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Abstract

An optimal feedback control has been obtained for
linear-quadratic optimal control problems with constraints
described by differential-algebraic equations (DAEs).
For that purpose, a new implicit Riccati equation
(Riccati differential-algebraic system) is provided, and
its solvability is investigated. It is shown that one can
do without the strong consistency conditions as used in
several previous papers. Furthermore, the solvability of the
resulting closed loop system is considered and the relations
between Riccati equations and Hamiltonian systems are
elucidated.

1. INTRODUCTION

Feedback solutions via Riccati differential equations
are a known and proven tool for solving linear-quadratic
optimal control problems. If an explicit ordinary
differential equation (ODE) in the state equation is replaced
by a differential-algebraic equation (DAE)

Ex′ = Cx+Du, (1)

with E being a singular constant square matrix, several
different generalizations of the Riccati-ansatz are possible.
For this, quite a lot of references are available (in particular
for the case of constant coefficients); however, we can
mention here only part of them. We refer to [1]-[3] for
further sources.

In (1) and in following equalities, the argument t is
dropped, and the given relations are meant pointwise for
all t ∈ [0,T ]. The superscript * will denote the transpose.

In [1] it was first noted that the standard Riccati equation
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modification

E∗Y ′E =−E∗YC−C∗Y E+

+(S +E∗Y D)R−1(S∗+D∗Y E)−W, (2)

which is considered to be obvious, leads to unacceptable
solvability conditions. Consequently, more specific Riccati
approaches that skillfully make use of the inherent
structures find favor with [1]. Starting from a singular
value decomposition UEV = diag(Σ,0) and certain rank
conditions, lower dimensional Riccati equations of the
form ΣY ′Σ = . . . are introduced. From the point of view of
DAE theory the rank conditions used in [1] imply that the
related Hamilton–Lagrange system is a regular DAE with
tractability index one (cf. [4]).

Kurina has investigated the implicit Riccati equation of
the form

E∗Y ′ =−Y ∗C−C∗Y +(S+Y ∗D)R−1(S∗+D∗Y )−W (3)

in a more general Hilbert space setting. See, for example,
[5]. References, concerning the study of this equation are
contained in [6]. Like (2), (3) is also primarily a matrix-
DAE; however, (3) has much better solvability properties
than (2).

Kunkel and Mehrmann [3] consider the Riccati DAE

(E∗Y E)′ =−E∗YC−C∗Y E+

+(S +E∗Y D)R−1(S∗+D∗Y E)−W, (4)

which generalizes (2) to allow for time-dependent
coefficients E. However, this equation is as unsuitable
as its time-invariant version (2), and the authors have to
admit that, unfortunately, this approach can only be used
in very special cases since, for E(t) singular, the solutions
of (4) and the Euler–Lagrange equation are not related via
u =−R−1(S+D∗Y E)x, as in the case of nonsingular E(t).

If, in (1), there is no constant matrix E in front of the
derivative but a time-dependent matrix, it makes sense to
change to a DAE with a properly formulated leading term

A(Bx)′ = Cx+Du, (5)
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with well-matched A and B (cf. [7]). The corresponding
initial condition is

A(0)B(0)x(0) = z0 (6)

with z0 ∈ im(A(0)B(0)). For arguments that state the
leading term in this way we refer to [7], [8]. Notice that,
in particular, such equations arise in circuit simulation via
modified nodal analysis (see, e.g., [9], [10]).

Under the assumption that B is continuously
differentiable, the terminal problem for the special
implicit Riccati equation is proved to be relevant in [11]
(in a more general Hilbert space setting).

The generalization of (2), adopting the bad solvability
properties of (2), is investigated in [12] for a DAE with a
properly formulated leading term when B is continuous.

In this paper we work with the Riccati DAE

B∗(A∗Y B−)′B =−Y ∗C−C∗Y+

+(S +Y ∗D)R−1(S∗+D∗Y )−W (7)

and the terminal value condition

A(T )∗Y (T )B(T )− = B(T )−∗V B(T )−, (8)

where B is assumed to be just continuous. Here, the
solutions meet the symmetry condition A∗Y B− = B−∗Y ∗A
(B− is a special, generalized inverse).

