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Abstract— We study the identifiability (i.e. the unique identifi-
cation) problems for 1-D heat conduction in a nonhomogeneous
rod. The piecewise constant conductivity of the rod can be
uniquely identified from finitely many observations of the pro-
cess at equidistant points. Such an identification is accomplished
by the novel Marching Algorithm. In addition, the continuity of
the solution and identification maps is established. An algorithm
for the conductivity recovery from noisy data is proposed.

I. INTRODUCTION

Consider the heat conduction in a nonhomogeneous in-
sulated rod of a unit length, with the ends kept at zero
temperature at all times. Our main interest is in the identifi-
cation and identifiability of the discontinuous conductivity
(thermal diffusivity) coefficient a(x), 0 ≤ x ≤ 1. The
identification problem consists of finding a conductivity
a(x) in an admissible set K for which the temperature
u(x, t) fits given observations in a prescribed sense. Under
a wide range of conditions one can establish the continuity
of the objective function J(a) representing the best fit to
the observations. Then the existence of the best fit to data
conductivity follows if the admissible set K is compact in
the appropriate topology. However, such an approach usually
does not guarantee the uniqueness of the found conductivity
a(x). Establishing such a uniqueness is referred to as the
identifiability problem.

From physical considerations the conductivity coefficients
a(x) are assumed to be in

Aad = {a ∈ L∞(0, 1) : 0 < ν ≤ a(x) ≤ µ}. (1)

The temperature u(a) = u(x, t; a) inside the rod satisfies

ut − (a(x)ux)x = 0, Q = (0, 1)× (0, T ),
u(0, t) = u(1, t) = 0, t ∈ (0, T ),
u(x, 0) = g(x), x ∈ (0, 1),

(2)

where g ∈ H = L2(0, 1). Suppose that one is given an
observation z(t) = u(p, t; a) of the heat conduction process
(2) for t1 < t < t2 at some observation point 0 < p < 1.
From the series solution for (2) and the uniqueness of
the Dirichlet series expansion (see Section 2), one can, in
principle, recover all the eigenvalues of the associated Sturm-
Lioville problem. If one also knows the eigenvalues for the
heat conduction process with the same coefficient a and dif-
ferent boundary conditions, then classical results of Gelfand
and Levitan [3] show that smooth coefficients a(x) can be
uniquely identified from the knowledge of the two spectral
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sequences. Also, if the entire spectral function is known
(i.e. the eigenvalues and the values of the derivatives of the
normalized eigenfunctions at x = 0), then the conductivity is
identifiable as well. However, such results have little practical
value, since the observation data z(t) always contain some
noise, and therefore one cannot hope to adequately identify
more than just a few first eigenvalues of the problem.

A different approach is taken in [8,13,14,15]. These works
show that one can identify a constant conductivity a in
(2) from the measurement z(t) taken at one point p ∈
(0, 1). These works also discuss problems more general than
(2), including problems with a broad range of boundary
conditions, non-zero forcing functions, as well as elliptic
and hyperbolic problems. In [9, 2] and references therein
identifiability results are obtained for elliptic and parabolic
equations with discontinuous parameters in a multidimen-
sional setting. A typical assumption there is that one knows
the normal derivative of the solution at the boundary of the
region for every Dirichlet boundary input.

Suppose that the conductivity a is known to be piecewise
continuous with sufficiently separated points of discontinuity.
More precisely, let a ∈ PC(σ) defined in Section 2. Let
u(x, t; a) be the solution of (2). The eigenfunctions and the
eigenvalues for (2) are defined from the associated Sturm-
Liouville problem (5).

In our approach the identifiability is achieved in two steps:
First, given finitely many equidistant observation points

{pm}M−1
m=1 on interval (0, 1) (as specified in Theorem 7),

we extract the first eigenvalue λ1(a) and a constant nonzero
multiple of the first eigenfunction Gm(a) = C(a)ψ1(pm; a)
from the observations zm(t; a) = u(pm, t; a). This defines
the M -tuple

G(a) = (λ1(a), G1(a), · · · , GM−1(a)) ∈ RM . (3)

Second, the Marching Algorithm (see Theorem 7) identi-
fies the conductivity a from G(a).

We start by recalling some basic properties of (2) in
Section 2. The main result of this paper is Theorem 7.
It is discussed in Section 3. The continuity properties of
the solution map a → G(a) and the identification map
G−1(a) are established in Section 4. An algorithm for the
identification of a from noisy data is presented in Section 5.

