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Abstract— We investigate, via the dynamic programming
approach, a finite fuel nonlinear singular stochastic control
problem of Bolza type. We prove that the associated value
function is continuous and that its continuous extension to
the closure of the domain coincides with the value function
of a non singular control problem, for which we prove the
existence of an optimal control. Moreover such a continuous
extension is characterized as the unique viscosity solution of a
quasi variational inequality with suitable boundary conditions
of mixed type.

I. INTRODUCTION

We study a finite fuel stochastic control problem with finite
horizon via the dynamic programming approach. For any
initial condition (t̄, k̄, x̄) ∈ [0, T [×[0,K]×Rn we consider
the nonlinear stochastic differential equation

xt = x̄+
∫ t
t̄
A(r, xr) dr +

∫ t
t̄
B(r, xr)ur dr+∫ t

t̄
D(r, xr) dWr,

(1)

where the functions A, B, and D are deterministic, {Wt} is a
Brownian motion (not necessarily n–dimensional), and {ut}
is a control. All the processes are assumed to be defined on
a probability space (Ω,G, Q, {Gt}). Given a closed convex
cone K ⊂ Rm, the class of admissible controls, denoted by
C(t̄, k̄, x̄), is given by the set of K–valued, {Gt}–predictable
processes verifying the constraint

kT
.= k̄ +

∫ T

t̄

|ut| dt ≤ K, Q− a.s.. (2)

For any admissible control u we consider a cost of the form

J (t̄, k̄, x̄, u) =
EQ

[∫ T
t̄

(l0(r, xr) + 〈l1(r, xr), ur〉) dr + g(xT )
]
,

(3)

where l0, l1, and g are deterministic functions. The value
function is defined as

V(t̄, k̄, x̄) = inf
u∈C(t̄,k̄,x̄)

J (t̄, k̄, x̄, u). (4)

In the paper we prove the continuity of the value function,
and, via a dynamic programming principle, we show that
the function V , which is the continuous extension of V to
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[0, T ]× [0,K]×Rn, is a viscosity solution of the following
generalized Cauchy problem

max
{
−∂v∂t + F (t, x,Dv,D2v),− ∂v∂k +H(t, x,Dv)

}
= 0

in ]0, T [×]0,K[×Rn,
(5)

max
{
−∂v∂t + F (t, x,Dv,D2v),− ∂v∂k +H(t, x,Dv)

}
≥ 0

on ]0, T [×{K} ×Rn,
(6)

v ≤ g and if v < g then
max

{
−∂v∂t + F (t, x,Dv,D2v),− ∂v∂k +H(t, x,Dv)

}
≥ 0

on {T}×]0,K]×Rn,
(7)

where Dv and D2v denote the gradient and the matrix of the
second derivatives of the function v = v(t, k, x) with respect
to the x variable,

F (t, x, p, S) .= −〈A(t, x), p〉 − l0(t, x)− 1
2

Tr{D̃(t, x)S},

where D̃(t, x) .= D(t, x)D(t, x)T , and

H(t, x, p) .= max
w∈K, |w|=1

{−〈B(t, x)w, p〉 − 〈l1(t, x), w〉}

for any (t, x, p, S) ∈ R+ × Rn × Rn ×M(n, n), where
M(n, n) denotes the set of n×n real matrices. A uniqueness
theorem proven in [MS2] allows us to characterize V as
the unique viscosity solution to the above boundary value
problem. V is in fact the value function of a non singular
problem for which we can also prove the existence of an
optimal control. Justified by the observation that optimal
controls for the problem (1)-(4) may not exist and in fact
quasi-optimal controls may be as close as desired to a control
of impulsive type (see e.g. [FS]), we introduce an extension
of our problem by considering a new set of controls, called
auxiliary controls, which are bounded valued. We can show
that our problem is equivalent to a problem of optimal
stopping time within the class of auxiliary controls. Using a
similar auxiliary control problem Dufour and Miller in [DM]
proved the existence of an auxiliary optimal control for a
Mayer problem with a dynamics like (1). From our point
of view, that is of the dynamic programming approach, the
equivalent problem is not standard and can be studied only
applying an abstract version of the dynamic programming
principle as introduced by Haussmann and Lepeltier [HL],
which is based on the compactification method due to El
Karoui et al. [EKNP].

We observe that the boundary conditions (6) and (7) are
original in the setting of singular stochastic control problems.
First of all, since we deal with problems of impulsive
type, even considering a finite horizon problem, the limit
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limt̄→T− V(t̄, k̄, x̄) does not coincide in general with the
final cost g(x̄) and therefore, at time t̄ = T , we impose
(7) which is an alternative between the quasi variational
inequality (5) and v = g. At the boundary k̄ = K, instead,
we introduce the supersolution condition (6) which replaces
the Dirichlet condition v(t̄, K, x̄) = J(t̄, K, x̄, 0), usually
assumed in finite fuel control problems (see e.g. [FS]). It
has the advantage that it does not require the computation
of J(t̄, K, x̄, 0). Supersolution type conditions have been
first considered by [S] for problems with state constraints,
and in fact by considering kt, the fuel consumed at time
t, as a new variable, in view of (2) such a variable turns
out to be constrained in [0,K]. Boundary value problems
similar to (5)–(7) for first order Hamiltonians were already
investigated by the authors in the context of impulsive
deterministic control problems and in such a context, it is
worth mentioning that our approach leads to approximation
schemes for the numerical evaluation of the value functions
which for the second order case has not yet been done.

