i = 1, . . . ,m, Li is the zero degree differential
operator of multiplication by hi. σ0 is the probability
density of the initial point x0.

Equation (2.2) is a stochastic partial differential equa-
tion. In real applications, we are interested in construct-
ing robust state estimators from observed sample paths
with some property of robustness. Davis [7] studied
this problem and proposed some robust algorithms. In
our case, his basic idea reduces to defining a new
unnormalized density

u(t, x) = exp

(
−

m∑
i=1

hi(x)yi(t)

)
σ(t, x). (2.4)

It is easy to show that u(t, x) satisfies the following time
varying partial differential equation

∂u

∂t
(t, x) = L0u(t, x) +

m∑
i=1

yi(t)[L0, Li]u(t, x)

+ 1
2

m∑
i,j=1

yi(t)yj(t)[[L0, Li], Lj ]u(t, x)

u(0, x) = σ0

(2.5)
where [·, ·] denotes the Lie bracket. It is shown in [28,
p. 236]) that the robust DMZ equation (2.5) is of the
form

∂u

∂t
(t, x) =

1
2

∆u(t, x) + (−f(x) +∇K(t, x)) · ∇u(t, x)

+
(
− div f(x)− 1

2 |h(x)|2 + 1
2∆K(t, x)

− f(x) · ∇K(t, x) + 1
2 |∇K(t, x)|2

)
u(t, x)

u(0, x) = σ0(x).
(2.6)

where K =
m∑
j=1

yi(t)hj(x), f = (f1, . . . , fn) and h =

(h1, . . . , hm).

III. REAL TIME SOLUTION OF THE DMZ EQUATION

To simplify our presentation, we introduce the follow-
ing condition.

Condition (C1):

−1
2
|h|2− 1

2
∆K−f ·∇K+

1
2
|∇K|2 + |f −∇K| ≤ c1

∀ (t, x) ∈ [0, T ]× Rn,

where c1 is a constant possibly depending on T .

Our main theorems are as follows:

Theorem A. Consider the filtering model (2.1). For any
T > 0, let u be a solution of the robust DMZ equation
(2.6) in [0, T ]×Rn. Assume Condition (C1) is satisfied.
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Then

sup
0≤t≤T

∫
Rn

e
√

1+|x|2u(t, x) ≤ e(c1+ n+1
2 )T

·
∫

Rn

e
√

1+|x|2u(0, x). (3.1)

In particular,

sup
0≤t≤T

∫
|x|≥R

u(t, x) ≤ e−
√

1+R2
e(c1+ n+1

2 )T

·
∫

Rn

e
√

1+|x|2u(0, x). (3.2)

Theorem A above says that one can choose a ball large
enough to capture almost all the density. In fact by (3.2)
we have precise estimate of density lying outside this
ball .

Theorem B. Consider the filtering model (2.1). For any
T > 0, let u be a solution of the robust DMZ equation
(2.6) in [0, T ]× Rn. Assume
(1) Condition (C1) is satisfied.
(2) − 1

2 |h|
2− 1

2∆K−f(x) ·∇K(t, x)+ 1
2 |∇K|

2 +12+
2n+ 4|f −∇K| ≤ c2
for all (t, x) ∈ [0, T ]×Rn, where c2 is a constant
possibly depending on T .

(3) e−
√

1+|x|2 [12 + 2n + 4|f − ∇K|] ≤ c3 for all
(t, x) ∈ [0, T ]× Rn.

Let R ≥ 1 and uR be the solution of the following
DMZ equation on the ball BR

∂uR
∂t

= 1
2∆uR + (−f +∇K) · ∇uR
+ (− div f − 1

2 |h|
2 + 1

2∆K
− f · ∇K + 1

2 |∇K|
2)uR

uR(t, x) = 0 for (t, x) ∈ [0, T ]× ∂BR
uR(0, x) = σ0(x).

(3.3)

Let v = u−uR. Then v ≥ 0 for all (t, x) ∈ [0, T ]×BR
and ∫

BR

φv(T, x) ≤ ec2T − 1
c2

c3e
−Re(c1+ n+1

2 )T

·
∫

Rn

e
√

1+|x|2u(0, x) (3.4)

where φ(x) = e
|x|4

R3 −
2|x|2

R − e−R. In particular∫
BR

2

v(T, x) ≤ 2(ec2T − 1)
c2

c3e
− 9

16Re(c1+ n+1
2 )T

·
∫

Rn

e
√

1+|x|2u(0, x). (3.5)

Theorem B above says that we can approximate
u by uR. The approximation is good if R is large
enough. In fact we have a precise error estimate of this
approximation by (3.5).

