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Abstract— For the pressing needs in control and optimization
using hybrid systems, this work focuses on weak stochastic
stability and ergodicity of regime-switching diffusions. Using
Liapunov functions, we derive necessary and sufficient con-
ditions for weak stability. Then, ergodicity of weakly stable
regime-switching diffusions is obtained by constructing cycles
using the associated discrete-time Markov chains.

Index Terms— Switching diffusion, Liapunov function, weak
stochastic stability, positive recurrence, ergodicity.

I. INTRODUCTION

Owing to the increasing demands for modeling large-

scale and complex systems, designing optimal control, and

conducting optimization tasks, resurgent interest has been

directed to hybrid systems. A feature of these systems

is the coexistence of continuous dynamics and discrete

events. Hybrid diffusion systems (also known as regime-

switching diffusions) belongs to such a class. Aiming at

capturing random evolutions, recent research efforts stem

from emerging applications in financial engineering, wireless

communications, manufacturing systems, and other related

fields.

The systems in applications are often in operation for a

relatively long time, thus it is important to understand the

systems’ asymptotic properties. For instance, treating average

cost per unit time problems, we often wish to “replace”

the time-dependent instantaneous measure by a steady state

measure. Do the systems possess ergodic property? Under

what conditions, do the systems have the desired ergodicity?

In accordance with [22], a deterministic system ẋ = g(t, x)
satisfying appropriate conditions is Lagrange stable, if the

solutions are ultimately uniformly bounded. When stochastic

systems are treated, almost sure boundedness excludes many

systems. Thus, in lieu of such boundedness, one seeks stabil-

ity in certain weak sense [31]. One question of fundamental

importance is: Under what conditions, will the systems return

to a prescribed compact region in finite time? In this paper,

we focus on asymptotic behaviors and address these issues.

More specifically, we deal with such properties as recurrence,

positive recurrence, and ergodicity. One of the main features

of our approach is the use of appropriate Liapunov functions.

We develop Liapunov-function-based general criteria for

weak stability, followed by a further study on ergodicity

by constructing cycles using discrete-time Markov chains.

In what follows, the conditions needed are provided, and
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the results are stated. However, for detailed proofs of the

results, we refer the reader to [35] for verbatim argument.

Note that in the proofs, some results from partial differential

equations and stochastic systems are used; see [1], [5], [6],

[7], [8], [10], [27] and references therein.

A. Formulation

Let (Ω,F , {Ft}t≥0 ,P) be a complete probability space

with a filtration {Ft}t≥0 satisfying the usual condition (i.e., it

is right continuous and F0 contains all P-null sets). Let x ∈
R

r, M = {1, . . . , m0}, and Q(x) = (qij(x)) an m0 × m0

matrix depending on x and satisfying that for any x ∈ R
r,

qij(x) ≥ 0 for i 6= j and
∑m0

j=1 qij(x) = 0. For each i ∈ M,

and for any twice continuously differentiable function g(·, i),
define L by

Lg(x, i) =
1

2
tr(a(x, i)∇2g(x, i)) +

〈
b(x, i),∇g(x, i)

〉

+ Q(x)g(x, ·)(i),
(1)

where ∇g(·, i) and ∇2g(·, i) denote the gradient and Hessian

of g(·, i), respectively, and for i ∈ M,

Q(x)g(x, ·)(i) =
∑

j 6=i,j∈M

qij(x)(g(x, j) − g(x, i)). (2)

Consider a Markov process Y (t) = (X(t), γ(t)), whose

associated operator is given by L; see [28] for further refer-

ences. Note that Y (t) has two components, an r-dimensional

diffusion component X(t) and a jump component γ(t) taking

value in M = {1, . . . , m0}.

The process Y (t) = (X(t), γ(t)) can be described by the

following equations:

dX(t) = b(X(t), γ(t))dt + σ(X(t), γ(t))dw(t),
X(0) = x, γ(0) = γ,

(3)

and

P{γ(t + ∆t) = j|γ(t) = i, X(s), γ(s), s ≤ t}
= qij(X(t))∆t + o(∆t), i 6= j,

(4)

where w(t) is a d-dimensional standard Brownian motion,

b(·, ·) : R
r × M 7→ R

r, and σ(·, ·) : R
r × M 7→ R

r×d

satisfying σ(x, i)σ′(x, i) = a(x, i) (where z′ denotes the

transpose of z for z ∈ R
ι1×ι2 with ι1, ι2 ≥ 1). [We refer

the reader to [28] for related stochastic differential equa-

tions involving Poisson measures describing the evolution

of the jump process. In this paper, our study will mainly

be concerned with the use of the operator L given in (1).]