This exposition outlines main results obtained in [6], [7].
Paper [7] also contains an extension of the identifiability
results to systems with nonzero boundary and external inputs.

II. AUXILIARY RESULTS

In this section we collect some results for the solutions
u(x, t; a) of (2), as well as for its associated Sturm-Liouville
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problem. See [1,6,10,11,12] for a detailed discussion.
Definition 1: (1). Function a(x) is said to belong to the

class PCN if a ∈ Aad = {a ∈ L∞(0, 1) : 0 < ν ≤ a(x) ≤
µ} for some positive constants ν and µ, and it has the form
a(x) = ai for x ∈ [xi−1, xi), i = 1, 2, · · · , N .

(2). Let PC = ∪∞N=1PCN .
(3). Let σ > 0. Define

PC(σ) = {a ∈ PC : xn − xn−1 ≥ σ, n = 1, · · · , N}.
Note that a ∈ PC(σ) attains at most N = [[1/σ]] distinct

values ai, 0 < ν ≤ ai ≤ µ.
Let a ∈ PCN . Then the governing system (2) is

ut − aiuxx = 0, x ∈ (xi−1, xi), t ∈ (0, T ),
u(0, t) = u(1, t) = 0, t ∈ (0, T ),
u(xi+, t) = u(xi−, t),
ai+1ux(xi+, t) = aiux(xi−, t),
u(x, 0) = g(x), x ∈ (0, 1),

(4)

where g ∈ L2(0, 1) and i = 1, 2, · · · , N−1. Denote by ‖ ·‖,
< ·, · > the norm and the inner product in H = L2(0, 1).

Theorem 2: Let a ∈ PC. Then
(i) The associated Sturm-Liouville problem

(a(x)v(x)′)′ = −λv(x), x 6= xi,
v(0) = v(1) = 0,
v(xi+) = v(xi−),
a(xi+)vx(xi+) = a(xi−)vx(xi−)

(5)

has infinitely many eigenvalues

0 < λ1 < λ2 < · · · → ∞.

The normalized eigenfunctions {vk}∞k=1 form an orthonor-
mal basis in L2[0, 1]. Eigenfunctions {vk/

√
λk}∞k=1 form an

orthonormal basis in Va, where Va is H1
0 [0, 1] with the norm

‖v‖2a =
∫ 1

0
a(x)|v′(x)|dx.

(ii) Each eigenvalue is simple. For each eigenvalue
λk there exists a unique continuous, piecewise smooth nor-
malized eigenfunction vk(x) such that v′k(0+) > 0, and the
function a(x)v′k(x) is continuous on [0, 1].

(iii) Eigenvalues {λk}∞k=1 satisfy the inequality

νπ2k2 ≤ λk ≤ µπ2k2.

(iv) First eigenfunction v1 satisfies v1(x) > 0 for
any x ∈ (0, 1).

(v) First eigenfunction v1 has a unique point of
maximum q ∈ (0, 1) : v1(x) < v1(q) for any x 6= q.

(vi) For any fixed t > 0 the solution u of (2) is
given by

u(x, t; a) =
∞∑
k=1

< g, vk > e−λktvk(x),

and the series converges uniformly and absolutely on [0, 1].
(vii) For any p ∈ (0, 1) function

z(t) = u(p, t; a), t > 0

is real analytic on (0,∞).

Series of the form
∑∞
k=1 Ck

e−λkt are known as the
Dirichlet series. The following lemma shows that the Dirich-
let series representation of a function is unique.

Lemma 3: Let µk > 0, k = 1, 2, · · · be a strictly
increasing sequence. Suppose that T1 ≥ 0 and

∑∞
k=1 |Ck

| <
∞. If

∞∑
k=1

C
k
e−µkt = 0 for all t ∈ (T1, T2)

then C
k

= 0 for k = 1, 2, · · · .
The result follows at once from the observation that the

series
∑∞
k=1 Ck

e−µkz converges uniformly in Re z > 0
region of the complex plane, implying that it is an analytic
function there. See Chapter 9 of [17] for additional results
on Dirichlet series.