Finally we refer to [MS1] for the proofs of the theorems
that are not proved here and for a more complete bibliogra-
phy.

II. THE DATA, THE AUXILIARY CONTROL PROBLEM

Throughout the paper we will use the notation R+ =
[0,+∞[ and the following hypotheses
(A0) There are some constants L1, L2 such that the deter-
ministic functions A : R+ ×Rn → Rn, B : R+ ×Rn →
M(n,m), and D : R+ × Rn → M(n, p) verify for all
t, s ∈ R+ and x, y ∈ Rn

|A(t, x)|+ |B(t, x)|+ |D(t, x)| ≤ L1(1 + |x|),
|A(t, x)−A(s, y)|+ |B(t, x)−B(s, y)|+
|D(t, x)−D(s, y)| ≤ L2(|t− s|+ |x− y|).

(A1) There are some constants L, L3 such that the functions
l0 : R+×Rn → R, l1 : R+×Rn → Rm, and g : Rn → R
verify for all t, s ∈ R+ and x, y ∈ Rn

|l0(t, x)− l0(s, y)|+ |l1(t, x)− l1(s, y)| ≤
L(|t− s|+ |x− y|),
|g(x)− g(y)| ≤ L|x− y|;
|l0(t, x)|+ |l1(t, x)|+ |g(x)| ≤ L3. (8)

Remark 1: If we replace the boundedness hypothesis (8)
with

|l0(t, x)|+|l1(t, x)|+|g(x)| ≤ L3(1+|x|) ∀t ∈ R+, x ∈ Rn,
(9)

the main results of the paper remain true, except that, of
course, the value function V is no more bounded but it
turns out to verify |V(t, k, x)| ≤ C̄(1 + |x|) for some C̄
and ∀(t, k, x) ∈ [0, T [×[0,K]×Rn.

A. The auxiliary control problem and the equivalence of the
two problems

Definition 1 (Auxiliary control problem): For any
(t̄, k̄, x̄) ∈ [0, T ] × [0,K] × Rn an auxiliary control
is a term

β = (Ω,F , P, {Fs}, {ws}, {(ts, ks, ξs)}, θ),

where the following (B1) and (B2) are assumed.
(B1) (Ω, F, P ) is a complete probability space, with a right

continuous complete filtration {Fs},
{ws} is a Bm(1)∩K–valued control defined on [0, T +
K]× Ω which is {Fs}–predictable,
θ is an {Fs}–stopping time such that θ ≤ T +K,

and
(B2) {(ts, ks, ξs)} is an R2+n–valued {Fs}–progressively

measurable process with continuous paths, such that,
for 0 ≤ s ≤ T +K,

ts = t̄+
∫ s

0
w0σ dσ

ks = k̄ +
∫ s

0
|wσ| dσ

ξs = x̄+
∫ s

0
(A(tσ, ξσ)w0σ +B(tσ, ξσ)wσ) dσ

+
∫ s

0
D(tσ, ξσ)√w0σ dWσ,

where {Ws} is a standard p–dimensional {Fs}–
Brownian motion defined on [0, T +K]×Ω and where
we set w0s(ω) .= 1− |ws(ω)| ∀(s, ω) just for the sake
of notation.

The cost corresponding to an auxiliary control β is of the
form

J(t̄, k̄, x̄, β) .= EP

[∫ θ
0

(l0(tσ, ξσ)w0σ + 〈l1(tσ, ξσ), wσ〉) dσ
+g(ξθ) +G(tθ, kθ)] ,

where G(T, k) = 0 for all k ≤ K and G(t, k) = +∞
otherwise. We use Γ(t̄, k̄, x̄) to denote the set of auxiliary
controls, while

Γa(t̄, k̄, x̄) .=
{
β ∈ Γ(t̄, k̄, x̄) : J(t̄, k̄, x̄, β) < +∞

}
(10)

denotes the subset of admissible auxiliary controls. We define
for every (t̄, k̄, x̄) ∈ [0, T ]× [0,K]×Rn the auxiliary value
function as

V (t̄, k̄, x̄) .= inf
β∈Γa(t̄,k̄,x̄)

J(t̄, k̄, x̄, β). (11)

The original problem and the one formulated in the above
definition are equivalent in the following sense