Throughout the paper, we assume that both b(·, i) and σ(·, i)
satisfy the usual local Lipschitz condition and linear growth

condition for each i ∈ M and that Q(·) is bounded and
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continuous. It is well known that under these conditions,

the system (3)–(4) has a unique strong solution; see [12] or

[28] for details. In what follows, denote the solution of (3)–

(4) by (Xx,γ(t), γ(t)) if the emphasis on the initial data is

needed. To study recurrence and ergodicity of the process

Y (t) = (X(t), γ(t)), we further assume that the following

condition (A) holds throughout the paper. For convenience,

we also collect the boundedness and continuity of Q(·) in

(A).

(A) The operator L satisfies the following conditions:

– For each i ∈ M, a(x, i) = (ajk(x, i)) is symmetric

and satisfies

κ1|ξ|
2 ≤

〈
a(x, i)ξ, ξ

〉
≤ κ−1

1 |ξ|2, for all ξ ∈ R
r,

(5)

with some constant κ1 ∈ (0, 1] for all x ∈ R
r.

– For i 6= j, qij(x) > 0. The matrix-valued function

Q(·) is bounded and continuous.

As mentioned earlier, the motivation of our study stems

from recent interests in regime-switching diffusion processes

that include a random process with a finite state space

in addition to the usual diffusion component. The finite-

state process depicts random environment that has right-

continuous sample paths and that cannot be described by

a diffusion. Consequently, both continuous dynamics (dif-

fusions) and discrete events (jumps) coexist yielding hybrid

dynamic systems, which provide more realistic formulation

for many applications.

Regime-switching diffusions have received much attention

lately. For instance, optimal controls of switching diffusions

were studied in [4] using a martingale problem formulation;

jump-linear systems were considered in [13]; stability of

semi-linear stochastic differential equation with Markovian

switching was considered in [2]; ergodic control problems

of switching diffusions were studied in [9]; stability of

stochastic differential equations with Markovian switching

was treated in [23], [25], [33]; asymptotic expansions for

solutions of integro-differential equations for transition den-

sities of singularly perturbed switching-diffusion processes

were developed in [11]; switching diffusions were used for

stock liquidation models in [34]. For some recent appli-

cations of hybrid systems in communication networks, air

traffic management, and control problems, etc., we refer the

reader to [14], [15], [24], [26], [29] and references therein.

In [2], [23], [33], [34], Q(x) = Q, a constant matrix. In

such cases, γ(·) is a continuous-time Markov chain. More-

over, it is assumed that the Markov chain γ(·) is independent

of the Brownian motion. In our formulation, x-dependent

Q(x) is considered, and as a result, the transition rates of

the discrete event γ(·) depend on the continuous dynamic

X(·), as depicted in (4). Although the pair (X(·), γ(·)) is a

Markov process, for x-dependent Q(x), only for each fixed

x, the discrete-event process γ(·) is a Markov chain. Such

formulation enables us to describe complex systems and their

inherent uncertainty and randomness in the environment.

However, it adds much difficulty in analysis. Our formulation

is motivated by the fact that in many applications, the

discrete event and continuous dynamic are intertwined, and

the independence assumption of the discrete-event process

and the Brownian motion appears to be restrictive.

One of the important problems concerning switching

models is their longtime behavior. Despite the growing

interests in treating regime-switching systems (see the works

mentioned in the previous paragraphs and references therein),

the results regarding such issues as recurrence and positive

recurrence (or weak stochastic stability as termed in [31]) are

still scarce. Furthermore, these are not simple extensions of

their diffusion counterpart. Due to the coupling and interac-

tions, elliptic systems instead of a single elliptic equation

must be treated. Moreover, even the classical approaches

such as Liapunov function methods and the Dykin’s formula

are still applicable for switching diffusions, the analysis

is much more delicate than the diffusion counterparts. It

requires careful handling of discrete-event component γ(·);
see, for example, the proofs of Lemma 3.7, Lemma 3.8, and

Theorem 3.12 in [35].

