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Abstract— The output feedback H∞ control is addressed for a
class of continuous-time Markov jump linear systems with the
Markov process taking values in an infinite countable set S.
We consider that only an output and the jump parameters are
available to the controller. Via a certain bounded real lemma,
together with some extensions of Schur complements and of
the projection lemma, a theorem which characterizes whether
there exists a full-order solution to the disturbance attenuation
problem is devised in terms of two different linear matrix
inequality (LMI) feasibility problems. This result connects a
certain projection approach to an LMI problem which is more
amenable to computer solution, and hence for design. We
conclude the paper with some algorithms for the construction
of such controllers and an illustrative example.

I. INTRODUCTION

It is a well-known fact that in order to treat adequately
problems related to a wide class of dynamical systems, we
do need to characterize adequately the uncertainties in the
mathematical description of these systems, which can be,
for instance, of an environmental and/or modeling nature.
These uncertainties have many sources: noise in commu-
nications systems, atmospheric fluctuation, volatility in the
economic scenario, failures (abrupt change in the system
structure), parametric uncertainty, etc. In this paper we shall
be interested in a class of linear dynamical systems which
are subjected to uncertainty (change) in their structures as
a consequence of abrupt phenomena. The uncertainties are
characterized in the model via a Markov process. These
systems are known in the literature as Markov jump linear
systems (MJLS) and constitute an important class of hybrid
systems (see [1]).

This class of systems (MJLS) has been the subject of in-
tensive research over the last few decades and the associated
literature is now fairly extensive. Among the great variety
of open problems in this field, our interest here lies on the
H∞ control of MJLS by means of output feedback. Different
from [2], [3], we assume that the underlying Markov process
takes values in an infinite countable set. As pointed out in [4],
the infinite setting calls for extended versions of fundamental
tools from LMI theory, such as Schur complements or the
projection lemma (see [5]), as well as the bounded real
lemma devised in [6].

In this paper we address the output feedback H∞ control
for the case in which the state space of the Markov pro-
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cess is infinite countable, in an attempt to summarize the
contributions of [4]. Among the main results, we provide
a characterization of the existence of solutions to the dis-
turbance attenuation problem in terms of two different LMI
feasibility problems. Besides being necessary and sufficient,
such characterization establishes the connection between a
certain projection approach and an LMI problem which is
more suitable for design. As a by-product, two alternative
design algorithms are also provided.

The paper is organized as follows. In section II we provide
the bare essentials of notation and some auxiliary results.
Section III introduces the basic model together with the
bounded real lemma, which will be extremely important
in section IV, where the H∞ problem is dealt with. Some
tools for the design of full-order H∞ compensators are given
in section V, together with a nominal example. The paper
is concluded in section VI with a highlight of the main
contributions.

II. NOTATION AND AUXILIARY RESULTS

Let ‖ · ‖ denote the euclidean norm in the complex n-
space Cn. We define M(Cm,Cn) as the Banach space
of all complex matrices M ∈ Cn×m, equipped with the
standard induced matrix norm, also denoted by ‖ · ‖. Let
us also define the infinite dimensional Banach space Hm,n

sup

of all matrices of the form H = (H1, H2, . . .) where
Hi ∈ M(Cm,Cn) for every i ∈ S := {1, 2, . . .}, such
that ‖H‖sup := supi∈S ‖Hi‖ < ∞. We also write Hn

sup

in place of Hn,n
sup and define Hn∗

sup as the subset of Hn
sup

whose elements H = (H1, H2, . . .) exhibit the additional
property that Hi = H∗i for all i ∈ S (H = H∗ for short),
with ∗ denoting the conjugate transpose (we denote plain
transposition by ′). Next, we define H̃n+

sup as the set composed
by all uniformly positive matrices H � 0, i.e., such that H =
(H1, H2, . . .) ∈ Hn∗

sup and Hi ≥ εIn for all i ∈ S and some
ε > 0 independent of i (here In stands for the n×n identity
matrix). Accordingly, we say that L ∈ H̃n−

sup (or is uniformly
negative, L � 0) whenever −L � 0. For short, we write
that such Hi � 0 and Li � 0 for all i ∈ S. Finally, given
R = (R1, R2, . . .) ∈ Hn∗

sup and S = (S1, S2, . . .) ∈ Hn,m
sup

we shall write that Ri � 0 on N (Si) whenever there exist
ε > 0 such that Ri ≥ εIn on N (Si) for all i ∈ S , where
N (·) stands for the null space associated to a given complex
matrix (accordingly, R(·) is the range of complex matrices).