The difficulties with (4) were illustrated in [3] by means
of a small academic problem. This special problem has
been analyzed in details in [6] to show that things work
well when using more appropriate Riccati DAE (7).

The detailed proofs of the statements from this paper are
given in [6].

2. OPTIMAL FEEDBACK CONTROL

We deal with the quadratic cost functional

J(u,x) :=
1
2
〈x(T ),V x(T )〉+ 1

2

T∫
0

{〈x(t),W (t)x(t)〉+

+2〈x(t),S(t)u(t)〉+ 〈u(t),R(t)u(t)〉}dt (9)

to be minimized on pairs (u,x)∈C ×C 1
B satisfying the IVP

(5), (6).
The coefficients in (9), (5) are matrices W (t) ∈

L(Rm,Rm), R(t) ∈ L(Rl ,Rl), S(t) ∈ L(Rl ,Rm), A(t) ∈
L(Rn,Rk), B(t) ∈ L(Rm,Rn), C(t) ∈ L(Rm,Rk), D(t) ∈
L(Rl ,Rk), t ∈ [0,T ], which depend continuously on t, and
V ∈ L(Rm,Rm).

The coefficients determining the cost (9) satisfy the
following standard assumptions: W (t),R(t), and V are

symmetric, R(t) is positive definite, and
[

W (t) S(t)
S(t)∗ R(t)

]
is

positive semidefinite, t ∈ [0,T ].
We use the symbols C and C 1 for continuous and

continuously differentiable function spaces respectively
and

C 1
B := {x ∈ C : Bx ∈ C 1}, C 1

A∗ := {ψ ∈ C : A∗ψ ∈ C 1}.

The value z0 is given. The leading term of the DAE
(5) is assumed to be properly stated in the sense that the
decomposition

kerA(t)⊕ imB(t) = Rn, t ∈ [0,T ], (10)

holds true, and both subspaces forming this direct sum
have constant dimensions and are spanned by continuously
differentiable on [0,T ] functions (cf. [7]).

A pair (u,x) ∈ C ×C 1
B satisfying the IVP (5), (6) is said

to be admissible.
Let K(t) ∈ L(Rn,Rn) denote the projector that

realizes decomposition (10), kerK(t) = kerA(t), imK(t) =
imB(t), t ∈ [0,T ].

In addition to K(t) we introduce Q(t) ∈ L(Rm,Rm),
Q∗(t) ∈ L(Rk,Rk), which are the orthoprojectors
onto ker(A(t)B(t)) and ker(B(t)∗A(t)∗), respectively;
furthermore, P(t) := I−Q(t),P∗(t) := I−Q∗(t), t ∈ [0,T ].
The projector functions Q,P,Q∗, and P∗ are continuous.

It is natural to assume that V = V P(T ) (see, e.g., [13]).
Having the projectors K,P, and P∗, we introduce the

generalized inverses B− of B and A∗− of A∗ by

B−BB− = B−, BB−B = B,
BB− = K, B−B = P

and by similar relations for A∗−. Notice that B− and A∗−

are uniquely determined by these relations and continuous
on [0,T ].

Next we consider the terminal value problem (7), (8).
Equation (7) generalizes the (well-known for A = I, B = I)
Riccati differential equation and may be understood as a
Riccati DAE.

Lemma 1 If Y : [0,T ] → L(Rm,Rk) is continuous with a
continuously differentiable part A∗Y B−, and if it satisfies
the terminal value problem (7), (8), then the symmetry
relation

A∗Y B− = B−∗Y ∗A

becomes true.

Remark 1 If Y solves (7), (8) and if, additionally, the
condition A∗Y Q = 0 is given, then it follows that

B∗A∗Y = Y ∗AB (11)

must hold. Conversely, relation (11) implies A∗Y Q = 0.
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Theorem 1 Let Y be a solution of the terminal value
problem (7),(8), and let the condition A∗Y Q = 0 be
fulfilled. Let x∗ ∈ C 1

B be a solution of the IVP

A(Bx)′ = Cx−DR−1(S∗+D∗Y )x, A(0)B(0)x(0) = z0,
(12)

and let
u∗ :=−R−1(S∗+D∗Y )x∗.