Remark. According to Theorem 2(vi) for each fixed p ∈
(0, 1) the solution z(t) = u(p, t; a) of (2) is given by a
Dirichlet series. However, Lemma 3 is not directly applicable
since the coefficients Ck =< g, vk > vk(p) are only square
summable. Nevertheless, the conclusion of Lemma 3 remains
valid since the exponents µk in the Dirichlet series are the
eigenvalues λk which satisfy the growth condition stated in
(iii) of Theorem 2. This allows one to conclude (Theorem
2(vii)) that the solution z(t) is a real analytic function on
(0,∞) and the uniqueness of such representation follows.
Thus it would be a mistake to simply refer to the standard
results such as Lemma 3 for the uniqueness of the Dirichlet
series representation to justify the paper’s conclusions.

III. IDENTIFIABILITY OF PIECEWISE CONSTANT
CONDUCTIVITIES FROM FINITELY MANY OBSERVATIONS

The central part of the identification method is the March-
ing Algorithm contained in Theorem 7. Recall that it uses
only the M -tuple G(a), see (3). That is we need only the
first eigenvalue λ1 and a nonzero multiple of the first eigen-
function v1 of (5) for the identification of the conductivity
a(x).

Suppose that p∗ ∈ (xi−1, xi). Then v1 can be expressed
on (xi−1, xi) as

v1(x) = A cos

(√
λ1

ai
(x− p∗) + γ

)
, −π

2
< γ <

π

2

with A > 0. The range for γ in the above representation
follows from the fact that v1(p∗) = A cos γ > 0 by Theorem
2(iv).

The identifiability of piecewise constant conductivities is
based on the following three Lemmas, see [6].

Lemma 4: Suppose that δ > 0. Assume Q1, Q3 ≥
0, Q2 > 0 and 0 < Q1 +Q3 < 2Q2. Let

Γ =
{

(A,ω, γ) : A > 0, 0 < ω <
π

2δ
, −π

2
< γ <

π

2

}
.

Then the system of equations

A cos(ωδ−γ) = Q1, A cos γ = Q2, A cos(ωδ+γ) = Q3

has a unique solution (A,ω, γ) ∈ Γ given by

ω =
1
δ

arccos
Q1 +Q3

2Q2
, γ = arctan

(
Q1 −Q3

2Q2 sinωδ

)
,

47th IEEE CDC, Cancun, Mexico, Dec. 9-11, 2008 WeB07.3

2729



A =
Q2

cos γ
.

Lemma 5: Suppose that δ > 0, 0 < p ≤ x1 < p + δ <
1, 0 < ω1, ω2 < π/2δ.

Let w(x), v(x), x ∈ [p, p+ δ] be such that

w(x) = A1 cosω1x+B1 sinω1x,

v(x) = A2 cosω2x+B2 sinω2x.

Suppose that

v(x1) = w(x1), ω2
1v
′(x1) = ω2

2w
′(x1),

v′(x1) > 0, v(x1) > 0.

Then
(i) Conditions v(p+ δ) = w(p+ δ), v′(p+ δ) ≥ 0

and ω1 ≤ ω2 imply ω1 = ω2.
(ii) Conditions v(p+δ) = w(p+δ), w′(p+δ) ≥ 0

and ω1 ≥ ω2 imply ω1 = ω2.
Lemma 6: Let δ > 0, 0 < η ≤ 2δ, ω1 6= ω2 with 0 <

ω1δ, ω2δ < π/2. Also let A,B > 0, 0 ≤ p < p+ η ≤ 1 and

w(x) = A cos[ω1(x− p) + γ1],
v(x) = B cos[ω2(x− p− η) + γ2]

with |γ1|, |γ2| < π/2.
Then system

w(q) = v(q), (6)
ω2

2w
′(q) = ω2

1v
′(q), (7)

w(q) > 0, v(q) > 0 (8)

admits at most one solution q on [p, p + η]. This unique
solution q can be computed as follows:

If γ1 ≥ 0 then

q = p+
1
ω 1

[
arctan

(
ω1

√∣∣∣∣ B2 −A2

A2ω2
2 −B2ω2

1

∣∣∣∣
)
− γ1

]
. (9)

If γ2 ≤ 0 then

q = p+η+
1
ω 2

[
− arctan

(
ω2

√∣∣∣∣ B2 −A2

A2ω2
2 −B2ω2

1

∣∣∣∣
)
− γ2

]
.

(10)
Otherwise compute q1 and q2 according to formulas (9) and
(10) and discard the one that does not satisfy the conditions
of the Lemma.