For H ∈ Hp,m
sup and L ∈ Hn,p

sup we have, in a natural
way, that ‖HL‖sup ≤ ‖H‖sup‖L‖sup and thus HL :=
(H1L1, H2L2, . . .) ∈ Hn,m

sup . Moreover, given F ∈ H`,m
sup we

have that [H F ] := ([H1 F1], [H2 F2], . . .) ∈ H(p+`),m
sup (the
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analogous holding for vertical or diagonal block concatena-
tion). We denote 0`×m by the zero matrix in either C`,m or
Hm,`

sup , the same holding for the identity matrices I` ∈ C`×`,
I` ∈ H̃`+

sup. Whenever the size of any of those matrices have
no importance or may be easily deduced by the context, it
will be omitted. In addition, we define Her(H) := H +H∗,
C(H,L) := L∗HL, and sometimes represent off-diagonal
blocks of a given self-adjoint matrix (that is, a matrix in
a set such as Hn∗

sup) by ∗, while entries with absolutely no
importance are denoted by ?. Furthermore, the Kronecker
product of complex matrices is denoted by ⊗, in the usual
way (see [7]).

Concerning the random objects, fix a complete probability
space (Ω,F ,P) carrying a right-continuous filtration Ft ⊂
F on t ∈ R+ := [0,∞). In addition, let E(·) denote the
usual mathematical expectation and define Ln2 as the space
of all second order random variables (Ω,F) 7→ Cn. We also
define the Lebesgue space Ln2 (R+) of all stochastic processes
y = {(y(t),Ft); t ∈ R+, y(·) ∈ Cn} such that ‖y‖R+ :=
(
∫∞

0
E[‖y(t)‖2]dt)1/2 is finite.

A. Some auxiliary results
The following theorem extends the well-known result on

Schur complements to our setting.
Theorem 1: (uniform Schur complements). Given U =

(U1, U2, . . .) ∈ Hp∗
sup, V = (V1, V2, . . .) ∈ Hq,p

sup and W =
(W1,W2, . . .) ∈ Hq∗

sup, the following are equivalent:
(i)
[
U V
V ∗ W

]
� 0;

(ii) U � 0 and W − V ∗U−1V � 0;
(iii) W � 0 and U − VW−1V ∗ � 0.

Moreover, the same holds replacing � by �.
Proof: See [4, Theorem 2.2].

A consequence of the preceding result is as follows.
Corollary 1: Suppose Ψ = (Ψ1,Ψ2, . . .) ∈ Hp,`

sup is such
that dim(N (Ψi)) ≥ 1 for any i ∈ S. Then the following
are equivalent, for any U = (U1, U2, . . .) ∈ Hp∗

sup, V =
(V1, V2, . . .) ∈ Hq,p

sup and W = (W1,W2, . . .) ∈ Hq∗
sup:

(i)
[
U V
V ∗ W

]
� 0 on N ([Ψ 0]);

(ii) U − VW−1V ∗ � 0 on N (Ψ) and W � 0.
Proof: See [4, Corollary 2.4].

The following lemma is an extension from the one de-
picted in [8] and is of major importance in what follows.

Lemma 1: (uniform projection lemma). Suppose N =
(N1, N2, . . .) ∈ Hp,q

sup, M = (M1,M2, . . .) ∈ Hp,r
sup, and

H = (H1, H2, . . .) ∈ Hp∗
sup. Then the LMI

H +N∗X∗M +M∗XN � 0 (1)

has a solution X ∈ Hq,r
sup if and only if H is uniformly

positive on N (N) ∪N (M).
Proof: See [4, Lemma 2.5].