Theorem 1 (Equivalence): Assume (A0), (A1). Then for
any initial condition (t̄, k̄, x̄) ∈ [0, T [×[0,K]×Rn one has

i) C(t̄, k̄, x̄) ↪→ Γa(t̄, k̄, x̄), that is, for every control c ∈
C(t̄, k̄, x̄) there exists an admissible auxiliary control
β ∈ Γa(t̄, k̄, x̄) such that J(t̄, k̄, x̄, β) = J (t̄, k̄, x̄, c);

ii) for any admissible auxiliary control β ∈ Γa(t̄, k̄, x̄)
there is a sequence of controls cn ∈ C(t̄, k̄, x̄) such
that limn J (t̄, k̄, x̄, cn) = J(t̄, k̄, x̄, β);

iii)
V (t̄, k̄, x̄) = V(t̄, k̄, x̄). (12)

B. Existence of an auxiliary optimal control
We recall that in a relexed control the Bm(1) ∩ K–

valued process {ws} is replaced by an M1(Bm(1) ∩ K)–
valued process {µs}, where M1(Bm(1) ∩ K) is the space
of probability measures on Bm(1) ∩ K. We will extend
any bounded measurable map ψ : Bm(1) ∩ K → R to
M1(Bm(1) ∩ K) by setting

ψ(µ) =
∫
Bm(1)∩K

ψ(w)µ(dw).
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For a detailed definition we refer to the Appendix. For
each (t̄, k̄, x̄) the set of relaxed controls will be denoted by
Γ(t̄, k̄, x̄) and ∀α̃ ∈ Γ̃(t̄, k̄, x̄) we define the cost

J(t̄, k̄, x̄, α̃) = EP

[∫ θ
0

(l0(tσ, ξσ)(1− |µσ|)+
〈l1(tσ, ξσ), µσ〉) dσ + g(ξθ) +G(tθ, kθ)] .

(13)

We use Γ̃a(t̄, k̄, x̄) to denote the subset of admissible relaxed
controls, that is, with finite cost.

The set Γa(t̄, k̄, x̄) can be naturally embedded in
Γ̃a(t̄, k̄, x̄), therefore the inequality

inf
α̃∈Γ̃a(t̄,k̄,x̄)

J(t̄, k̄, x̄, α̃) ≤ inf
α∈Γa(t̄,k̄,x̄)

J(t̄, k̄, x̄, α),

is trivially verified. In fact, also the converse inequality holds
true.

Theorem 2 (Existence): Assume (A0), (A1). Then for any
(t̄, k̄, x̄) ∈ [0, T ]× [0,K]×Rn,

V (t̄, k̄, x̄) = inf
α∈Γa(t̄,k̄,x̄)

J(t̄, k̄, x̄, α) = inf
α̃∈Γ̃a(t̄,k̄,x̄)

J(t̄, k̄, x̄, α̃).

Moreover, the infimum over relaxed controls is attained and
so is the infimum over auxiliary controls.

C. Dynamic Programming Principle DPP

In order to state a dynamic programming principle for our
problem we need for each (t̄, k̄, x̄) ∈ [0, T ] × [0,K] ×Rn

the notion of control rule R which will be defined in the
Appendix. For each (t̄, k̄, x̄) we will denote by R(t̄, k̄, x̄)
the space of control rules and by Ra(t̄, k̄, x̄) the subset for
which the cost is finite.

Let us notice that the auxiliary control problem is in fact an
unconstrained stopping time control problem. Indeed, from
Definition 1 it follows that for all (t̄, k̄, x̄) such that either
t̄ > T or k̄ > K, the set of admissible auxiliary controls
Γa(t̄, k̄, x̄) is empty. Hence the auxiliary value function V
might be extended to the whole set [0,+∞[×[0,+∞[×Rn

in a natural way by setting V = +∞ outside [0, T ]×[0,K]×
Rn.

Proposition 1 (DPP): Assume (A0), (A1). For any
(t̄, k̄, x̄) ∈ [0, T ]× [0,K]×Rn, one has

V (t̄, k̄, x̄) = inf
{
ER

[∫ ρ′
0

(l0(tσ, ξσ)(1− |µσ|)+
〈l1(tσ, ξσ), µσ〉) dσ + V (tρ′ , kρ′ , ξρ′)]} ,

(14)

where the infimum is taken over the set Ra(t̄, k̄, x̄) and ρ′ =
ρ∧ θ, ρ being any finite stopping time such that 0 ≤ ρ ≤ θ.

III. CONTINUITY OF THE VALUE FUNCTION

Theorem 3: Let (A0), (A1) hold. Then the value function
V is bounded and continuous. More precisely, there exists
some C̄ > 0 such that V satisfies the following:

|V (t̄, k̄, x̄)| ≤ C̄ ∀(t̄, k̄, x̄) ∈ [0, T ]× [0,K]×Rn;

|V (t̄1, k̄1, x̄1)− V (t̄2, k̄2, x̄2)| ≤
C̄
[
|x̄1 − x̄2|+ (1 + |x̄1| ∨ |x̄2|)

(
|t̄1 − t̄2|1/2 + |k̄1 − k̄2|

)]
for all (t̄1, k̄1, x̄1), (t̄2, k̄2, x̄2) ∈ [0, T ]× [0,K]×Rn.