By the definition of a ∈ PC there exist N ∈ N and a finite
sequence 0 = x0 < x1 < · · · < xN−1 < xN = 1 such that a
is a constant on each subinterval (xn−1, xn), n = 1, · · · , N .
Let σ > 0.

The following Theorem is our main result.
Theorem 7: Given σ > 0 let an integer M be such that

M ≥ 3
σ

and M > 2
√
µ

ν
.

Suppose that the initial data g(x) > 0, 0 < x < 1
and the observations zm(t) = u(pm, t; a), pm = m/M for
m = 1, 2, · · · ,M − 1 and 0 ≤ T1 < t < T2 of the
heat conduction process (4) are given. Then the conductivity

a ∈ Aad is identifiable in the class of piecewise constant
functions PC(σ).

Proof: The identification proceeds in two steps. In step
I the M -tuple G(a) is extracted from the observations zm(t).
In step II the Marching Algorithm identifies a(x).

Step I. Data extraction.
Using (vi) of Theorem 2 we get

zm(t) =
∞∑
k=1

gke
−λktvk(pm), m = 1, 2, · · · ,M−1, (11)

where gk =< g, vk > for k = 1, 2, · · · . By Theorem 2(iv)
v1(x) > 0 on interval (0, 1). Since g is positive on (0, 1)
we conclude that g1v1(pm) > 0. While zm(t) is represented
by a Dirichlet series, one needs an additional argument to
establish the uniqueness of the coefficients and exponents
λk in it, see Lemma 3 and the remark after it. According
to Theorem 2(vii) each observation zm(t) is, in fact, a real
analytic function. Therefore, if there is another representation
of this type for zm(t), their difference would be an analytic
function vanishing on the interval 0 ≤ T1 < t < T2. Thus
such a function would be identically equal to zero. It is
easy to see that this could happen only if the corresponding
nonzero coefficients and the exponents be identical in such
representations.

In conclusion, one can uniquely determine the nonzero
coefficients in (11) and the corresponding exponents, see
Section 5 for an algorithm. In particular, one determines the
first eigenvalue λ1 and the values of

Gm = g1v1(pm) > 0, pm = m/M (12)

for m = 1, 2, · · · ,M−1. This determines the M -tuple G(a),
see (3). Because of the zero boundary conditions we let G0 =
GM = 0.

Step II. Marching Algorithm.
The algorithm marches from the left end x = 0 to a certain

observation point pl−1 ∈ (0, 1) and identifies the values an
and the discontinuity points xn of the conductivity a on
[0, pl−1]. Then the algorithm marches from the right end
point x = 1 to the left until it reaches the observation point
pl+1 ∈ (0, 1) identifying the values and the discontinuity
points of a on [pl+1, 1]. Finally, the values of a and its
discontinuity are identified on the interval [pl−1, pl+1]. The
overall goal of the algorithm is to determine the number
N − 1 of the discontinuities of a on [0, 1], the discontinuity
points xn, n = 1, 2, · · · , N − 1 and the values an of a
on [xn−1, xn], n = 1, 2, · · · , N (x0 = 0, xN = 1). As a
part of the process the algorithm determines certain functions
Hn(x) defined on intervals [xn−1, xn], n = 1, 2, · · ·N . The
resulting function H(x) defined on [0, 1] is a multiple of the
first eigenfunction v1 over the entire interval [0, 1].

(i) Find l, 0 < l < M such that Gl = max{Gm :
m = 1, 2, · · · ,M − 1} and Gm < Gl for any 0 ≤ m < l.

(ii) Let i = 1, m = 0.
(iii) Use Lemma 4 to find Ai, ωi and γi from the
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system  Ai cos(ωiδ − γi) = Gm,
Ai cos γi = Gm+1,
Ai cos(ωiδ + γi) = Gm+2.

(13)

Let
Hi(x) = Ai cos(ωi(x− pm+1) + γi).

(iv) If m + 3 ≥ l then go to step (vii).
If Hi(pm+3) 6= Gm+3, or Hi(pm+3) = Gm+3 and
H ′i(pm+3) ≤ 0 then a has a discontinuity xi on interval
[pm+2, pm+3). Proceed to the next step (v).
If Hi(pm+3) = Gm+3 and H ′i(pm+3) > 0 then let m :=
m+ 1 and repeat this step (iv).

(v) Use Lemma 4 to find Ai+1, ωi+1 and γi+1

from the system Ai+1 cos(ωi+1δ − γi+1) = Gm+3,
Ai+1 cos γi+1 = Gm+4,
Ai+1 cos(ωi+1δ + γi+1) = Gm+5.