III. MODEL SETTING AND PRELIMINARIES

Consider in (Ω,F ,P) a homogeneous Markov process θ =
{(θt,Ft), t ∈ R+}, with right-continuous sample paths and
countably infinite state space S = {1, 2, . . .}, such that

P(θt+dt = j|θt = i) =

{
λijdt+ o(dt), i 6= j,

1 + λiidt+ o(dt), i = j,
(2)

where 0 ≤ λij for i 6= j, and 0 ≤ λi := −λii =∑
j∈S\{i} λij ≤ % for some % < ∞ and all i ∈ S . We

assume that θ0 : (Ω,F) → S is a random variable with
distribution ν0, and that θt is available for every t ∈ R+

(this last assumption reflects the fact that the control laws
we shall seek are θt-dependent).

In order to introduce the bounded real lemma (JBRL), it
suffices to consider now a simple version of the MJLS which
will be stated in the next section (see (7)).

Σ :
{ ˙̂x(t) = Âθt

x̂(t) + B̂θt
v(t), x̂(0) = x̂0

z(t) = Ĉθt
x̂(t) + D̂θt

v(t), t ∈ R+,
(3)

for x̂0 ∈ Ln̂2 , where Â = (Â1, Â2, . . .) ∈ Hn̂
sup in the same

way as B̂ ∈ Hnv,n̂
sup , Ĉ ∈ Hn̂,nz

sup and D̂ ∈ Hnv,nz
sup . In the

sequel we shall point out some fundamental facts regarding
this model, including a modified version of the JBRL [6].

Denoting by x̂(·, x̂0, θ0, v) the state response of system
Σ when subjected to arbitrary initial conditions (x̂0, θ0) and
input v ∈ Lnv

2 (R+), we begin with the following definition.
Definition 1: For an initial condition x̂(0) = 0 and

arbitrary θ0 we define the zero-state response of (3) as
x̂zs(·) = x̂(·, 0, θ0, v). On the other hand, for arbitrary initial
conditions but an identically zero input, we have the zero-
input response, x̂zi(·) = x̂(·, x̂0, θ0, 0).

Preserving the terminology, often used in the literature for
MJLS, in this paper we deal exclusively with stability in the
following internal sense.

Definition 2: System (3) is said to be stochastically stable
(SS) if, for any initial condition x̂0 ∈ Ln̂2 and initial
distribution ν0, we have that ‖x̂zi‖R+ <∞.

Concerning SS for this class of systems, an extensive
series of results may be found in [9]. In particular, it has
been proved that SS of (3) implies z ∈ Lnz

2 (R+) for any
v ∈ Lnv

2 (R+). That is, SS leads to some kind of external L2

input-output stability for this system (see also [6, Remark
2]).

If Σ is SS we may define, in the spirit of the H∞
theory, the following perturbation operator L : Lnv

2 (R+)→
Lnz

2 (R+):

Lv(t) = Ĉθt
x̂zs(t) + D̂θt

v(t), (4)

which describes how input disturbances affect the output of
system Σ, in such a way that z(·) = Lv(·) whenever x̂0 = 0.
The worst-case effect of such disturbances is measured by
the induced norm of L from Lnv

2 (R+) into Lnz
2 (R+):

‖L‖ = sup
v∈Lnv

2 (R+), ‖v‖R+ 6=0

‖Lv‖R+

‖v‖R+

. (5)

We conclude this section by presenting one important
tool which we shall be employing in the remainder of this
paper. The so-called JBRL is the starting point towards a
characterization of H∞ controllers for the class of MJLS
under consideration, when it comes to an LMI approach.

Lemma 2: (JBRL). System (3) is SS with ‖L‖ < γ if and
only if there is P = (P1, P2, . . .) ∈ H̃n̂−

sup such that, for all
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i ∈ S,Â∗iPi + PiÂi +
∑
j∈S λijPj PiB̂i Ĉ∗i

B̂∗i Pi γ2Inv
D̂∗i

Ĉi D̂i Inz

� 0. (6)

Proof: The proof follows directly from [6], in view of
Theorem 1.

IV. DISTURBANCE ATTENUATION

In this section we shall establish the disturbance attenua-
tion (DA) problem in the jump setting and apply the JBRL
in order to characterize the existence of solutions in terms
of LMIs.