Proof: Boundedness. It is very easy to see that for
any initial condition (t̄, k̄, x̄) ∈ [0, T ]× [0,K]×Rn the set

of admissible control rules is non empty. Since the stopping
time θ is bounded from above by T+K, the boundedness of
V follows therefore straightforwardly from the boundedness
of both the process {ws} and the data l0, l1, and g.
Lipschitz continuity in x. Fix (t̄, k̄, x̄1), (t̄, k̄, x̄2) ∈ [0, T ]×
[0,K]×Rn and assume that V (t̄, k̄, x̄1) ≥ V (t̄, k̄, x̄2). One
has

0 ≤ V (t̄, k̄, x̄1)− V (t̄, k̄, x̄2) ≤
supP∈Ra(t̄,k̄,x̄2)

(
J(t̄, k̄, x̄1, Q)− J(t̄, k̄, x̄2, P )

)
for every Q ∈ Ra(t̄, k̄, x̄1). Take P ∈ Ra(t̄, k̄, x̄2) arbitrary
and let (Ω,F , P, {Fs}, {µs}, {(ts, ks, ξ2s)}, θ) be the associ-
ated relaxed control. By the definition of control rules, there
exists an extension (Ω̃, F̃ , P̃ , {F̃s}) of (Ω,F , P, {Fs}), i.e.
there exists another probability space (Ω′,F ′,F ′s, P ′) such
that Ω̃ = Ω×Ω′, F̃ = F×F ′, F̃s = Fs×F ′s and P̃ = P×P ′.
We can extend the process {((t., k., ξ.), µ., θ)} to Ω̃ by the
following: for ω̃ = (ω, ω′) ∈ Ω̃,

((t., k., ξ.), µ., θ)(ω̃) = ((t., k., ξ.), µ., θ)(ω).

On (Ω̃, F̃ , P̃ , F̃s) there exists a standard p–dimensional
Brownian motion {Ws} such that for s ∈ [0, T +K],

(ts, ks, ξ2s) =
(
t̄+
∫ s

0
(1− |µ|σ) dσ, k̄ +

∫ s
0
|µσ| dσ,

x̄2 +
∫ s

0
(A(tσ, ξ2σ)(1− |µ|σ) +B(tσ, ξ2σ)µσ) dσ

+
∫ s

0
D(tσ, ξ2σ)

√
1− |µ|σ dWσ

)
,

the control β̃ = (Ω̃, F̃ , P̃ , {F̃s}, {µs}, {(ts, ks, ξ2s)}, θ) ∈
Γ̃a(t̄, k̄, x̄2), where, by the definition of the set Z in (25),
θ is the first time in which χs≥θ jumps from 0 to 1 and
J(t̄, k̄, x̄2, β̃) = J(t̄, k̄, x̄2, P̃ ) = J(t̄, k̄, x̄2, P ).

Consider the equations with the initial condition (t̄, k̄, x̄1),
for s ∈ [0, T +K],

(ts, ks, ξ1s) =
(
t̄+
∫ s

0
(1− |µ|σ) dσ, k̄ +

∫ s
0
|µσ| dσ,

ξ1s = x̄1 +
∫ s

0
(A(tσ, ξ1σ)(1− |µ|σ) +B(tσ, ξ1σ)µσ) dσ+∫ s

0
D(tσ, ξ1σ)

√
1− |µ|σ dWσ

)
(15)

on the stochastic basis (Ω̃, F̃ , P̃ , {F̃s}). Under assumptions
(A0), (A1), the strong solution to (15) exists and one can
see that α̃ = (Ω̃, F̃ , P̃ , {F̃s}, {µs}, {(ts, ks, ξ1s)}, θ) ∈
Γ̃a(t̄, k̄, x̄1). Therefore there exists a control rule Q ∈
Ra(t̄, k̄, x̄1) such that

J(t̄, k̄, x̄1, α̃) = J(t̄, k̄, x̄1, Q).

We have

J(t̄, k̄, x̄1, Q)− J(t̄, k̄, x̄2, P ) ≤
EP̃

[∫ θ
0
|l0(tσ, ξ1σ)− l0(tσ, ξ2σ)| |1− |µσ|| dσ+∫ θ

0
|l1(tσ, ξ1σ)− l1(tσ, ξ2σ)||µσ| dσ + g(ξ1θ)− g(ξ2θ)|

]
≤

LEP̃

[∫ θ
0
|ξ1σ − ξ2σ| dσ

]
+ LEP̃ [|ξ1θ − ξ2θ|]

where we have used the Lipschitz continuity of l0, l1, and
g and L is the same as in (A1). Let us define ξ̂is

.= ξis∧θ
for all s ≥ 0 and i = 1, 2. By the Burkholder–Gundy’s and
Gronwall’s inequalities we obtain that there exists a constant
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C, depending on the Lipschitz constant L2 in (A0) and on
T +K, such that, for all 0 ≤ σ ≤ T +K,

EP̃

[
sup
s≤σ

(|ξ̂1s − ξ̂2s|2)
]
≤ C|x̄1 − x̄2|2.