(14)

Let

Hi+1(x) = Ai+1 cos(ωi+1(x− pm+4) + γi+1).

(vi) Use formulas in Lemma 6 to find the unique
discontinuity point xi ∈ [pm+2, pm+3). The parameters and
functions used in Lemma 6 are defined as follows. Let p =
pm+2, η = δ. To avoid a confusion we are going to use the
notation Ω1, Ω2, Γ1, Γ2 for the corresponding parameters
ω1, ω2, γ1, γ2 required in Lemma 6. Let Ω1 = ωi, Ω2 =
ωi+1. For w(x) use function Hi(x) recentered at p = pm+2,
i.e. rewrite Hi(x) in the form

w(x) = Hi(x) = A cos(Ω1(x−pm+2)+Γ1), |Γ1| < π/2.

For v(x) use function Hi+1 recentered at p+η = pm+3, i.e.

v(x) = Hi+1(x) = B cos(Ω2(x−pm+3)+Γ2), |Γ2| < π/2.

Let i := i + 1, m := m + 3. If m < l then return to step
(iv). If m ≥ l then go to the next step (vii).

(vii) Do steps (ii)-(vi) in the reverse direction of x,
advancing from x = 1 to x = pl+1. Identify the values and
the discontinuity points of a on [pl+1, 1], as well as determine
the corresponding functions Hi(x).

(viii) Using the notation introduced in (vi) let
Hj(x) be the previously determined function H on interval
[pl−2, pl−1]. Recenter it at p = pl−1, i.e. w(x) = Hj(x) =
A cos(Ω1(x − pl−1) + Γ1). Let Hj+1(x) be the previously
determined function H on interval [pl+1, pl+2]. Recenter it at
pl+1: v(x) = Hj+1(x) = B cos(Ω2(x−pl+1)+Γ2). If Ω1 =
Ω2 then stop, otherwise use Lemma 6 with η = 2δ, and the
above parameters to find the discontinuity xj ∈ [pl−1, pl+1].
Stop.

The justification of the Marching Algorithm is given in
[6].

The Marching Algorithm of Theorem 7 requires measure-
ments of the system at possibly large number of observation
points. Our next Theorem shows that if a piecewise constant
conductivity a is known to have just one point of disconti-
nuity x1, and its values a1 and a2 are known beforehand,

then the discontinuity point x1 can be determined from just
one measurement of the heat conduction process.

Theorem 8: Let p ∈ (0, 1) be an observation point,
g(x) > 0 on (0, 1), and the observation zp(t) =
u(xp, t; a), t ∈ (T1, T2) of the heat conduction process
(4) be given. Suppose that the conductivity a ∈ Aad is
piecewise constant and has only one (unknown) point of
discontinuity x1 ∈ (0, 1). Given positive values a1 6= a2

such that a(x) = a1 for 0 ≤ x < x1 and a(x) = a2 for
x1 ≤ x < 1 the point of discontinuity x1 is identifiable.

IV. CONTINUITY OF THE SOLUTION AND THE
IDENTIFICATION MAPS

The following results are established in [7] in a somewhat
more general setting.

Theorem 9: Let a ∈ PC ⊂ Aad equipped with the L1[0, 1]
topology, and u(a) be the solution of the heat conduction
process (2), and 0 < t0 < T . Then

1) The mapping a → u(a) from PC into
C([0, T ];L2[0, 1]) is continuous.

2) The mapping a → u(a) from PC into
C([t0, T ];C[0, 1]) is continuous.

Theorem 10: Let Aad be equipped with the L1[0, 1] topol-
ogy. Let N ∈ N and σ > 0. Then

1) Set PCN ⊂ Aad is compact.
2) Set PC(σ) ⊂ Aad is compact.
Theorem 11: Let Aad be equipped with the L1[0, 1] topol-

ogy, and the solution map G : PC(σ)→ RM be defined as in
(3). Then the identification map G−1 : G(PC(σ))→ PC(σ)
is continuous.

Proof: It is established in [7] that the eigenvalues
and the eigenfunctions are continuously dependent on the
conductivities a in the L1[0, 1] topology. This and 10 imply
that the solution map G(a) is continuous on a compact set
PC(σ). By Theorem 7, the inverse mapping G−1 is well
defined on the set G(PC(σ)). Thus it is continuous.