A. Problem setting

Bearing in mind the definition of {θt}, consider the
following MJLS,

Σu :

 ẋ(t) = Aθt
x(t) +Bθt

v(t) +Gθt
u(t)

z(t) = Cθt
x(t) +Dθt

v(t) +Hθt
u(t)

y(t) = Γθt
x(t) + Lθt

v(t),
(7)

for t ∈ R+ and x(0) = x0 ∈ Ln2 , where A = (A1, A2, . . .) ∈
Hn

sup in the same way as B ∈ Hnv,n
sup , G ∈ Hnu,n

sup , C ∈
Hn,nz

sup , D ∈ Hnv,nz
sup , H ∈ Hnu,nz

sup , Γ ∈ Hn,ny
sup and L ∈

Hnv,ny
sup .
We refer to x(t) as the state variable for a given t ∈ R+

and to (x(t), θt) as an augmented state variable. Just as be-
fore, we assume v ∈ Lnv

2 (R+) is any finite energy stochastic
disturbance acting on the system; the specific structure of the
nu-dimensional control input u will be defined soon.

We call z and y the error and measurement outputs,
respectively. The former represents some adversely disturbed
output, which should be relatively insensitive to input dis-
turbances. In addition, the processes x and z may only be
observed through the measurement y (which without any
loss of generality is not directly fed by u), what makes
this model rather general for both practical and theoretical
reasons. Sometimes we refer to the system (7) simply as Σu.

To meet the ends of the H∞ control problem, it is natural
to ask the following question about Σu: How does one
characterize a class of (suboptimal) controllers K which
guarantee not only stability, but also that the worse-case
effect caused by the disturbance (v) on the error output (z)
is smaller than some prescribed attenuation level? (In what
follows it will be meaningful to measure such effect through
(5).)

In our approach, we consider the class of dynamic com-
pensators that map the augmented measurement process
(y, θ) into control policies u according to the following (k-
dimensional) model:

K :

[
ẋK(t)

u(t)

]
=

[
K11
θt
K12
θt

K21
θt
K22
θt

][
xK(t)

y(t)

]
, xK(0) = 0. (8)

The above compensator is completely defined through the
matrix K = (K1,K2, . . .) ∈ H(k+ny),(k+nu)

sup , where Ki =
[K••i ], i ∈ S . For this reason, the same symbol is used to

denote both the system and the matrix in question without
confusion.

It is possible to incorporate both systems, Σu and K, into
a closed-loop system ΣK, with the augmented state variable
(x̂(t), θt) = (x(t), xK(t), θt) for any t ∈ R+. Defining n̂ =
n + k and x̂0 = (x0, 0) we have that the state and output
equations for this n̂-dimensional system may be written as
an instance of (3):

ΣK :
{ ˙̂x(t) = Âθt

x̂(t) + B̂θt
v(t), x̂(0) = x̂0

z(t) = Ĉθt
x̂(t) + D̂θt

v(t), t ∈ R+
(9)

where Â = (Â1, Â2, . . .) ∈ Hn̂
sup, B̂ = (B̂1, B̂2, . . .) ∈

Hnv,n̂
sup , Ĉ = (Ĉ1, Ĉ2, . . .) ∈ Hn̂,nz

sup , D̂ = (D̂1, D̂2, . . .) ∈
Hnv,nz

sup and, for i ∈ S,

Âi = A0
i + ĜiKiΓ̂i, B̂i = B0

i + ĜiKiL̂i,
Ĉi = C0

i + ĤiKiΓ̂i, D̂i = D0
i + ĤiKiL̂i,

with

 A0
i B0

i Ĝi
C0
i D0

i Ĥi

Γ̂i L̂i ?

 =


Ai 0 Bi 0 Gi
0 0k 0k×nv

Ik 0
Ci 0nz×k Di 0 Hi

0 Ik 0 ? ?
Γi 0 Li ? ?

 ,
where ? denotes an entry which has no importance in the rest
of the paper. For the sake of simplicity we also introduce the
following definition.

Definition 3: A compensator K ∈ H(k+ny),(k+nu)
sup such as

(8) is said to be H∞ of level γ whenever the closed loop
system ΣK is SS and ‖L‖ < γ, in accordance to (4)–(5).

