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Abstract— Open loop optimal control problems with linear
hybrid (discrete/continuous) systems embedded are often ap-
proximated as dynamic optimization problems. These problems
are inherently nonconvex. A deterministic global optimization
algorithm for linear hybrid systems with varying transition
times is developed. First, the control parametrization enhancing
transform is used to transform the problem from a linear
hybrid system with scaled discontinuities and varying transition
times into a nonlinear one with stationary discontinuities and
fixed transition times. Next, a convexity theory is applied
to construct a convex relaxation of the original nonconvex
problem. This allows the problem to be solved in a branch-
and-bound framework that can guarantee the solution to ε

global optimality within a finite number of iterations.

I. INTRODUCTION

Hybrid systems exhibit both discrete state and continuous

state dynamics, and have become indispensable for modeling

systems exhibiting discontinuities in their dynamics [1]. This

article summarizes the work presented in [2] to locate the

global solution of a specific class of dynamic optimization

problems with linear time varying (LTV) hybrid systems

embedded: problems in which the temporal sequence of

modes is fixed, but the transition times between modes are

allowed to vary. This is motivated by the fact that many

practical problems can be expressed as open loop optimal

control problems with hybrid systems embedded, which in

turn can be approximated by dynamic optimization problems

with hybrid systems embedded [1]. The latter transformation

is carried out via control parametrization [3], a partial

discretization method where the controls are approximated

by a finite series of piecewise continuous basis functions

over the time horizon.

The practicality of such a method hinges on the exis-

tence and uniqueness of the parametric sensitivities of the

hybrid system (or the related adjoints), which are employed

to calculate the gradients of the objective and constraint

functionals used by the Master problem. Sufficient conditions

for the existence and uniqueness of these sensitivities have

been developed in [4], and these results indicate that the

sensitivity trajectories of a hybrid system will usually exist

a.e. in the parameter space. Subject to the key restriction

that the temporal sequence of modes visited by executions

of the hybrid system is unchanged throughout the parameter

space (the timing of switches and jumps may still vary), the
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resulting Master NLP is smooth under mild assumptions and

existing gradient based methods may be used to find local

solutions. On the other hand, if the temporal sequence of

modes varies as a function of the optimization parameters,

then most resulting Master NLPs will exhibit some degree of

nonsmoothness [5]. These critical observations explicate the

requirement of fixing the sequence of modes, a key issue.

The restriction to a fixed sequence of modes reduces the

embedded hybrid system to a multi-stage dynamic system.

For such a problem, obtaining the optimal switching times

for a fixed sequence of modes is difficult because it is

inherently nonconvex (see e.g., [6]).

In [2], the control parametrization enhancing transform

(CPET) [7] is used to transform the problem into one with

fixed transition times, at the expense of introducing nonlin-

earity into the embedded hybrid system. A convex relaxation

theory is then developed for the global optimization of the

resulting nonlinear hybrid system with a fixed sequence of

modes and fixed transition times. Note that the results in the

following sections will be presented without proof due to

space constraints; the proofs can be found in [2].

II. HYBRID SYSTEMS: NOTATION

The modeling framework of [1] is used as a basis to define

the hybrid system of interest.

Definition 1: The hybrid system considered is the 10-tuple

H = (M, E , Tµ, σ1, δ,p,x,F ,T 0,T ), where

• M = {1, . . . , nm}, 1 ≤ nm < +∞,

• E = {1, . . . , ne}, 1 ≤ ne < +∞,

• Tµ = {mi}i∈E , mi ∈ M, ∀i ∈ E ,

• σ1 ∈ R,

• δ ∈ ∆ ⊂ R
ne

+ ,

• p ∈ P ⊂ R
np ,

• x : E × P × ∆ × R → R
nx ,

• F : M× R
nx × P × ∆ × R → R

nx ,

• T
0 : P × ∆ → R

nx , and

• T : E \ {ne} × R
nx × P × ∆ → R

nx .

The elements of M are called the modes of H. Tµ is called

the hybrid mode trajectory and is the discrete state variable

of H. σ1 is the initial time. δ is the vector of nonnegative

durations and p is the vector of parameters. x is the vector of

continuous state variables, and F is the vector field for x. T
0

are the initial conditions, and T are the transition functions.