V. NUMERICAL RESULTS

The main objective of this paper is the development of
a theoretical framework for the parameters’ identifiability
described in previous sections. Nevertheless, from a practical
perspective it is desirable to develop an algorithm for such
an identifiability incorporating the new insights gained in the
theoretical part. The main new element of it is the separation
of the identification process into the following two parts.
First, the observation data is used to recover the M -tuple
G(a), see (3). In the second step this input is used to recover
the conductivity by the Marching Algorithm. We emphasize
that only one (first) eigenvalue and the eigenfunction are
needed for the identification.

Before considering noise contaminated observation data
zm(t), let us assume that zm(t) are known precisely on an
interval I = (t0, T ), t0 ≥ 0. In this case the observations
are given by the Dirichlet series

zm(t) =
∞∑
k=1

< g, ψk > e−λktψk(pm). (15)
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The functions zm(t) are analytic for t > 0 and, there-
fore, can be uniquely extended to (0,∞) from I . The first
eigenvalue λ1 and the data sequence {Gm =< g, ψ1 >
ψ1(pm)}M−1

m=1 can be recovered from the Dirichlet series
representing zm(t) by

λ1 = − 1
h

lim
t→∞

ln
zm(t+ h)
zm(t)

, Gm = lim
t→∞

eλ1tzm(t),

(16)
where h > 0.

The second step in the algorithm, i.e. the identification of
the conductivity a is accomplished by the Marching Algo-
rithm. Numerical experiments show the perfect identification
for noiseless data. The identification rapidly deteriorates even
for small noise in the data.

Hence a different algorithm is needed for the practically
important case of noise contaminated data. It should also take
into an account the severe ill-posedness of the identification
of data from Dirichlet series. It is the distinct advantage
of the proposed algorithm that it uses only the first eigen-
value λ1 for the conductivity identification. In what follows
LMA refers to the Levenberg-Marquardt algorithm for the
nonlinear least squares minimization, and BA to the Brent
algorithm for a single variable nonlinear minimization, see
[16] for details.

The algorithm proceeds as follows (see details below)
1). For each m = 1, 2, ...,M find the best fit for the data

zm(tj) by minimizing Ψ(λ, c;m) defined in (17). Call the
results of these minimizations for the exponents λ by µ(m)

and for the coefficients c by cm(λ). They give the best fit to
the data zm(t) by only one term of the Dirichlet series (15).
Numerical results show that these values are not sufficiently
good for the final identification, but they are appropriate as
a first guess for the best fit to zm(t) by two terms of the
Dirichlet series.

2). Apply the LMA to minimize Φ(µ, ν, c, b;m) defined
in (18). Use the initial guess µ(m), 4µ(m), cm(λ), 0 for the
variables µ, ν, c, b correspondingly. Call the results of these
minimizations for the variable µ by λ

(m)
1 . The initial value

4µ(m) for the second eigenvalue is used because of Theorem
2(3). A direct application of the LMA without the initial
values obtained in Step 1 did not produce consistent results.
Now the data zm(t) is approximated by the first two terms
of the Dirichlet series (15). Thus, for each m there is an
estimate λ(m)

1 for the first eigenvalue λ1.
3). Let λ1 be an average of the computed values λ(m)

1 . We
used the middle third of the indices m since the maximum
of our initial data g(x) was attained in the middle of the
interval [0, 1]. Hence these observations were relatively less
affected by the noise.

4-5). Repeat the minimizations of Steps 1 and 2, but keep
λ1 frozen. Let Gm be the values of the coefficients c that
minimize Φ(λ1, ν, c, b;m). This is the best fit to the data
zm(t) by the first two terms of the Dirichlet series (15)
with the fixed first eigenvalue λ1. By now the first part
of the identification algorithm is completed, since we have
recovered the first eigenvalue λ1 and a multiple Gm of the

first eigenfunction ψ1(pm),m = 1, 2, ...,M .
6). Let an integer N > 0 be fixed. Choose a partition

0 < x1 < x2 < · · · < xN−1 < 1 of the interval
[0, 1], and a vector (a1, a2, . . . , aN ) corresponding to the
piecewise constant conductivity a(x) = ai for xi−1 < x <
xi. This notation is consistent with the definitions of the
previous sections. Let ψ1(x; a) be the corresponding first
eigenfunction of (5). Form the objective function Π(a) by
(19). The minimization in c in (19) is done directly as in
Step 1. Then minimize Π(a) in all 2N − 1 variables using
Powell’s minimization method, see [16], [5]. The method is
slightly modified to keep the conductivities within the class
PC(σ). The resulting minimizer ā is the sought conductivity.
Here are the exact steps of the algorithm.