B. Characterization results (general case)

In this subsection we shall derive conditions which relate
the existence of H∞ controllers of a given level γ to the
solvability of linear matrix inequalities. The main results here
will be further explored in the next section, where the full-
order case is dealt with.

The first result we prove shows that a given compensator
K guarantees SS of system ΣK with a desired DA level γ if
and only if a specific LMI feasibility problem in the variable
P possesses an adequate solution. It should be noted that any
H∞ controller must satisfy this condition in order to solve
the DA problem at hand.

Proposition 1: Given a compensator K and a desired
disturbance attenuation level γ > 0 to be achieved, the
following are equivalent:

(i) System ΣK is SS with ‖L‖ < γ;
(ii) There exists P = (P1, P2, . . .) ∈ H̃n̂−

sup such that

M0 + (HP)∗KJ + J ∗K∗(HP)� 0, (10)

where M0 = (M0
1,M0

2, . . .) ∈ H(n̂+nv+nz)∗
sup , with

M0
i =

PiA0
i + (A0

i )
∗Pi +

∑
j∈S λijPj PiB

0
i (C0

i )∗

(B0
i )∗Pi γ2Inv

D∗i
C0
i Di Inz


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and P ∈ H(n̂+nv+nz)∗
sup , H ∈ H(n̂+nv+nz),(k+nu)

sup and J ∈
H(n̂+nv+nz),(k+ny)

sup given by

P =

P 0 0
0 Inv 0
0 0 Inz

 , H =
[
Ĝ∗ 0(k+nu)×nv

Ĥ∗
]
,

J =
[
Γ̂ L̂ 0(k+ny)×nz

]
.

Proof: See [4, Proposition 4.2].
The following proposition states that the existence of any

compensator at all which is H∞ of level γ depends on the
feasibility of two specific sets of matrix inequalities.

Proposition 2: There exists a compensator K which is
H∞ of level γ if and only if the following conditions are
satisfied, for some P = (P1, P2, . . .) ∈ H̃n̂−

sup:
(i) M0 � 0 on N (J );

(ii) P−1M0P−1 � 0 on N (H).
Proof: See [4, Proposition 4.3].

It should be noted that, even though the first condition
of the last proposition corresponds to an LMI feasibility
problem, the same doesn’t hold for the second one. Besides,
it will be shown that the restrictions on N (J ) and N (H) can
be expressed under simpler forms. With the aid of Corollary
1 we shall restate the last result in a more suitable way, in
the sequel.

Proposition 3: For X,Y ∈ Hn∗
sup, P2 = (P21,P22,. . .),

S2 = (S21,S22,. . .) ∈ Hk,n
sup, P3 = (P31, P32, . . .) ∈ Hk

sup

and S3 = (S31, S32, . . .) ∈ Hk
sup, let

Pi :=
[
Xi P2i

P ∗2i P3i

]
, Si := P−1

i =
[
Yi S2i

S∗2i S3i

]
.

Then:
(i) M0 � 0 on N (J ) if and only if Ti(X) XiBi C∗i

B∗iXi γ2Inv
D∗i

Ci Di Inz

� 0

on N
[

Γi Li 0ny×nz

]
, (11)

(ii) P−1M0P−1 � 0 on N (H) if and only if Qi(S) YiC
∗
i Bi

CiYi Inz Di

B∗i D∗i γ2Inv

� 0

on N
[
G∗i H∗i 0nu×nv

]
, (12)

where Ti(X) = A∗iXi+XiAi+
∑
j∈S λijXj , and Qi(S) =

YiA
∗
i +AiYi +λiiYi +

∑
j 6=i λijRij , with Rij := YiXjYi +

YiP2jS
∗
2i + S2iP

∗
2jYi + S2iP3jS

∗
2i.

Proof: See [4, Proposition 4.4].
Remark 1: In the single-mode case (when S = {1}) the

above result reconciles with the LMI characterization results
stated, for instance, in [10], [8], [11].

Although the last result applies to the general-order case
(when k is arbitrary), it has two major drawbacks:

(i) Relation (12) depends on every entry of S (and P ,
consequently) through the term SiS

−1
j Si;

(ii) The equality S = P−1 leads to the coupling condition
X = (Y − S2S

−1
3 S∗2 )−1, which is highly non-linear.