Then (u∗,x∗) is an optimal pair, i.e. it holds for each
admissible pair (u,x) that

J(u,x)≥ J(u∗,x∗) =
1
2
〈z0,A(0)∗−B(0)−∗Y (0)∗z0〉.

The linear-quadratic optimal control problem (9), (5),
(6) is closely related to the boundary value problem (BVP)[

A 0
0 −B∗

]([
B 0
0 A∗

][
x
ψ

])′
=

=
[

C−DR−1S∗ −DR−1D∗

W −SR−1S∗ C∗−SR−1D∗

][
x
ψ

]
, (13)

A(0)B(0)x(0) = z0, (14)

B(T )∗A(T )∗ψ(T ) = V x(T ). (15)

If this BVP has a solution pair x∗,ψ∗, then u∗ :=
−R−1(S∗x∗ + D∗ψ∗) is an optimal control. This can
be realized by slightly modifying Lemma 2.2 in [13].
Conversely, if u∗,x∗ is an optimal pair, and if the composed
matrix function [AB−CQ,D] has on [0,T ] full row rank,
then there exists an adjoint function ψ∗ such that x∗,ψ∗
solve the BVP (13)–(15) (see [14]). If A and B are
nonsingular, then the full rank condition is always given.
For singular A and B, if the full rank condition fails to be
valid, then it may happen (see [14]) that there is an optimal
pair u∗,x∗, but an adjoint function to solve the BVP does
not exist. Assuming the rank condition to be satisfied, we
can use the BVP (13)–(15) as a sufficient and necessary
optimality condition.

In case of A = B = I, system (13) is nothing else than
the Hamiltonian ODE associated with the standard linear-
quadratic optimal control problem. For singular A and
B, (13) is a DAE with a properly stated leading term.
We adopt the notion Hamiltonian system for this DAE.
This is justified, since under certain conditions the inherent
dynamic part in (13) actually shows a Hamiltonian flow
(see [4]).

While, e.g., in [1], [12] the Riccati-type DAEs are
constructed to solve the Hamiltonian system, here a direct
optimality proof is applied to Theorem 1 and, at the same
time, our new Riccati DAE system is justified.

Remark 2 In [13] we dealt with linear-quadratic optimal
control problems in a more general Hilbert space setting,
where R is not necessarily invertible and the side conditions
are given as (Bx)′ = Cx + Du , B(0)x(0) = z0. Sufficient
solvability conditions are derived by investigating the
structure as well as the inherent flow of a linear (abstract)
descriptor system associated with a sufficient extremal
condition.

3. SOLVABILITY OF THE RICCATI DAE
SYSTEM

In this section we consider solutions of the problem (7),
(8), which satisfy the condition

P∗Y Q = 0. (16)

Each solution Y that must be continuous with a
continuously differentiable part A∗Y B− can be decomposed
as

Y = P∗Y P+Q∗Y P+Q∗Y Q

= A∗−A∗Y B−B+Q∗Y P+Q∗Y Q.

We are going to show that the components

U :=A∗Y B−∈C 1, V :=Q∗Y P, Z :=Q∗Y Q = Y Q∈C

satisfy a standard Riccati differential equation, a linear
equation, and an algebraic Riccati equation, respectively.