In addition to recurrence, many applications in control

and optimization require minimizing an expected cost of

certain objective function. The computation is difficult and

complicated. Significant effort has been devoted to approxi-

mating such expected values by replacing the measure with

stationary measures when the time horizon is long enough.

To justify such a replacement, ergodicity is needed. For

diffusion processes, much effort has been devoted to ergod-

icity; see for example [3], [20], among others. For regime-

switching diffusions, asymptotic stability for the density of

the so-called two-state diffusion precess (X(t), γ(t)) was

established in [25]; asymptotic stability in distribution for the

process (X(t), γ(t)) was obtained in [33], where the jump

component γ(·) is generated by some constant matrix Q and

is independent of the Brownian motion. In this work, we will

address ergodicity for (X(t), γ(t)) under different conditions

than those in [25], [33]. Moreover, our work is applicable to

more general settings. The discrete component γ(·) has x-

dependent generator Q(x) and takes value in a finite state

space M = {1, 2, . . . , m0}. Another highlight of the paper

is that we obtain the explicit representation of the invariant

measure of the process (X(t), γ(t)) by considering certain

cylinder sets and by defining cycles appropriately. As a

byproduct, we demonstrate a strong law of large number type

theorem for positive recurrent regime-switching diffusions.

Compared with the existing work in the literature, the

novelty and contribution of this paper are as follows. (a)

By considering x-dependent generator Q(x), our model

provides more realistic formulation allowing the switching

component depending on the continuous states. This, in

turn, allows the coupling and correlation between X(t) and

γ(t). (b) By appropriately defining cycles, we establish the

ergodicity of the underlying process. (c) Moreover, explicit

representation of the invariant measure for positive-recurrent

regime-switching diffusions is given.

The rest of the paper is arranged as follows. In Section II,

in addition to introducing certain notations, we also provide

definitions of regularity, recurrence, positive recurrence, and
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null recurrence. Section III focuses on positive recurrence.

We present results of necessary and sufficient conditions for

recurrence using Liapunov functions, along with a couple

of examples as applications of the general results. Section

IV develops ergodicity of switching diffusion processes.

Discussions and further remarks are made in Section V.

II. REGULARITY, RECURRENCE, AND POSITIVE

RECURRENCE

This section is devoted to the definitions of regularity,

recurrence, positive recurrence, and null recurrence. For

simplicity, we introduce some notations as follows. For any

U = D×J ⊂ R
r ×M, where D ⊂ R

r and J ⊂ M, denote

τU := inf{t ≥ 0 : (X(t), γ(t)) /∈ U},
σU := inf{t ≥ 0 : (X(t), γ(t)) ∈ U}.

(6)

In particular, if U = D ×M is a “cylinder”, we set

τD := inf{t ≥ 0 : X(t) /∈ D},
σD := inf{t ≥ 0 : X(t) ∈ D}.

(7)

Definition 2.1: Regularity. A Markov process

(Xx,γ(t), γ(t)) is said to be regular, if for any 0 < T < ∞,

P{ sup
0≤t≤T

|Xx,γ(t)| = ∞} = 0. (8)

Remark 2.2: Let βn be the first exit time of the process

(Xx,γ(t), γ(t)) from the bounded set {x̃ : |x̃| < n} × M,

that is,

βn = inf{t : |Xx,γ(t)| = n}. (9)

Then, the sequence {βn} is monotonically increasing and

hence has a (finite or infinite) limit. It is not difficult to see

that the process (Xx,γ(t), γ(t)) is regular if and only if

βn → ∞ almost surely as n → ∞. (10)

In what follows, we assume that the process (Xx,γ(t), γ(t))
is regular. Subsequently we will use equation (10) often.

Definition 2.3: Recurrence and positive and null recur-

rence are defined as follows.