In an effort to overcome such drawbacks, we consider in
the next subsection the full-order case. The main idea is
that, by restricting ourselves to a specific class of Lyapunov
functions, a fairly complete LMI characterization may be
derived along the lines of Proposition 3.

C. Characterization results (full-order case)

This subsection deals with the so-called full-order case,
in which k = n (that is, we consider controllers of the
same order as the to-be-controlled system). The main result
(Theorem 3) states an equivalent condition to the existence
of H∞ controllers of such type in terms of two distinct LMI
problems (see also Algorithm 1).

The basic idea here is to restrict ourselves to the class of
quadratic Lyapunov functions parametrized by

Pi =
[

Xi Y −1
i −Xi

Y −1
i −Xi Xi − Y −1

i

]
, i ∈ S. (13)

Notice that, in this case, Si := P−1
i =

[
Yi Yi

Yi ?

]
for every

such i, and hence SiS−1
j Si =

[
YiY

−1
j Yi ?
? ?

]
.

In what follows we shall investigate what conditions
must X,Y ∈ Hn∗

sup satisfy so that a quadratic Lyapunov
function may be defined with the aid of (13). First, we
derive a sufficient condition in terms of LMIs. This result,
in conjunction with an auxiliary lemma, will be germane
to the proof of Theorem 3, which shows that the sufficient
condition is also necessary.

Theorem 2: There exists a full-order H∞ compensator K
of level γ whenever there exist X,Y ∈ Hn∗

sup such that the
following set of LMIs is satisfied for every i ∈ S:A∗iXi +XiAi +

∑
j∈S λijXj XiBi C∗i

B∗iXi γ2Inv D∗i
Ci Di Inz

� 0

on N
[
Γi Li 0ny×nz

]
, (14a)

YiA
∗
i +AiYi + λiiYi YiC

∗
i Bi λ′i ⊗ Yi

CiYi Inz
Di 0

B∗i D∗i γ2Inv 0
λi ⊗ Yi 0 0 Di(Y )

� 0

on N
[
G∗i H∗i 0nu×nv

0nu×∞
]
, (14b)

and [
Yi I
I Xi

]
� 0, (14c)

in which 0•×∞ is a zero matrix with an infinite number of
columns and, for any such i,

λi := col
(
λ

1/2
i1 , . . . , λ

1/2
i(i−1), λ

1/2
i(i+1), . . .

)
Di(Y ) := −diag(Y1, . . . , Yi−1, Yi+1, . . .).

(15)

Proof: See [4, Theorem 4.6].
Before presenting our main result, we state the following

lemma. It is proven that the feasibility of a specific LMI
problem is necessary for the existence of full-order con-
trollers, in the spirit of [12, Theorem 4].

Lemma 3: Suppose there exists a full-order H∞ compen-
sator K of level γ. Then there exist X = (X1, X2, . . .),
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Y = (Y1, Y2, . . .) ∈ H̃n−
sup, J = (J1, J2, . . .) ∈ Hny,n

sup ,
F = (F1, F2, . . .) ∈ Hn,nu

sup and U = (U1, U2, . . .) ∈ Hny,nu
sup

such that the following LMIs are satisfied for every i ∈ S:Ti(X) + Her(JiΓi) ∗ ∗
(XiBi + JiLi)∗ γ2Inv

∗
Ci +HiUiΓi Di +HiUiLi Inz

� 0, (16a)


Qi(Y, F ) ∗ ∗ ∗

(Bi +GiUiLi)∗ γ2Inv
∗ ∗

CiYi +HiFi Di +HiUiLi Inz ∗
λi ⊗ Yi 0 0 Di(Y )

� 0,

(16b)[
Yi I
I Xi

]
� 0, (16c)

where Ti(X) := A∗iXi + XiAi +
∑
j∈S λijXj , and

Qi(Y, F ) := Her(AiYi +GiFi) + λiiYi.
Proof: See [4, Lemma 4.7].

The main result of this section unifies the results obtained
so far by giving equivalent conditions to the existence of
full-order H∞ compensators.