Multiplying (7) by Q from the left and right, then by Q
from the left and P from the right, and also by B−∗ from
the left and B− from the right, we obtain the system

0 =−(Y Q)∗CQ−QC∗Y Q+

+(QS +(Y Q)∗D)R−1(S∗Q+D∗Y Q)−QWQ, (17)

0 =−(Y Q)∗CP−QC∗Y P+

+(QS +(Y Q)∗D)R−1(S∗P+D∗Y P)−QWP, (18)

K∗(A∗Y B−)′K =−(Y B−)∗CB−−B−∗C∗Y B−+

+ (B−∗S +(Y B−)∗D)R−1(S∗B−+D∗Y B−)−B−∗WB−.
(19)

Since multiplication of (7) by P from the left and Q
from the right yields (18) once more, we know (7) to
be equivalent to (17)–(19). Obviously, the component
Z = Q∗Y Q = Y Q satisfies (cf. (17)) the algebraic Riccati
equation

0 =−Z∗Q∗CQ−QC∗Q∗Z+

+(QS +Z∗Q∗D)R−1(S∗Q+D∗Q∗Z)−QWQ (20)

and the trivial conditions P∗Z = 0, ZP = 0.
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Next, from (18) we obtain a linear relation for the
components Z,U , and V , namely,

MQ∗V +MP∗A∗−UB =−Z∗Q∗CP+

+(QS +Z∗Q∗D)R−1S∗P−QWP, (21)

where

M := QC∗− (QS +Z∗Q∗D)R−1D∗, M = QM.

Notice that, if the conditions

imMQ∗ = imQ, kerM∩ imQ∗ = 0 (22)

are fulfilled, we also have kerMQ∗ = kerQ∗; further

(MQ∗)+MQ∗ = Q∗, MQ∗(MQ∗)+ = Q,

and equation (21) determines V uniquely, depending on Z
and U . Let us then write

V = C1 +C2A∗−UB, (23)

with

C1 :=(MQ∗)+{−Z∗Q∗CP+(QS+Z∗Q∗D)R−1S∗P−QWP},

C2 :=−(MQ∗)+MP∗.

Notice that (MQ∗)+ is continuous. It holds that C1 =
Q∗C1 = C1P, C2 = Q∗C2 = C2P∗.

Finally, we turn to (19). Since K is continuously
differentiable and UK = U , K∗U = U hold true, we may
write

K∗(A∗Y B−)′K = K∗U ′K = U ′−K∗′U −UK′.

Recall that U is symmetric due to Lemma 1. Using (23) we
derive Y P = C1 +C3A∗−UB, C3 := C2 +P∗.

Thus we obtain, from (19), the following differential
equation for U :

U ′ =−UC̃−C̃∗U +UD̃R−1D̃∗U −W̃ , (24)

where

C̃∗ :=−K∗′+B−∗C∗C3A∗−−B−∗(S +C∗
1D)R−1D∗C3A∗−,

D̃∗ := D∗C3A∗−,

W̃ := B−∗{PWP+PC∗
1CP+PC∗C1P−

−P(S +C∗
1D)R−1(S∗+D∗C1)P}B− = W̃ ∗.

Lemma 2 Let condition (22) be given, and additionally,

imZ = imQ∗, kerZ = kerQ. (25)

Then, (24) represents a standard Riccati differential
equation with a symmetric, positive semidefinite coefficient
W̃ .

The following assertion reflects what we have derived.

Theorem 2 If Y is a solution of the Riccati-type terminal
value problem (7), (8), (16), and if the conditions (22)
and (25) are fulfilled, then the component Z = Q∗Y Q is
a solution of the algebraic Riccati equation (20), U =
A∗Y B− is a solution of the standard Riccati differential
equation (24), and V = Q∗Y P satisfies (21).

Conversely, considering now the following decoupled
system for the unknown functions Z,U,V to be given (cf.
(20), (16), (24), (8), (21)) as

0 =−Z∗Q∗CQ−QC∗Q∗Z+

+(QS +Z∗Q∗D)R−1(S∗Q+D∗Q∗Z)−QWQ, (26)

P∗Z = 0, (27)

ZP = 0, (28)

U ′ =−U∗C̃−C̃∗U +U∗D̃R−1D̃∗U −W̃ , (29)

U(T ) = B(T )−∗V B(T )−, (30)

MQ∗V =−MP∗A∗−UB−QWP−Z∗Q∗CP+

+(QS +Z∗Q∗D)R−1S∗P, (31)

we may try to compose a solution Y of the original Riccati
system (7), (8), (16) from the solutions Z,U,V . Let us
recall that the coefficients C̃, D̃,W̃ , and M as defined above
depend on Z.