• Recurrence. For U := D × J , where J ⊂ M and

D ⊂ R
r is an open set with compact closure, let

σx,γ
U = inf{t : (Xx,γ(t), γ(t)) ∈ U}. A regular

process (Xx,γ(·), γ(·)) is recurrent with respect to U
if P{σx,γ

U < ∞} = 1 for any (x, γ) ∈ Dc ×M, where

Dc denotes the complement of D.

• Positive Recurrence and Null Recurrence. A recurrent

process with finite mean recurrence time for some set

U = D × J , where J ⊂ M and D ⊂ R
r is a bounded

open set with compact closure, is said to be positive

recurrent with respect to U , otherwise, the process is

null recurrent with respect to U .

III. POSITIVE RECURRENCE

This section takes up the positive recurrence issue. It

entails the use of appropriate Liapunov functions. We begin

this section with certain preparatory results, which indicate

that the process Y (t) = (X(t), γ(t)) is recurrent (resp.

positive recurrent) with respect to some “cylinder” D ×M
if and only if it is recurrent (resp. positive recurrent) with

respect to D × {ℓ}, where D ⊂ R
r is a nonempty open set

with compact closure and ℓ ∈ M. We will also prove that the

properties of recurrence or positive recurrence do not depend

on the choice of the open set D ⊂ R
r or ℓ ∈ M. After the

preparatory results, two subsections follow. The first presents

Liapunov-function-based criteria on positive recurrence. As

applications of the general results, a subsection of two exam-

ples is provided. Note that Example 3.3 is quite interesting,

which shows that the combination of a transient diffusion and

a positive recurrent diffusion is a positive recurrent switching

diffusion.

It can be shown that recurrence (positive recurrence) is

independent of the set. Thus, we have the following remarks.

• A regular process Y (t) = (X(t), γ(t)) with the associ-

ated generator L satisfying (A) is said to be recurrent,

if it is recurrent with respect to some U = D × {ℓ},

where D ⊂ R
r is a nonempty bounded open set and

ℓ ∈ M; otherwise it is said to be transient.

• Henceforth, we call a recurrent process Y (t) =
(X(t), γ(t)) positive recurrent if it is positive recurrent

with respect to some bounded domain U = D × {ℓ} ⊂
R

r ×M; otherwise, we have a null recurrent process.

A. General Criteria

Theorem 3.1: A necessary and sufficient condition for

positive recurrence with respect to a domain U = D×{ℓ} ⊂
R

r × M is: For each i ∈ M, there exists a nonnegative

function V (·, i) : Dc 7→ R such that V (·, i) is twice

continuously differentiable and that

LV (x, i) = −1, (x, i) ∈ Dc ×M. (11)

Let u(x, i) = Ex,iσD . Then u(x, i) is the smallest positive

solution of{
Lu(x, i) = −1, (x, i) ∈ Dc ×M,

u(x, i) = 0, (x, i) ∈ ∂D ×M,
(12)

where ∂D denotes the boundary of D.

One of the nice things about the above result is: It converts

the problem to a boundary value problem. Thus we can

use analytic tools to resolve the problem. We also note that

sometimes, the equation above may still be difficult to use.

It would be nice if we have an upper bound instead. This

brings us to the following alternative result.

Theorem 3.2: A necessary and sufficient condition for

positive recurrence with respect to a domain U = D×{ℓ} ⊂
R

r × M is: For each i ∈ M, there exists a nonnegative

function V (·, i) : Dc 7→ R such that V (·, i) is twice

continuously differentiable and that for some α > 0,

LV (x, i) ≤ −α, (x, i) ∈ Dc ×M. (13)

B. Examples

In this subsection, we provide a couple of examples to

illustrate Theorem 3.1 and Theorem 3.2.

Example 3.3: To illustrate the utility of Theorem 3.2,

consider a real-valued process

dX(t) = b(X(t), γ(t))dt + σ(X(t), γ(t))dw(t), (14)
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where γ(t) is a 2-state random jump process, with x-

dependent generator

Q(x) =

(
− 1

3 − 1
4 cosx 1

3 + 1
4 cosx

7
3 + 1

2 sinx − 7
3 − 1

2 sin x

)
,

and

b(x, 1) = −x, σ(x, 1) = 1, b(x, 2) = x, σ(x, 2) = 1.