Theorem 3: (full-order characterization). The following
statements are equivalent:

(i) There exists a full-order H∞ compensator K of level
γ;

(ii) There exist suitable X,Y such that (14) is satisfied for
every i ∈ S;

(iii) There exist suitable X,Y, J, F and U such that (16) is
satisfied for every i ∈ S.

Moreover, given any X,Y satisfying (ii) there always exist
suitable J, F and U such that (iii) is satisfied.

Proof: See [4, Theorem 4.8].
Bearing in mind the above characterization result we

present the following algorithm, as a solution to the existence
problem. It is noteworthy that both of the design procedures
we shall present in the next subsection (Algorithms 2 and 3)
depend, to some extent, on it.

Algorithm 1: (existence of compensators). The existence
of some H∞ compensator of given level γ > 0 is guaranteed
by solving any one of the following convex feasibility
problems:

e1: Find X = (X1, X2, . . .), Y = (Y1, Y2, . . .) ∈ Hn∗
sup,

J = (J1, J2, . . .) ∈ Hny,n
sup , F = (F1, F2, . . .) ∈ Hn,nu

sup

and U = (U1, U2, . . .) ∈ Hny,nu
sup such that (16) is

satisfied for every i ∈ S.
e2: Find X = (X1, X2, . . .), Y = (Y1, Y2, . . .) ∈ Hn∗

sup

such that (14) is satisfied for every i ∈ S;

On the other hand, whenever it may be proved that
either of these problems doesn’t have a solution then such
compensator does not exist at all.

Finally, we would like to point out that the above algorithm
is of immediate practical interest when it comes to the finite
case, in the sense that it can be efficiently implemented
by widely available convex programming software (see, for
instance, [5] and references therein).

V. DESIGN

In this section we present some tools for the design of full-
order H∞ compensators. The main theoretical result, whose
statement has been inspired in [2, Theorem 4.2] (see also
[10]), provides the aforementioned formulas for construction
of full-order H∞ compensators, as follows.

Theorem 4: Suppose suitable X , Y , J , F and U satisfying
the conditions of Theorem 3 may be found. Then the
following full-order compensator guarantees that SS of the
closed-loop system ΣK is achieved along with a DA level γ:

K12 =
(
Y −1 −X

)−1
(J −XGU) , (17)

K21 = (F − UΓY )Y −1, (18)
K22 = U, (19)

and, for every i ∈ S,

K11
i =−

(
Y −1
i −Xi

)−1
{
Xi(AiYi +GiFi)

+ (Ji −XiGiUi)ΓiYi + Ã∗i +
∑
j∈S

λijY
−1
j Yi

− C̃∗i (CiYi +HiFi)−
[
XiBi + JiLi − C̃∗i D̃i

]
×Υ−1

i

[
B̃i − (CiYi +HiFi)∗D̃i

]∗}
Y −1
i ,

(20)

where Υi := γ2I − D̃∗i D̃i, and
[
Ãi B̃i

C̃i D̃i

]
=
[
Ai Bi

Ci Di

]
+[

Gi

Hi

]
Ui [ Γi Li ].

Proof: See [4, Theorem 5.1].
Remark 2: Suppose D and K22 = U are identically zero.

Then, it is not difficult to see that (17), (18) and (20) reduce
to the result from Theorem 4.2 in [2], in case all data are
real and the set S is finite.

A. Some algorithms

In the sequel we shall present some design procedures,
in order to put our results in a more practical basis. It
should be noted that this whole design framework provides
a collection of tools which may be readily implemented on
convex programming software, at least in the finite case.

The next algorithm provides one possible way of com-
puting a full-order controller such as the one presented in
Theorem 4.

Algorithm 2: (two-step design procedure). An H∞ com-
pensator of given level γ > 0 may be constructed according
to Theorem 4 by the following steps:
d1: Solve the existence problem by means of e1;

↪→ If such a solution can’t be found, then stop.
d2: Bearing X,Y, J, F and U from the previous step build

a compensator by means of relations (17)–(20).
Looking back at Theorem 3 it is possible to propose the

following alternative to Algorithm 2. The main advantage
here is that the existence of solutions depends on the feasi-
bility of a problem of relatively smaller dimension.