E is the index set for the epochs, which are defined in the

following

Definition 2: The hybrid time trajectory of H is a finite

sequence of intervals Tτ = {Ii}i∈E where Ii = [σi, τi], τi =
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σi + δi for i ∈ E and σi = τi−1 for i = 2, . . . , ne. The Ii
are called epochs.

Definition 3: Consider the epoch Ii = [σi, τi] and its

corresponding scaled time interval Îi = [σ̂i, τ̂i] = [i − 1, i].
A scaled simple discontinuity occurring at time t ∈ Ii is one

that occurs at a fixed (stationary) point s ∈ Îi such that

s− σ̂i

τ̂i − σ̂i

= s− i+ 1 =
t− σi

τi − σi

.

It is clear from Definition 3 that there is a stationary simple

discontinuity [8, Definition 2.1] at s∗ in Îi iff there is a scaled

simple discontinuity at t∗ in Ii.

We will impose the following assumptions to make the

optimization problem (introduced later) well posed:

A1. ∆ = [δL, δU ] and P = [pL,pU ] are nondegenerate

interval vectors. The vector field F(m, ·) for each

m ∈ M is affine in the continuous state variables x

and the parameters p so that for each epoch Ii∈E the

continuous state variables evolve according to the LTV

ODE system:

ẋ(i,p, δ, t) ≡
dx

dt

∣

∣

∣

∣

i,p,δ,t

= A(m, δ, t)x(i,p, δ, t)

+B(m, δ, t)p + q(m, δ, t), ∀t ∈ (σi, τi].

Moreover, ∀(m, i, δ) ∈ M × E × ∆, A(m, δ, ·),
B(m, δ, ·) and q(m, δ, ·) are piecewise continuous on

epoch Ii with a finite number of scaled simple discon-

tinuities and are defined at any point of discontinuity.

A2. The initial conditions T
0 are affine functions so that

the initial conditions for epoch I1 are given by:

x(1,p, δ, σ1) = E(0)p + J(0)δ + k(0).

A3. The transition functions T (i, ·) for each i ∈ E \ {ne}
are affine functions so that the initial conditions for

epochs Ii∈E\{1} are given by:

x(i,p, δ, σi) = D(i− 1)x(i− 1,p, δ, τi−1)

+E(i− 1)p + J(i− 1)δ + k(i− 1). (1)

Definition 4: Given values for p and δ, the solution, or

execution, of a hybrid system H subject to assumptions A1-

A3 is x(i,p, δ, t), t ∈ Ii, i ∈ E where x(i,p, δ, t) is the

solution of the ODE system in A1 with initial conditions A2

if i = 1 and A3 otherwise.

We shall now describe in words an execution of the

hybrid system in time. The finite time horizon is partitioned

into contiguous intervals called epochs. Starting from the

initial conditions given by T
0, the continuous state variables

x(1,p, δ, ·) evolve in time, t, according to the differential

equations defined by the vector field F(m1, ·) for a (possibly

trivially zero) duration of δ1. At time τ1, a transition is made

from mode m1 to mode m2. The transition functions in (1)

map the value of the continuous state at τ1 in epoch I1 to an

initial condition for epoch I2 at time σ2. The hybrid system

then evolves according to the differential equations defined

by the vector field F(m2, ·) for a duration of δ2, and so

on and so forth. Note that for epoch Ii, the system evolves

continuously in time if δi > 0, and it evolves discretely by

making an instantaneous transition if δi = 0.

Definition 5 (Implied State Bounds): Define the follow-

ing convex sets for all i ∈ E where Si ≡ [σ1 +
i

∑

j=1

δL
j , σ1 +

i
∑

j=1

δU
j ]. For any fixed t ∈ Si,

X(i, t;P,∆) ≡ [xL(t),xU (t)] |

xL(t) ≤ x(i,p, δ, t) ≤ xU (t),∀(p, δ) ∈ P × ∆.