Since from the definitions of {ξ̂1s} and {ξ̂2s} it follows that

EP̃

[∫ θ
0
|ξ1σ − ξ2σ| dσ

]
≤ EP̃

[∫ T+K

0
|ξ̂1σ − ξ̂2σ| dσ

]
≤(∫ T+K

0
EP̃

[
sups≤σ(|ξ̂1s − ξ̂2s|2)

]
dσ
)1/2

,

(16)
in view of the arbitrariness of P ∈ Ra(t̄, k̄, x̄2), the previous
estimates yield that

0 ≤ V (t̄, k̄, x̄1)− V (t̄, k̄, x̄2) ≤ C̄|x̄1 − x̄2|

for a suitable constant C̄, depending just on L, L2, and T +
K.
Hölder continuity in t. Fix (t̄1, k̄, x̄), (t̄2, k̄, x̄) ∈ [0, T ] ×
[0,K]×Rn and assume that V (t̄1, k̄, x̄) ≥ V (t̄2, k̄, x̄).
First case, t̄1 < t̄2. One has

0 ≤ V (t̄1, k̄, x̄)− V (t̄2, k̄, x̄) ≤
supP∈Ra(t̄2,k̄,x̄)

(
J(t̄1, k̄, x̄, Q)− J(t̄2, k̄, x̄, P )

)
for every Q ∈ Ra(t̄1, k̄, x̄). Take P ∈ Ra(t̄2, k̄, x̄) arbitrary
and let (Ω,F , P, {Fs}, {µs}, {(t2s , ks, ξ2s)}, θ2) be the as-
sociated relaxed control. Now, as in the previous step, there
exist an extension (Ω̃, F̃ , P̃ , {F̃s}) of (Ω,F , P, {Fs}), and
a standard Brownian motion {Ws} on (Ω̃, F̃ , P̃ , {F̃s}) such
that, for s ∈ [0, T +K],

(t2s, ks, ξ2s) =
(
t̄2 +

∫ s
0

(1− |µσ|) dσ, k̄ +
∫ s

0
|µσ| dσ,

x̄+
∫ s

0
(A(t2σ , ξ2σ )(1− |µσ|) +B(t2σ , ξ2σ )µσ) dσ+∫ s

0
D(t2σ , ξ2σ )

√
1− |µσ| dWσ

)
,

the control β̃ = (Ω̃, F̃ , P̃ , {F̃s}, {µs}, {(t2s , ks, ξ2s)}, θ2) ∈
Γ̃a(t̄2, k̄, x̄), and J(t̄2, k̄, x̄, β̃) = J(t̄2, k̄, x̄, P ). Let us
now consider the relaxed control that one obtains from the
definition of β̃ when µs is replaced by µsχ{s≤θ2} for s ≥ 0.
It is easy to see that this control belongs to Γ̃a(t̄2, k̄, x̄),
and that the corresponding cost coincides with J(t̄2, k̄, x̄, P ).
With a small abuse of notation, from now on let us use β̃ to
denote such control.

Let us introduce the stopping time θ1
.= θ2 +(t̄2− t̄1) and

let {(t1s , ks, ξ1s)} be the strong solution to

(t1s , ks, ξ1s) =
(
t̄1 +

∫ s
0

(1− |µσ|) dσ, k̄ +
∫ s

0
|µσ| dσ,

x̄+
∫ s

0
(A(t1σ , ξ1σ )(1− |µσ|) +B(t1σ , ξ1σ )µσ) dσ+∫ s

0
D(t1σ , ξ1σ )

√
1− |µσ| dWσ

)
on the stochastic basis (Ω̃, F̃ , P̃ , {F̃s}) for s ∈ [0, T + K].
β̃ admissible implies that θ2 ≤ (T − t̄2) + (K − k̄), t2θ2 =
T , and kθ2 ≤ K (see Remark 2.2 in [MS1]). Hence, one
deduces

θ1 ≤ (T − t̄2) + (K − k̄) + (t̄2 − t̄1) ≤ T +K.

Moreover, since we identified µs with µsχ{s≤θ2} one has

t1θ1 = t2θ2 + (θ1 − θ2)− (t̄2 − t̄1), kθ1 = kθ2 ≤ K.

Therefore t1θ1 = T , kθ1 ≤ K, and the control α̃ =
(Ω̃, F̃ , P̃ , {F̃s}, {µs}, {(t1s , ks, ξ1s)}, θ1) is in Γ̃a(t̄1, k̄, x̄).
Thus there exists a control rule Q ∈ Ra(t̄1, k̄, x̄) such that
J(t̄1, k̄, x̄, α̃) = J(t̄1, k̄, x̄, Q). By some calculation we can
deduce that

J(t̄1, k̄, x̄, Q)− J(t̄2, k̄, x̄, P ) ≤ L
[
EP̃ [|ξ1θ1 − ξ2θ2 |

2]
] 1

2 +

LEP̃

[∫ θ2
0

(|t1σ − t2σ |+ |ξ1σ − ξ2σ |) dσ
]

+ L3(t̄2 − t̄1).