Thus (14) can be regarded as the result of the following two

diffusions:

dX(t) = −X(t)dt + dw(t), and (15)

dX(t) = X(t)dt + dw(t), (16)

switching back and forth from one to the other according to

the movement of γ(t).
Note that (15) is positive recurrent while (16) is a transient

diffusion process. But, the switching diffusion (14) is positive

recurrent. We verify these as follows. Consider the Liapunov

function V (x, 1) = |x|. Let L1 be the operator associated

with (15). Then we have for all |x| ≥ 1, L1V (x, 1) = −x ·
signx = −|x| ≤ −1 < 0. Thus it follows from [16, Theorem

3.7.3] that (15) is positive recurrent. Recall that the real-

valued diffusion process dX(t) = b(X(t))dt+σ(X(t))dw(t)
with σ(x) 6= 0 for all x ∈ R, is recurrent if and only if∫ x

0
exp{−2

∫ u

0
b(z)

σ2(z)dz}du → ±∞ as x → ±∞; see [16, p.

105]. Direct computation shows that (16) fails to satisfy this

condition and hence is transient.

Next, we use Theorem 3.2 to demonstrate that the switch-

ing diffusion (14) is positive recurrent for appropriate Q.

Consider Liapunov functions

V (x, 1) = |x|, V (x, 2) =
7

3
|x|.

Then we can show

LV (x, 1) ≤ −
2

9
, LV (x, 2) ≤ −

1

9
,

for all |x| ≥ 1. Then the switching diffusion (14) is positive

recurrent by Theorem 3.2.

IV. ERGODICITY

In this section, we study the ergodic properties of the

process Y (t) = (X(t), γ(t)) under the assumption that the

process is positive recurrent with respect to some bounded

domain U = E × {ℓ}, where E ⊂ R
r and ℓ ∈ M are fixed

throughout this section. We also assume that the boundary

∂E of E is sufficiently smooth. Let the operator L satisfy

(A). Then it follows that the process is positive recurrent

with respect to any nonempty open set.

Let D ⊂ R
r be a bounded ball with sufficiently smooth

boundary ∂D such that E ∪ ∂E ⊂ D. Let ς0 = 0 and define

the stopping times ς1, ς2, . . . inductively as: ς2n+1 is the first

time after ς2n at which the process Y (t) = (X(t), γ(t))
reaches the set ∂E × {ℓ} and ς2n+2 is the first time after

ς2n+1 at which the path reaches the set ∂D × {ℓ}. Now we

can divide an arbitrary sample path of the process Y (t) =
(X(t), γ(t)) into cycles:

[ς0, ς2), [ς2, ς4), . . . , [ς2n, ς2n+2), . . . (17)

Figure 1 presents a demonstration of such cycles when the

discrete component γ(·) has three states.

∂D ∂E

∂D ∂E

∂D ∂E

ED

ED

ED

State 1

State 2

State 3

q

ς0

p

ς1

6

?

?

q

ς2
pς3

q

ς4

Fig. 1. A “Sample Path” of the Process Y (t) = (X(t), γ(t)) when
m0 = 3

The process Y (t) = (X(t), γ(t)) is positive recurrent with

respect to E ×{ℓ} and hence positive recurrent with respect

to D × {ℓ}. It follows that all the stopping times ς0 < ς1 <
ς2 < ς3 < ς4 < · · · are finite a.s. Since the process Y (t) =
(X(t), γ(t)) is positive recurrent, we may assume without

loss of generality that Y (0) = (X(0), γ(0)) = (x, ℓ) ∈
∂D × {ℓ}. It follows from the strong Markov property of

the process Y (t) = (X(t), γ(t)) that the sequence {Yn} is a

Markov chain on ∂D×{ℓ}, where Yn = Y (ς2n) = (Xn, ℓ),
n = 0, 1, 2, . . . Let P̃ (x, A) denote the one-step transition

probabilities of this Markov chain, that is,

P̃ (x, A) = P (Y1 ∈ (A × {ℓ}) | Y0 = (x, ℓ))

for any x ∈ ∂D and A ∈ B(∂D), where B(∂D) denotes

the collection of Borel measurable sets on ∂D. Note that

the process Y (t) = (X(t), γ(t)), starting from (x, ℓ), may

jump many times before it reaches the set (A, ℓ); see [28]

for more details. Denote by P̃ (n)(x, A) the n-step transition

probability of the Markov chain for any n ≥ 1. For any Borel

measurable function f : R
r 7→ R, set

Exf(X1) := Ex,ℓf(X1) =

∫

∂D

f(y)P̃ (x, dy). (18)

Throughout this section, we write Ex for Ex,ℓ for simplicity.