If Z is a solution of the algebraic equation (26), then
Z + P∗Z̃, where Z̃ is an arbitrary k×m matrix function, is
also a solution of (26). By means of (27), the arbitrary
solution part belonging to imP∗ is fixed as zero.

By multiplication of (26) from both sides by Q we
realize that, if Z solves (26), then ZQ does also. By means
of condition (28) we pick up solutions with Z = ZQ. From
(27), (28) we have Z = Q∗ZQ.

Obviously, (26) itself is symmetric, but Z is not so
necessarily. Notice that Z has k rows and m columns. If
m = k and Q∗ = Q (i.e., kerAB = ker(AB)∗), then Z can be
expected to be symmetric.

What we need is a continuous solution Z that satisfies
the conditions (25) and

imMQ∗ = imQ, kerMQ∗ = kerQ∗, (32)

with M = QC∗− (QS +Z∗Q∗D)R−1D∗.
These requirements ensure that the coefficients C̃, D̃,

and W̃ in (29) are well defined and continuous.
Additionally, W̃ is symmetric and positive semidefinite.
It turns out that (29) is a standard Riccati differential
equation, and the solution U of the terminal value problem
(29), (30) is symmetric, U = U∗.
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Lemma 3 We are given a continuous solution Z of (26)–
(28) such that the conditions (25), (32) are fulfilled. Then,
for the unique solution U of the resulting standard Riccati
differential equation (29), which satisfies the terminal
condition (30), the relations

U = U∗, U = UK, U = K∗UK

hold true.

Having the matrix functions U and Z, we compose

V := (MQ∗)+{−MP∗A∗−UB−QWP−Z∗Q∗CP+

+(QS +Z∗Q∗D)R−1S∗P}

to satisfy (31) and, finally,

Y := A∗−UB+Z +V .

Under the assumptions of Lemma 3, both V and Y are
continuous. It holds that

A∗Y B− = K∗UK = U, Q∗Y P = Q∗V P = V ,

Q∗Y Q = Q∗ZQ = Z.

The component A∗Y B− of Y is continuously differentiable
and symmetric. Straightforward calculations in the
direction opposite to that which we realized to provide
system (26)–(31) will show Y to be a solution of our system
(7), (8), (16). By this, the following assertion providing the
solution Y for Theorem 1 is proved.

Theorem 3 Let the algebraic Riccati system (26)–(28) has
a continuous solution Z that satisfies the conditions (25)
and (32). Then, the original Riccati DAE system (7), (8),
(16) has a continuous solution Y whose component A∗Y B−

is continuously differentiable and symmetric. Additionally,
it holds that A∗Y Q = 0.

Remark 3 For special solvability assertions concerning
algebraic Riccati equations as well as standard Riccati
differential equations, we refer to [15].

Remark 4 Some observations concerning the numerical
treatment of the terminal value problem (7), (8), (16) are
given in [6], Remark 3.7.

4. SOLVABILITY OF THE CLOSED LOOP
PROBLEM

To confirm the existence of an optimal control u∗ with
the minimal cost J(u∗,x∗) from Theorem 1, in addition to
the existence of a Riccati DAE solution Y, one necessarily
needs to confirm the existence of a solution of the resulting
IVP (12).

Clearly, if A and B are nonsingular, then the IVP (12) has
always an uniquely determined solution for each arbitrary
z0. In the case of singular A and B the situation is different,
and so for time-invariant descriptor systems (cf. e.g., [1])
one takes care to obtain a closed loop system that has no
so-called impulsive behavior for any z0 ∈ im(A(0)B(0)).
Within the scope of DAE theory, this means that one
should have closed loop systems (12) that are regular with
tractability index one.

The tractability index generalizes the Kronecker index
of matrix pencils to time-varying DAEs. The basic
tools in this concept are special decoupling projectors
computed from the coefficients of the given DAE and
certain characteristic subspaces. The tractability index for
DAEs with a properly stated leading term is defined as in
[7], [8]. A brief description is given in [4], [6].