In order to conclude the proof, let us introduce for s ≥ 0 the
processes ξ̂is

.= ξis∧θi , for i = 1, 2. Since

t1θ2 = t2θ2 − (t̄2 − t̄1),

one can prove that

EP̃

[
sup
s≤σ
|ξ̂2s − ξ̂1s |2

]
≤ C2(1 + |x̄|)2|t̄2 − t̄1|,

for every 0 ≤ σ ≤ T + K, with C a suitable constant
depending on L1, L2 in (A0) and T +K which yields

EP̃

[∣∣ξ2θ2 − ξ1θ1 ∣∣2] =

EP̃

[∣∣∣ξ̂2T+K − ξ̂1T+K

∣∣∣2] ≤ C2(1 + |x̄|)2|t̄2 − t̄1|,

Therefore, by (16) we obtain J(t̄1, k̄, x̄, Q)−J(t̄2, k̄, x̄, P ) ≤
C̄
[
(1 + |x̄|)|t̄1 − t̄2|

1
2 + |t̄1 − t̄2|

]
, which, by the arbitrari-

ness of P , yields

0 ≤ V (t̄2, k̄, x̄)− V (t̄1, k̄, x̄) ≤ C̄(1 + |x̄|)|t̄1 − t̄2|
1
2 ,

for some constant C̄ depending on the constants L, L2, L3,
and T +K in (A0), (A1).
Second case, t̄1 > t̄2. Consider the Dynamic Programming
Principle (14) for V (t̄2, k̄, x̄),

V (t̄2, k̄, x̄) = infR∈Ra(t̄2,k̄,x̄)

{
ER

[∫ r∧θ
0

(l0(tσ, ξσ)
(1− |µσ|) + 〈l1(tσ, ξσ), µσ〉) dσ + V (tr∧θ, kr∧θ, ξr∧θ)]} ,

where we choose the (deterministic) time r = t̄1 − t̄2.
It is easy to see that there exists an admissible control
rule P ∈ Ra(t̄2, k̄, x̄) associated to a relaxed control
(Ω,F , P, {Fs}, {µs}, {(ts, ks, ξs)}, θ) and such that P (µs =
δ{0} 0 ≤ s ≤ θ, θ = T − t̄2) = 1. Then P (θ ≥ r) = 1;
by the boundedness of l0 one has

V (t̄2, k̄, x̄) ≤ EP
[∫ r

0
|l0(tσ, ξσ)| dσ + V (tr, kr, ξr)

]
≤

L3r + EP [V (tr, kr, ξr)],

and by the Lipschitz continuity of the value function in x,

V (tr, kr, ξr) ≤ V (tr, kr, x̄) + C|ξr − x̄|.

Hence

V (t̄2, k̄, x̄)− EP [V (tr, kr, x̄)] ≤ L3r + CEP [|ξr − x̄|]
≤ L3r + C(EP [|ξr − x̄|2])

1
2 .

(17)
From the definition of control rules, we know that under P ,

(tr, kr, ξr) = (t̄2 + r = t̄1, k̄, x̄+
∫ r

0
A(tσ, ξσ) dσ +Mr)

(18)
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where {Mr} is a continuous square integrable martin-
gale with 〈M〉r =

∫ r
0

Tr{D̃(tσ, ξσ)} dσ. Therefore by the
Burkholder-Davis-Gundy inequality there exists a constant
C, depending on L1 in (A0), such that

EP [|ξr − x̄|2] ≤ C2(1 + |x̄|)2(r2 + r). (19)

Therefore (17), (18) and (19) yield

0 ≤ V (t̄2, k̄, x̄)− V (t̄1, k̄, x̄) ≤ C̄(1 + |x̄|)|t̄2 − t̄1|
1
2

for some constant C̄ depending on the constants introduced
in (A0), (A1).
Lipschitz continuity in k. Fix (t̄, k̄1, x̄), (t̄, k̄2, x̄) ∈ [0, T ]×
[0,K]×Rn, and assume that V (t̄, k̄1, x̄) ≥ V (t̄, k̄2, x̄).
First case, k̄1 < k̄2. One has

0 ≤ V (t̄, k̄1, x̄)− V (t̄, k̄2, x̄) ≤
supP∈Ra(t̄,k̄2,x̄)

(
J(t̄, k̄1, x̄, Q)− J(t̄, k̄2, x̄, P )

)
for every Q ∈ Ra(t̄, k̄1, x̄). As in the previous step, take P ∈
Ra(t̄, k̄2, x̄) arbitrary and let {Ws} be a standard Brownian
motion on a suitable (Ω̃, F̃ , P̃ , {F̃s}) such that