Theorem C. Let Ω be a bounded domain in Rn. Let
F : [0, T ] × Ω → Rn be a family of vector fields C∞

in x and Holder continuous in t with exponent α and
J : [0, T ]× Ω→ R be a C∞ function in x and Holder
continuous in t with exponent α such that the following
properties are satisfied

| divF (t, x)|+ 2|J(t, x)|+ |F (t, x)| ≤ c

for (t,x)∈ [0, T ] (3.6)

|F (t, x)− F (t̄, x)|+ | divF (t, x)− divF (t̄, x)|

+
∣∣J(t, x)− J(t̄, x)

∣∣ ≤ c1|t− t̄|α
for (t,x), (t̄,x)∈ [0, T ] (3.7)

Let u(t, x) be the solution on [0, T ]×Ω of the equation

∂u

∂t
(t, x) =

1
2

∆u(t, x) + F (t, x) · ∇u(t, x)

+ J(t, x)u(t, x)
u(0, x) = σ0(x)

u(t, x)
∣∣∣∣
∂Ω

= 0.

(3.8)

For any 0 ≤ τ ≤ T , let Pk = {0 = τ0 < τ1 < τ2 <
· · · < τk = τ} be a partition of [0, τ ] where τi = iτ

k . Let
ui(t, x) be the solution on [τi−1, τi]×Ω of the following
equation

∂ui
∂t

(t, x) =
1
2

∆ui(t, x) + F (τi−1, x) · ∇ui(t, x)

+ J(τi−1, x)ui(t, x)
ui(τi−1, x) = ui−1(τi−1, x)

ui(t, x)
∣∣∣∣
∂Ω

= 0.

(3.9)
Here we use the convention u0(t, x) = σ(x). Then the

solution u(t, x) of (3.8) can be computed by means of the
solution ui(t, x) of (3.9). More specifically, u(τ, x) =
lim
k→∞

uk(τ, x) in L1-sense on Ω and the following esti-
mate holds∫

Ω

|u− uk|(τk, x) ≤ 2c2
α+ 1

Tα+1ecT

kα
(3.10)

where
c2 = c1e

cT + c1
√

Vol (Ω)ec
2T√

2c2T
∫

Ω

u2(0, x) +
∫

Ω

|∇u(0, x)|2. (3.11)
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The right hand side of (3.10) goes to zero as k →∞.

In case (3.8) and (3.9) are DMZ equations, i.e.,
F (t, x) = −f(x)+∇K and J(t, x) = − div f− 1

2 |h|
2+

1
2∆K − f · ∇K + 1

2 |∇K|
2, by a proposition, which is

similar to the Proposition 3.1 of [28]. ui(τi, x) can be
computed by ũi(τi, x) where ũi(t, x) for τi−1 ≤ t ≤ τi
satisfies the following Kolmogorov equation

∂ũi
∂t

(t, x) =
1
2

∆ũi(t, x)−
n∑
j=1

fj(x)
∂ũi
∂xj

(t, x)

−(div f(x) + 1
2

m∑
j=1

h2
j (x))ũi(t, x)

ũi(τi−1, x) = exp

(
m∑
j=1

(yj(τi−1)− yj(τi−2))hj(x)

)
ũi−1(τi−1, x).

(3.12)
In fact

ui(τi, x) = exp

− m∑
j=1

yj(τi−1)hj(x)

 ũi(τi, x).

(3.13)
Therefore theoretically to solve the DMZ equation in a
real time manner, we only need to compute the following
Kolmogorov equation off-line

∂ũ

∂t
(t, x) =

1
2

∆ũ(t, x)−
n∑
j=1

fj(x)
∂ũ

∂xj
(t, x)

−(div f(x) +
1
2
∑m
j=1 h

2
j (x))ũ(t, x)

ũ(0, x) = φi(x)
(3.14)

where {φi(x)} is an orthonormal base in L2(Rn). The
only real time computation here is to express arbitrary
initial condition φ(x) as the linear combination of φi(x).
But this can be done by means of parallel computation.

The idea of solving the Kolmogorov equation “off-
line” for the elements of an orthogonal basis has a
substantial history; see for example [18], and the refer-
ences therein. In Lototsky, Mikulevicius and Rozovskii
[18] approach, they used the Cameron-Martin expansion
for the solution of the DMZ equation. Unfortunately to
determine the coefficients of the expansion, they need to
consider a system of Kolmogorov type equations which
is a recursive system. The advantage of our method
is that we only need to deal with one Kolmogorov
equation.