Algorithm for the conductivity identification. Let
the data consists of the observations zm(tj), j =
1, 2, . . . J, m = 1, 2, . . . ,M .

1) Let λ, c ∈ R and

Ψ(λ, c;m) =
J∑
j=1

(ce−λtj − zm(tj))2. (17)

Let
Ψ(λ, cm(λ);m) = min

c∈R
Ψ(λ, c;m).

Note that such a minimizer cm(λ) can be found
directly by

cm(λ) =

∑J
j=1 zm(j)e−λtj∑J
j=1 e

−2λtj
.

Apply BA to find a µ(m) such that

Ψ(µ(m), cm(µ(m));m) = min
λ∈R

Ψ(λ, cm(λ);m).

2) Let

Φ(µ, ν, c, b;m) =
J∑
j=1

(ce−µtj + be−νtj − zm(tj))2.

(18)
Apply the LMA to minimize Φ(µ, ν, c, b;m) using the
initial guess
µ(m), 4µ(m), cm(µ(m)), 0 for the variables µ, ν, c, b
correspondingly. Let

Φ(λ(m)
1 , νm, cm, bm;m) = min

µ,ν,c,b
Φ(µ, ν, c, b;m).

3) Let k = card{[[M/3]], . . . , [[2M/3]]} and

λ1 =
1
k

[[2M/3]]∑
m=[[M/3]]

λ
(m)
1 .

4) Find cm(λ1), m = 1, 2, . . . ,M (as in Step 1) such
that

Ψ(λ1, cm(λ1);m) = min
c∈R

Ψ(λ1, c;m).
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5) Apply the LMA to minimize Φ(λ1, ν, c, b;m) in vari-
ables ν, c, b using the initial guess 4λ1, cm(λ1), 0 for
the variables ν, c, b correspondingly. Let

Φ(λ1, νm, Gm, bm;m) = min
ν,c,b

Φ(λ1, ν, c, b;m).

6) Fix an integer N > 0. For any partition 0 < x1 <
x2 < · · · < xN−1 < 1 of the interval [0, 1], and a
vector (a1, a2, . . . , aN ) corresponding to the piecewise
constant conductivity a(x) = ai for xi−1 < x < xi
let ψ1(x; a) be the corresponding first eigenfunction of
(5). Form the objective function Π(a) by

Π(a) = min
c∈R

M∑
m=1

(cGm − ψ1(pm; a))2. (19)

Use Powell’s minimization method (see [16], [5]) in
2N − 1 variables (N − 1 discontinuity points and N
conductivity values) to find

Π(ā) = min
a∈PC(σ)

Π(a).

The minimizer ā is the sought conductivity.

VI. CONCLUSIONS

The prevalent approach to parameter identification (es-
timation) problems is to find such parameters from the
best fit to data minimization. However such an approach
usually does not guarantee the uniqueness of the identified
parameters. Identifiability problem consists of finding suffi-
cient conditions assuring such a uniqueness, and there have
been just a few results for the identifiability in distributed
parameter systems.

In this paper we have shown that in some cases a variable
conductivity in a 1D heat conduction process can be uniquely
identified from observations of this process.

In this study it is assumed that the conductivity is piece-
wise constant with sufficiently separated points of disconti-
nuity. The observations of the process are taken at equidistant
points pm ∈ (0, 1). The total number of points needed for
the unique conductivity identification can be computed from
a priori known parameters of the process as specified in
Theorem 7. The identification is achieved in two steps. First
the data is used to recover an M -tuple G(a), see (3). The
processed data G(a) contains only the first eigenvalue and a
nonzero multiple of the first eigenfunction at the observation
points. Then the Marching Algorithm (Theorem 7) is applied
to G(a) to recover the sought piecewise constant conductivity
a(x). Both the solution and the identification maps are shown
to be continuous.

The methods described in this paper can be extended
to identifiability problems for heat conduction processes
admitting various boundary (e.g. periodic) inputs and to other
cases, see [7]. A numerical implementation shows that the
Marching Algorithm achieves a perfect identification for ob-
servations with low noise levels. A satisfactory identification
for higher noise levels can be achieved by the numerical
algorithm presented in Section 5.
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