In addition, X(i, P,∆) ≡ [xL,xU ] | X(i, t;P,∆) ⊂
[xL,xU ] ∀t ∈ Si.

Now consider the following

Problem 1:

min
p∈P,δ∈∆

F (p, δ) =

ne
∑

i=1







nφi
∑

j=1

φij

(

x(i,p, δ, αij(δ)),p, δ
)

+

∫ τi(δ)

σi(δ)

fi

(

x,p, δ, t
)

dt







,

subject to the following point and isoperimetric constraints,

G(p, δ) =

ne
∑

i=1







nηi
∑

j=1

ηij

(

x(i,p, δ, βij(δ)),p, δ
)

+

∫ τi(δ)

σi(δ)

gi

(

x,p, δ, t
)

dt







≤ 0,

where x(i,p, δ, t) is given by the solution of the embedded

hybrid system in Definition 1 subject to assumptions A1-

A3; fi and gi are piecewise continuous mappings fi :
X(i, P,∆)×P×∆×Si → R and gi : X(i, P,∆)×P×∆×
Si → R

nc for all i ∈ E , where only a finite number of scaled

simple discontinuities are allowed; nφi is an arbitrary number

of scaled point objectives in epoch Ii, αij(δ) ∈ Ii such that

αij(δ) = σi+δi(α̂ij−i+1) for some fixed α̂ij ∈ Îi, and φij

is a continuous mapping φij : X(i, P,∆)×P ×∆ → R for

all j = 1, . . . , nφi and i ∈ E ; and nηi is an arbitrary number

of scaled point constraints in epoch Ii, βij ∈ Ii such that

βij(δ) = σi+δi(β̂ij−i+1) for some fixed β̂ij ∈ Îi, and ηij

is a continuous mapping ηij : X(i, P,∆)×P×∆ → R
nc for

all j = 1, . . . , nηi and i ∈ E . Additionally, we require that

the set G = {(p, δ) ∈ P × ∆ | G(p, δ) ≤ 0}, is nonempty.

III. THE TRANSFORM

The CPET [7] is implemented as follows. Consider the

original independent variable time (t) in Problem 1. We now

wish to construct a new time scale in which the varying

epoch durations (transition times) are fixed, s ∈ [0, ne]. The

transformation (CPET) from t ∈ [σ1, σ1 +
ne
∑

i=1

δU
i ] to s ∈

[0, ne] is defined by

dt

ds
= v(δ, s), t(δ, 0) = σ1, (2)
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where the function v : ∆× [0, ne] → R is called the enhanc-

ing control. It is a piecewise constant function with possible

simple discontinuities at the prefixed knots 1, . . . , ne − 1,

v(δ, s) =

ne
∑

i=1

δiχi(s),

where χi(s) is the indicator function defined by

χi(s) =

{

1 if s ∈ [i− 1, i],
0 otherwise.

Clearly,

t(δ, s) = σ1 +

∫ s

0

v(δ, z) dz

= σ1 + δi(s− (i− 1)) +

i−1
∑

j=1

δj = (s− i+ 1)δi + σi (3)

for s ∈ [i − 1, i], i ∈ E , where the value of the enhancing

control in the transformed time interval (i−1, i) corresponds

to the value of the duration of epoch Ii in the original

time scale. In addition, the scaled simple discontinuities,

point objectives and point constraints in Problem 1 become

stationary simple discontinuities, point objectives and point

constraints in the new time scale, according to Definition 3.

Finally, let x′ ≡ dx
ds

. It follows from the CPET that

x′(i,p, δ, t(δ, s))

v(δ, s)
=

(

A(m, δ, t(δ, s))x(i,p, δ, t(δ, s))

+B(m, δ, t(δ, s))p + q(m, δ, t(δ, s))
)

,

where t is an additional differential state variable that has to

satisfy (2). We can substitute for the explicit form of t(δ, s)
to obtain

x̂′(i,p, δ, s) = v(δ, s)
(

Â(m, δ, s)x̂(p, δ, s)

+B̂(m, δ, s)p + q̂(m, δ, s)
)

, (4)

where x̂(i,p, δ, s) ≡ x(i,p, δ, t(δ, s)), x̂′ ≡ dx̂
ds

,

Â(m, δ, s) ≡ A(m, δ, t(δ, s)), B̂(m, δ, s) ≡
B(m, δ, t(δ, s)), q̂(m, δ, s) ≡ q(m, δ, t(δ, s)), and

t(δ, s) is given by (3).