Theorem D. Let uR be the solution of (3.3) the DMZ
equation on BR. Assume that
(1) f(x) and h(x) have at most polynomial growth.

(2) For any 0 ≤ t ≤ T , there exist positive integer
m and positive constants c′ and c′′ independent of
R such that the following two inequalities hold on
Rn.

(a)
m2

2
|x|2m−2 − m

2
(m + n − 2)|x|m−2 −

m|x|m−2x · (f −∇K)− ∆K
2
− 1

2
|h|2

−f · ∇K + 1
2 |∇K|

2 ≥ −c′

(b)
∣∣∣∣m2|x|2m−2

2
− m(m+ n− 2)

2
|x|m−2 −

m|x|m−2(f−∇K)·x
∣∣∣∣ ≤ m(m+ 1)

2
|x|2m−2+

c′′

(3) −1
2
|h|2−1

2
∆K−

n∑
j=1

fj
∂K

∂xj
+

1
2
|∇K|2 ≤ c1 for all

(t, x) ∈ [0, T ]×Rn where c1 is a constant possibly
depending on T .

Then for any R0 < R,∫
BR0

(e−|x|
m − e−Rm

0 )uR(T, x) ≥
e−c

′T
∫
BR0

(e−|x|
m − e−Rm

0 )σ0(x)+
e−Rm

0

c′

(
m(m+1)

2 R2m−2
0 + c′′

)
(1− ec′T )

∫
BR

σ0(x).

In particular, the solution u of the robust DMZ equation
on Rn has the following estimate∫

Rn

e−|x|
m

u(T, x) ≥ e−c
′T

∫
Rn

e−|x|
m

σ0(x).

In practical nonlinear filtering computation, it is im-
portant to know how much density remains within the
given ball. Theorem D provides such a lower estimate.
In particular, the solution u of the DMZ equation in Rn
obtained by taking lim

R→∞
uR, where uR is the solution

of the DMZ equation in the ball BR, is a nontrivial
solution.

IV. EXISTENCE AND UNIQUENESS OF THE DMZ
EQUATION

In this section, we give a priori estimation of deriva-
tives of the solution of the DMZ equation up to second
order. As a consequence we prove the existence of a
weak solution of the DMZ equation. The uniqueness of
the weak solution is also shown in this section.

Existence and uniqueness of solutions to the robust
DMZ equation (2.6) have been treated by many well-
known authors, including Pardoux [23], [24], Chaleyat-
Maurel, Michel, and Pardoux [5], Rozovskii [26], Ben-
soussan [2], Fleming and Mitter [11], Sussmann [27],
Michel [19], and Baras, Blankenship, and Hopkins [1].
They all obtained important estimates on the DMZ
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equation under special conditions. For example, Fleming
and Mitter [11] treated the case where f and ∇f are
bounded, while Michel [19] analyzed regularity prop-
erties of solutions to DMZ equations with bounded f
and h. Pardoux’s earlier paper [23] treated the case
f , h bounded using arguments based on coercivity.
It also contains many other interesting ideas. Pardoux
[24] has also treated nonlinear filtering problems with
unbounded coefficients (f, h have linear growth). Start-
ing with methods somewhat like those used by [25],
Baras, Blankenship, and Hopkins also obtained impor-
tant results on existence, uniqueness, and asymptotic
behavior of solutions to a class of DMZ equations
with unbounded coefficients. However, they focused
on only one spatial dimension and their result cannot
cover the linear case. The Sobolev space setup in this
section is quite standard in partial differential equations
and has been used by many people (see, for example,
[23].).

To begin with we need a priori estimation of zero,
first and second derivatives of the solution of the robust
DMZ equation on [0, T ]×BR.

Theorem E. Consider the robust DMZ equation (3.3)
on [0, T ] × BR, where BR = {x ∈ Rn : |x| ≤ R} is a
ball of radius R,

Let C1 = max
0≤t≤T

[ m∑
i=1

|yi(t)|2
] 1

2
be the smallest con-

stant such that

|∇K(t, x)| ≤ C1|∇h(x)| for (t, x) ∈ [0, T ]×BR,
(4.1)

where |∇h|2 =
m∑
i=1

|∇hi(x)|2.