We will show that the process Y (t) = (X(t), γ(t)) possesses

a unique stationary distribution. To this end, we need the

following lemma.

Lemma 4.1: The Markov chain Yi = (Xi, ℓ) has a unique

stationary distribution m(·) such that
∣∣∣P̃ (n)(x, A) − m(A)

∣∣∣ < λn, for any A ∈ B(∂D), (19)

for some constant 0 < λ < 1.

Theorem 4.2: The positive recurrent process Y (t) =
(X(t), γ(t)) has a unique stationary distribution ν̂(·, ·) =
(ν̂(·, i) : i ∈ M).

The form of ν̂ is given as follows. For any A ∈ B(Rr)
and i ∈ M, denote by τA×{i} the time spent by the path
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of Y (t) = (X(t), γ(t)) in the set (A × {i}) during the first

cycle. Set ν(A, i) :=
∫

∂D
m(dx)ExτA×{i}, where m(·) is

the stationary distribution of Yi = (Xi, ℓ). We proved in [35]

that

ν̂(A, i) =
ν(A, i)∑m0

j=1 ν(Rr, j)
, i ∈ M, (20)

defines the desired stationary distribution.

Theorem 4.3: Denote by µ(·, ·) the stationary density as-

sociated with the stationary distribution ν̂(·, ·) constructed

in Theorem 4.2 and let f(·, ·) : R
r × M 7→ R be a Borel

measurable function such that
m0∑

i=1

∫

Rr

|f(x, i)|µ(x, i)dx < ∞. (21)

Then

Px,i

(
1

T

∫ T

0

f(X(t), γ(t))dt → f

)
= 1, (22)

for any (x, i) ∈ R
r ×M, where

f =

m0∑

i=1

∫

Rr

f(x, i)µ(x, i)dx. (23)

As a consequence of Theorem 4.3, we obtain the following

corollary.

Corollary 4.4: Let the assumptions of Theorem 4.3 be

satisfied and let u(t, x, i) be the solution of the Cauchy

problem
{

∂u(t, x, i)

∂t
= Lu(x, i), i ∈ M,

u(0, x, i) = f(x, i).
(24)

Then as T → ∞,

1

T

∫ T

0

u(t, x, i)dt →

m0∑

i=1

∫

Rr

f(x, i)µ(x, i)dx. (25)

V. DISCUSSIONS AND REMARKS

A. Discussions

The recurrence and ergodicity obtained enable us to un-

dertake further study on asymptotic properties of hybrid

diffusion systems, and to carry out control and optimization

tasks. We outline several directions in what follows.

Easily Verifiable Conditions. In many applications, it is

often more convenient to be able to analyze weak stability

through conditions on the coefficients of the corresponding

stochastic differential equations. Assume that X(·) is a real-

valued process for simplicity; assume also condition (A)

holds. Motivated by Example 3.3, next we present easily

verifiable conditions for positive recurrence when the coef-

ficients of the switching diffusions (3)–(4) are linearizable

in an x-neighborhood of ∞. Suppose that for each i ∈ M,

there exists bi ∈ R such that

b(x, i)

x
= bi + o(1), and Q(x) → Q̃, as |x| → ∞,

where Q̃ = (q̃ij) is the generator of a continuous-time er-

godic Markov chain γ̃(t) whose stationary distribution is µ =

(µ1, µ2, . . . , µm) ∈ R
1×m. Then using Theorem 3.2, we can

prove that the process is positive recurrent if
∑m

i=1 µibi < 0.

The result can be strengthened if in addition,

σ(x, i)

x
= σi + o(1) as |x| → ∞,

where σ2
i > 0. Then in this case, the process is positive

recurrent if
m∑

i=1

µi

(
bi −

σ2
i

2

)
< 0.