Algorithm 3: (three-step design procedure). An H∞ com-
pensator of given level γ > 0 may be constructed according
to Theorem 4 by the following steps:
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D1: Solve the existence problem by means of e2;
↪→ If such a solution can’t be found, then stop.

D2: Bearing such X and Y from the above step, find
J = (J1, J2, . . .) ∈ Hny,n

sup , F = (F1, F2, . . .) ∈ Hn,nu
sup

and U = (U1, U2, . . .) ∈ Hny,nu
sup such that (16a) and

(16b) are satisfied (from Theorem 3 we have that there
always exist a solution to this problem);

D3: With X,Y, J, F and U obtained from the previous
steps, build a compensator by means of relations (17)–
(20).

An explicit implementation of the above design procedures
is presented in the sequel. It is noteworthy that the example
under consideration does not satisfy the simplifying assump-
tions of [2] and, by consequence, cannot be tackled by the
results therein.

B. A nominal example

Let S = {1, 2}, and consider system (7) in the form[
A1 B1 G1 A2 B2 G2
C1 D1 H1 C2 D2 H2
Γ1 L1 ? Γ2 L2 ?

]
=
[

1 1 1 1 −1 −1
1 0 0 1 1 1
1 −1 ? 1 1 ?

]
with Markov switching governed by

[
λ11 λ12
λ21 λ22

]
=
[−1 +1

+1 −1

]
Notice that the results of [2], [3] do not immediately apply

here, since D2 6= 0. In the sequel we shall design a controller
which ensures stochastic stability of the closed-loop system
together with a prescribed disturbance attenuation level γ.

Let γ = 5. By employing Algorithm 1 we obtain that a
feasible solution to (14)–(16) is given by

i Xi Yi Ji Fi Ui
1 -4.1633 -0.5227 19.9958 1.5509 -0.0727
2 -5.0761 -0.2459 19.4919 -0.7369 -1.0000

either by performing d1 (in Algorithm 2) or D1–D2 (Algo-
rithm 3). A suboptimal controller is then given by

K1 =
[
K11

1 K12
1

K21
1 K22

1

]
=
[
−9.3202 8.7519
−2.8944 −0.0727

]
K2 =

[
K11

2 K12
2

K21
2 K22

2

]
=
[
−28.4562 24.3391

3.9967 −1.0000

]
Finally, by performing the H∞ optimization procedure of

[4, Algorithm 5.5] with initial condition γmax = 5 we obtain,
after 22 iterations and with precision ε = 10−6, the optimal
H∞ performance γ∗ ≈ 3.42735.

One final remark goes as follows. For the example under
consideration, the obtained results for the optimal case (γ
close to γ∗) are such that XY ≈ 1, what gives rise to
unbounded controller entries in (17) and (20). Although
being a drawback of the presented method, we remark that
the same kind of problem arises in the LTI case (see [8,
Section 9.4], for example).

VI. CONCLUSIONS

In this paper, the output feedback H∞ control has been
addressed for a class of continuous-time Markov jump linear
systems with the Markov process taking values in an infinite
countable set S. We have obtained the following results:

• A theorem which characterizes whether there exists a
full-order solution to the disturbance attenuation prob-
lem in terms of two distinct sets of LMIs (Theorem 3).
This result connects a certain projection approach to an
LMI problem which is more suitable for design.

• Extensions of Schur complements and of the projection
lemma to a wider context. We remark here that one is
faced with the same uniformity problems if dealing with,
say, time-variant systems, (as, e.g., in [12]) considering
the case where the system parameters are time functions
with uniform bounds.

• An LMI algorithm (Algorithm 1), which allows one to
check whether there is a solution for the DA problem.

• A two-step design method (Algorithm 2) which pro-
vides explicit formulas for the construction of a con-
troller.

• An alternative three-step design method, Algorithm 3.
The main issue here is that one can first check if
a smaller (projected) LMI problem is feasible, which
amounts to verifying whether the DA problem has a
solution or not. This partial solution is then fed into the
two-step procedure.

• A nominal example, for the finite case, which illustrates
how the obtained results may be employed in a situation
where the hypotheses of [2], [3] are not satisfied.
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