Theorem 4 Let the conditions of Theorem 3 be given, m =
k, and Y be a solution of the Riccati DAE system (7), (8),
(16). Then the DAE (12) is regular with tractability index
one, and there is exactly one solution x∗ ∈ C 1

B of the IVP
(12).

Theorem 5 Let the conditions of Theorem 3 be given, m >
k, and Y be a solution of the Riccati DAE system (7), (8),
(16). Then there are solutions x∗ ∈ C 1

B of the IVP (12).

5. RICCATI EQUATIONS AND
HAMILTONIAN SYSTEMS

Theorem 6 Given a solution Y of (7), (8) with A∗Y Q = 0, if
the continuous matrix function X : [0,T ]→ L(Rp,Rm), with
a continuously differentiable part BX, satisfies the equation

A(BX)′ = (C−DR−1S∗−DR−1D∗Y )X ,

then the pair X ,Ψ := Y X forms a solution of the
Hamiltonian system

A(BX)′ = (C−DR−1S∗)X −DR−1D∗
Ψ, (33)

−B∗(A∗Ψ)′ = (W −SR−1S∗)X +(C∗−SR−1D∗)Ψ. (34)

Ψ is continuous with A∗Ψ being continuously
differentiable.

The above pair X ,Ψ combines p columns of solutions of
the differential-algebraic Hamiltonian system (13). If one
tries to solve the system (33), (34), one is confronted by
the index of the DAE (13). Equation (13) has a properly
stated leading term since (5) has one. Equation (13) is a
square system having m + k equations and m + k unknown
functions.
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Theorem 7 If A and B remain nonsingular, (13) represents
an implicit regular ODE (regular DAE with tractability
index zero). Otherwise, for the DAE (13) to be regular with
tractability index one, it is necessary and sufficient that the
following two conditions are satisfied:

[AB−CQ, D] has full row rank k,

im[Q(C∗−SR−1D∗)Q∗, Q(W −SR−1S∗)Q] = imQ.

Remark 5 In [1], descriptor systems (1) in an SVD
coordinate system play a special role, and, in particular, the
invertibility of a certain matrix R̄ (cf. [1]) is a basic property
assumed to be given in all four versions of the Riccati
differential equations studied in [1, section IV]. From the
viewpoint of DAE theory, for those very special systems of
the formA 0

0 −B∗

0 0

[
B 0 0
0 A∗ 0

] x
ψ

u

′

=

C 0 D
W C∗ S
S∗ D∗ R

 x
ψ

u

 ,

the invertibility of R̄ exactly means regularity with
tractability index one (cf. [4]).

Theorem 8 Let X(t) ∈ L(Rm,Rm),Ψ(t) ∈ L(Rm,Rk) be
continuous on [0,T], and such that their m columns belong
to C 1

B and C 1
A∗ , respectively, and

A(BX)′ = (C−DR−1S∗)X −DR−1D∗
Ψ,

−B∗(A∗Ψ)′ = (W −SR−1S∗)X +(C∗−SR−1D∗)Ψ

is satisfied. Let X be nonsingular and let X−1B− belong to
C 1. Let Y := ΨX−1 be such that

P∗Y Q = 0, A∗Y B− = B−∗Y ∗A.

Then, Y is continuous with a continuously differentiable
part A∗Y B− and satisfies the Riccati DAE system (7), (16).

If X ,Ψ in Theorem 8 are chosen to meet the terminal
conditions B(T )∗A(T )∗Ψ(T ) = V , A(T )B(T )X(T ) =
A(T )B(T ), then it follows that the terminal condition (8)
is satisfied.

6. CONCLUSION

We have presented optimal feedback controls of
linear-quadratic optimal control problems with constraints
described by general linear DAEs with variable coefficients
by suitably formulating a Riccati DAE system, similarly to
the classical example in which the constraints are described
by explicit ODEs. Compared to earlier papers and some
less suitable Riccati DAEs, we could do without several
restrictive assumptions.
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