The details are omitted for brevity.

Path Excursions. Applications of the positive recurrence

criteria enable us to establish path excursions of the underly-

ing processes. Suppose that Y (t) = (X(t), γ(t)) is positive

recurrent. Suppose that the Liapunov functions V (x, i) (with

i ∈ M) are given in Theorem 3.2, so is the set D. Let D0 be

a bounded open set with compact closure satisfying D ⊂ D0,

and τ be a random time such that (X(τ), γ(τ)) ∈ Dc
0 ×M,

and τ1 = min{t > τ : (X(t), γ(t)) ∈ D0 × M}. We can

obtain for κ > 0,

P( sup
τ≤t≤τ1

V (X(t), γ(t)) ≥ κ) ≤
EV (X(τ), γ(τ))

κ
,

E(τ1 − τ) ≤
EV (X(τ), γ(τ))

α
,

where α is as given in Theorem 3.2.

Tightness. Under positive recurrence, we may obtain tight-

ness (or boundedness in the sense of in probability) of the

underlying process. Suppose that (X(t), γ(t)) is positive

recurrent. It is then possible to prove that for any compact

set D, the set ∪x∈D{(X(t), γ(t)) : t ≥ 0, X(0) = x,

γ(0) = γ} is tight (or bounded in probability). For a study

on the diffusion counter part, we refer the reader to [19, p.

146].

Occupation Measures. To illustrate the utility of Theo-

rem 4.3, take f(x, i) = χ[B×J](x, i), the indicator function

of the set B × J , where B ⊂ R
r and J ⊂ M. Then

Theorem 4.3 becomes a result regarding occupation measure.

In fact, we have

1

T

∫ T

0

χ[B×J](X(t), γ(t))dt →
∑

i∈J

∫

B

µ(x, i)dx a.s.

as T → ∞.

Stochastic Approximation. Consider a parameter optimiza-

tion problem. We wish to find θ∗, a vector-valued parameter

so that the cost function

J(θ) = lim
T→∞

E
1

T

∫ T

0

Ĵ(θ, Y (t))dt

is minimized, where Y (t) is a positive recurrent switching

diffusion as considered in this paper and for each θ, Ĵ(θ, ·, ·)
satisfies the conditions of Theorem 4.3. For simplicity, we

assume that the gradient of Ĵ(·, x, i) with respect to θ is
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available for each x and each i ∈ M. Then we consider a

constant stepsize recursive algorithm

θn+1 = θn − ε
1

T

∫ nT+T

nT

∇Ĵ(θn, Y (t))dt,

or a decreasing stepsize algorithm

θn+1 = θn − εn

1

T

∫ nT+T

nT

∇Ĵ(θn, Y (t))dt,

where ε > 0, and εn → 0 as n → ∞ and
∑

n εn = ∞.

Modifications and variants are possible. For example, we

may include additional measurement noise, and the gradient

of Ĵ(·) may be changed to its gradient estimates. The

motivation for such algorithms stems from optimization of

average cost per unit time problems arising from parameter

estimations in switching systems of SDEs, manufacturing

systems, and queueing networks; see related work in [21,

Chapter 9] and [32]. The ergodicity of the switching diffusion

is crucial in the study of the asymptotic behavior of the

algorithms.

Further Remarks. This work developed asymptotic proper-

ties of positive recurrent switching diffusions. Under general

conditions, necessary and sufficient conditions for positive

recurrence were developed. Then ergodicity was established

for positive recurrent Markov processes with switching.

Also provided were explicit representations of the invariant

measures. For new results on related problems of stability for

regime-switching diffusions, we refer the reader to our recent

work [18]. Related work on randomly switching ODEs can

be found in [36], in which different phenomena than the well-

known Hartman-Grobman theorem have been observed. A

number of problems remain open. Obtaining large deviations

type of bounds is a worthwhile under taking, which will

have important impact on studying the associated control

and optimization problems. Next, concerning null-recurrent

switching diffusions (see [16], [17]), can we obtain necessary

and sufficient conditions? It appears that the desired criteria

will be more difficult to obtain compared to a single diffusion

process since one needs to solve systems of boundary value

problems.
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