Suppose that there exists a constant C > 0 such that
for any r ≥ 0

min
|x|=r

|h|2 + div f + C√
|f |2 + |h|2 + div f + C + |f |

−C1 max
|x|=r

|∇h| ≥ 0.

(4.2)
Let g(x) be a positive radial symmetric function on Rn

(i.e., g = g(r) where r = |x| = (
n∑
i=1

x2
i )

1
2 ) such that

|g′(r)| ≤ min
|x|=r

|h|2 + div f + C√
|f |2 + |h|2 + div f + C + |f |

−C1 max
|x|=r

|∇h|. (4.3)

Then, for 0 ≤ t ≤ T ,∫
BR

e2gu2
R(t, x) ≤ ect

∫
BR

e2gσ2(x). (4.4)

Theorem F. Consider the robust DMZ equation (3.3)
on [0, T ] × BR, where BR = {x ∈ Rn : |x| < R} is a
ball of radius R. Assume that√

1
2
|h|2 + div f − 1

2
∆K + f · ∇K − 1

2
|∇K|2 +

C

2

−
∣∣f ∣∣− ∣∣∇K∣∣ ≥ 0, (4.5)

where C is the constant in Theorem E. Choose a
nonnegative function g̃ so that

|∇g̃| ≤√
1
2 |h|2 + div f − 1

2∆K + f · ∇K − 1
2 |∇K|2 + C

2

−
∣∣f ∣∣− ∣∣∇K∣∣ (4.6)

and

e2g̃

∣∣∣∣∇(1
2
|h|2 + div f − 1

2
∆K + f · ∇K − 1

2
|∇K|2

) ∣∣∣∣2
≤ e2g (4.7)
where g is chosen as in Theorem E. Then∫
BR

e2g̃|∇uR|2(T, x) +
1
2

∫ T

0

∫
BR

e2g̃(∆uR)2(t, x)

≤
∫
BR

e2g̃|∇uR|2(0, x) + T

∫
BR

e2gσ2(x). (4.8)

Using Theorem E and Theorem F above, we can es-
tablish the existence and uniqueness of a weak solution
for the DMZ equation.

Definition 1. We denote W 1(Rn) the space of functions

φ(x) such that φ(x) ∈ L2(Rn) and
∂φ

∂xi
∈ L2(Rn) for

i = 1, . . . , n with the scalar product

(φ1, φ2)1 :=
∫

Rn

φ1(x)φ2(x) dx+
∫

Rn

n∑
i=1

∂φ1

∂xi

∂φ2

∂xi
dx.

(4.9)
We shall denote by W 1,1(Q) the space of
functions v(t, x) for which v(t, x) ∈ L2(Q),
∂v(t, x)
∂xi

∈ L2(Q) (i = 1, . . . , n) and

∂v(t, x)
∂t

∈ L2(Q), with the scalar product

(v1, v2)1,1 :=
∫∫
Q

v1(t, x)v2(t, x) dt dx+

∫∫
Q

( n∑
i=1

∂v1

∂xi

∂v2

∂xi
+
∂v1

∂t

∂v2

∂t

)
dx dt

(4.10)
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It is known that W 1(Rn) and W 1,1(Rn) are complete.
The norms in L2(Q), W 1(Rn), and W 1,1(Q) will be
written ‖v‖0, ‖v‖1 and ‖v‖1,1 respectively.

Definition 2. The subspace of W 1(Rn) consisting of
functions that have compact supports in Rn is written
W 1

0 (Rn), and the subspace of W 1,1(Q) consisting of
functions v(t, x) which have compact supports in Rn
for any t is written W 1,1

0 (Q).

Theorem G. Under the hypothesis of Theorem F the
robust DMZ equation (2.6) on [0, T ] × Rn with initial
condition σ0(x) ∈W 1

0 (Rn) has a weak solution.

Theorem H. Let Q = (0, T ) × Rn. Assume that for
some c > 0,

sup
0≤t≤T

∫
Rn

ecru2(t, x) dx <∞ (4.11)∫ T

0

∫
Rn

ecr|∇u(t, x)|2 dx dt <∞ (4.12)

where r =
√
x2

1 + · · ·+ x2
n. Suppose that there exists a

finite number α such that∣∣∣ c
2
∇r + f −∇K

∣∣∣2 − 2
(

1
2
|h|2 + div f − 1

2
∆K

+f · ∇K − 1
2
|∇K|2

)
≤ α. (4.13)

Then the weak solution u(t, x) of the robust DMZ
equation on Q is unique.
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