β̃ = (Ω̃, F̃ , P̃ , {F̃s}, {µs}, {(ts, k2s , ξs)}, θ2) ∈ Γ̃a(t̄, k̄2, x̄)

is a relaxed control, where, for s ∈ [0, T +K],

(ts, k2s , ξs) = (t̄+
∫ s

0
(1− |µσ|) dσ, k̄2 +

∫ s
0
|µσ| dσ,

x̄+
∫ s

0
(A(tσ, ξσ)(1− |µσ|) +B(tσ, ξσ)µσ) dσ+∫ s

0
D(tσ, ξσ)

√
1− |µσ| dWσ, )

and J(t̄, k̄2, x̄, β̃) = J(t̄, k̄2, x̄, P ). Moreover, setting for s ≥
0,

k1s
.= k̄1 +

∫ s

0

|µσ| dσ = k2s − (k̄2 − k̄1),

one easily sees that α̃ = (Ω̃, F̃ , P̃ , {F̃s}, {µs},
{(ts, k1s , ξs)}, θ2) ∈ Γ̃a(t̄, k̄1, x̄). As before, there
exists a control rule Q ∈ Ra(t̄, k̄1, x̄) such that
J(t̄, k̄1, x̄, α̃) = J(t̄, k̄1, x̄, Q). Since the cost functional J
and the state process {ξs} do not depend explicitly on the
k variable, one has that

J(t̄, k̄2, x̄, P ) = J(t̄, k̄1, x̄, Q).

As a consequence, in this case, V (t̄, k̄1, x̄) = V (t̄, k̄2, x̄).
Second case, k̄1 > k̄2. Consider the Dynamic Programming
Principle (14) for V (t̄, k̄2, x̄),

V (t̄, k̄2, x̄) = infR∈Ra(t̄,k̄2,x̄)

{
ER

[∫ r∧θ
0

(l0(tσ, ξσ)
(1− |µσ|) + 〈l1(tσ, ξσ), µσ〉) dσ + V (tr∧θ, kr∧θ, ξr∧θ)]} ,

where we choose the (deterministic) time r = k̄1 − k̄2. Let
us fix an arbitrary w ∈ K with |w| = 1. Then there exists a
control rule P ∈ Ra(t̄, k̄2, x̄) associated to a relaxed control

β̃ = (Ω,F , P, {Fs}, {µs}, {(ts, ks, ξs)}, θ)

such that P (µs = δ{w} 0 ≤ s ≤ θ, θ = K − k̄2) = 1,
and J(t̄, k̄2, x̄, β̃) = J(t̄, k̄2, x̄, P ). Then, arguing as in the
case ”t̄1 > t̄2” of the proof of the continuity in t, we can

deduce that an estimate analogous to (17) is still verified,
that is

V (t̄, k̄2, x̄)− EP [V (tr, kr, x̄)] ≤
L3r + CEP [|ξr − x̄|] ≤ L3r + C(EP [|ξr − x̄|2])

1
2 .

(20)
Now, under P we have

(tr, kr, ξr) = (t̄, k̄2 + r = k̄1, x̄+
∫ r

0

B(tσ, ξσ) dσ) (21)

Therefore, since EP [|B(ts, ξs)|2] ≤ EP [[L1(1 + |ξs|)]2] ≤
C2(1 + |x̄|)2, we deduce that for 0 ≤ r ≤ θ,

EP [|ξr − x̄|2] ≤ C2(1 + |x̄|)2r2. (22)

Then (20), (21) and (22) yield

0 ≤ V (t̄, k̄2, x̄)− V (t̄, k̄1, x̄) ≤ C̄(1 + |x̄|)|k̄2 − k̄1|.

The proof of Theorem 3 is so concluded.

IV. DYNAMIC PROGRAMMING EQUATION AND
BOUNDARY CONDITIONS

This section is devoted to show that the value function V
is a viscosity solution of (5)–(7). To this aim, we refer to
[MS1] for the definition of viscosity sub– and supersolution
to (5)–(7) which is based on the definition in [CIL] . We
also give a formal derivation of the boundary value problem
described in the Introduction in the following subsection.

A. Heuristic derivation of the quasi variational inequality
and of the boundary conditions.

It is quite easy to deduce heuristically the boundary value
problem (5)–(7) once we consider the value function V of the
auxiliary optimization control problem defined in Definition
1 to which the original control problem, described in the
Introduction, is equivalent. The auxiliary control problem
is indeed formulated as an unconstrained stopping time
problem, with bounded controls and discontinuous final cost
given by

G̃(t, k, x) .= g(x)−G(t, k) ∀(t, k, x) ∈ R2+n.

Therefore, assuming V of class C1,2, using Ito’s formula
and arguing as usual (see e.g. [FS]), we can deduce from
the dynamic programming principle (14) that V verifies the
following equation

F̃

(
x,DV,

∂V

∂t
,
∂V

∂k
,D2V

)
= 0 in ]0, T [×]0,K[×Rn,

F̃ (x, px, pt, pk, S) .= max{(w0,w): |w|≤1, w∈K, w0+|w|=1}

{− 1
2w0Tr{D̃(t, x)S} − 〈A(t, x)w0 +B(t, x)w, px〉−

l0(t, x)w0 − 〈l1(t, x), w〉 − pt w0 − pk|w|},
which is in turn equivalent to the quasi variational inequality
(5), as shown in [MS2].

More precisely one can show that the value function of an
optimal stopping time problem verifies

max
{
F̃

(
x,DV,

∂V

∂t
,
∂V

∂k
,D2V

)
;V − G̃

}
= 0 in R2+n,

(23)
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due to the fact that the controller can decide to stop as soon
as it is convenient (for the derivation of (23) in a viscosity
framework we refer e.g. to [BP] ). Since V (t, k, x) = +∞
outside [0, T ] × [0,K] ×Rn and the lower semicontinuous
exit cost G̃(t, k, x) is equal to g(x) for (t, x, k) ∈ {T} ×
[0,K]×Rn and to +∞ otherwise, by (23) it easily follows
that (7) holds for every (t, x, k) ∈ {T} × [0,K] ×Rn and
that (6) holds for (t, x, k) ∈ [0, T [×[0,K]×Rn.

We underline that, as far as we know, there is not in the
literature a dynamic programming principle for the problem
described in the Introduction, hence, even assuming the value
function V regular enough, there is no way to deduce the
equation and the boundary conditions (5)–(7) directly for
the original control problem.

B. Existence and uniqueness

We have the following two theorems which characterize
the function V.

Theorem 4: Assume (A0), (A1). Then the value function
V : [0, T ] × [0,K] × Rn → R solves the boundary value
problem (5)–(7) in the viscosity sense.

Theorem 5: Assume (A0), (A1). Then the value function
V : [0, T ]×[0,K]×Rn → R is the unique viscosity solution
of (5)–(7) among the bounded functions defined on [0, T ]×
[0,K]×Rn which are continuous on ∂(]0, T [×]0,K[×Rn).

V. APPENDIX

Definition 2: [Relaxed controls] Given (t̄, k̄, x̄) ∈ [0, T ]×
[0,K]×Rn we say that α̃ is a relaxed control and we write
α̃ ∈ Γ̃(t̄, k̄, x̄) if

α̃ = (Ω,F , P, {Fs}, {µs}, {(ts, ks, ξs)}, θ)

where the following (B3′), (B4′) are assumed.

(B3′) (Ω,F , P ) is a probability space with a filtration {Fs},
{µs} is a M1(Bm(1) ∩ K)–valued process defined on
[0, T+K]×Ω which is {Fs}–progressively measurable,
θ is an {Fs}–stopping time such that θ ≤ T +K,

(B4′) {(ts, ks, ξs)} is a R2+n–valued {Fs}–progressively
measurable process for s ∈ [0, T +K], with continuous
paths, such that (ts, ks, ξs) = (t̄, k̄, x̄) for s = 0,
for any ϕ ∈ C2

b (R2+n),Ms(ϕ, α̃) is a (P, {Fs}) square
integrable martingale for s ∈ [0, T +K], where

Ms(ϕ, α̃) .= ϕ(ts, ks, ξs)−
∫ s

0

Lϕ(tσ, kσ, ξσ, µσ) dσ,

and where

Lϕ(t, k, x, w) .=
[

1
2

∑
ij D̃ij(t, x) ∂2ϕ

∂xi∂xj
(t, k, x)+∑

iAi(t, x) ∂ϕ∂xi (t, k, x) + ∂ϕ
∂t (t, k, x)

]
w0

+
∑
i〈Bi(t, x), w〉 ∂ϕ∂xi (t, k, x) + ∂ϕ

∂k (t, k, x)|w|,

(24)

Definition 3: [Control rules] In order to introduce a
canonical space for the problem, let us define the following
spaces

C2+n = {f : [0, T +K]→ R2+n, f continuous},

endowed with the topology of uniform convergence;

U .= {ν : [0, T+K]→M1(Bm(1)∩K), ν Borel measurable},

endowed with the stable topology;

Z = {ζ : [0, T+K]→ R, ζ = χs≥∆, ∆ ∈ [0,+∞]} (25)

endowed with the topology of weak convergence of the
corresponding (point) probability measures. We denote the
map ζ → ∆ by ∆(·). Let C̃, Ũ , Z̃ denote their Borel σ–
fields, let C̃s, Ũs, Z̃s denote the σ–fields up to time s (e.g.,
Z̃s = σ{ζ(s′) : 0 ≤ s′ ≤ s}), and let us introduce the
canonical setting

Ω = C2+n × U × Z, F .= C̃ × Ũ × Z̃,
Fs

.= C̃s × Ũs × Z̃s.
(26)

Notice that Ω is metrizable and separable under the product
topology. Fix (t̄, k̄, x̄) ∈ [0, T ]× [0,K]×Rn, and let Ω, F
and {Fs} be defined by (26). We say that R is a control rule
and we write R ∈ R(t̄, k̄, x̄) if R is a probability measure
on the canonical space (Ω,F), such that

α̃ = (Ω,F , R, {Fs}, {µs}, {(ts, ks, ξs)}, θ)

is a relaxed control (i.e., α̃ ∈ Γ̃(t̄, k̄, x̄)), where

(ts, ks, ξs)(ω) = fs, µs(ω) = νs, θ(ω) = ∆(ζ)

for ω = (f, ν, ζ) ∈ Ω. Finally, we define the cost associated
to R as J(t̄, k̄, x̄, R) .= J(t̄, k̄, x̄, α̃) where J(t̄, k̄, x̄, α̃) is
given in (13).
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