The objective function and constraints after the CPET are

then given by

F̂ (p, δ) =

ne
∑

i=1







nφi
∑

j=1

φij

(

x̂(i,p, δ, α̂ij),p, δ
)

+

∫ i

i−1

fi

(

x̂,p, δ, t(δ, s)
)

v(δ, s) ds

}

, (5)

Ĝ(p, δ) =

ne
∑

i=1







nηi
∑

j=1

ηij

(

x̂(i,p, δ, β̂ij),p, δ
)

+

∫ i

i−1

gi

(

x̂,p, δ, t(δ, s)
)

v(δ, s) ds

}

. (6)

Note that α̂ij and β̂ij are no longer a function of δ.

Henceforth, we shall use the superscript prime notation to

denote the transformed time derivative, i.e., ′ ≡ d
ds

. We are

now able to formally state the transformed hybrid system

and problem.

Definition 6: A CPET hybrid system is the 8-tuple Ĥ =
(M, E , Tµ, p̂, x̂,F ,T 0,T ), where M, E and Tµ are as

defined in Definition 1, and

• p̂ = (p, δ) ∈ P̂ = P × ∆ ⊂ R
np+ne ,

• x̂ : E × P̂ × R → R
nx ,

• F : M× R
nx × P̂ × R → R

nx ,

• T
0 : P̂ → R

nx , and

• T : E \ {ne} × R
nx × P̂ → R

nx .

As before, the elements of M are called the modes of Ĥ.

Tµ is called the hybrid mode trajectory and is the discrete

state variable of Ĥ. p̂ is the vector of parameters. x̂ is the

vector of continuous state variables, and F is the vector field

for x. T
0 are the initial conditions, and T are the transition

functions. E remains the index set for the epochs, which are

defined in the following

Definition 7: The hybrid time trajectory of Ĥ is a finite

sequence of intervals Tτ = {Îi}i∈E where Îi = [σ̂i, τ̂i] =
[i− 1, i]. The Îi are called epochs.

From the previous analysis, the CPET transform of H
subject to assumptions A1-A3 will result in a CPET hybrid

system Ĥ subject to the following assumptions:

B1. P̂ = [p̂L, p̂U ] = [(pL, δL), (pU , δU )] is a nondegen-

erate interval vector. The vector field F(m, ·) for each

m ∈ M is nonlinear in the continuous state variables

x̂ and the parameters p̂ so that for each epoch Îi∈E

the continuous state variables evolve according to the

nonlinear system in (4), written as the following:

x̂′(i, p̂, s) = F(m, x̂, p̂, s), ∀s ∈ (i− 1, i]. (7)

Moreover, ∀(m, i, p̂, x̂) ∈ M × E × P̂ × R
nx ,

F(m, x̂, p̂, ·) is piecewise continuous on epoch Îi with

a finite number of stationary simple discontinuities and

is defined at any point of discontinuity.

B2. The initial conditions T
0 are functions so that the

initial conditions for epoch Î1 are given by:

x̂(1, p̂, 0) = E(0)p + J(0)δ + k(0).

B3. The transition functions T (i, ·) for each i ∈ E \ {ne}
are functions so that the initial conditions for epochs

Îi∈E\{1} are given by:

x̂(i, p̂, i− 1) = D(i− 1)x̂(i− 1, p̂, i− 1)

+E(i− 1)p + J(i− 1)δ + k(i− 1). (8)

Definition 8: Given a value for p̂, the solution, or exe-

cution, of a CPET hybrid system Ĥ subject to assumptions

B1-B3 is x̂(i, p̂, s), s ∈ Îi, i ∈ E where x̂(i, p̂, s) is the

solution of the ODE system in B1 with initial conditions B2

if i = 1 and B3 otherwise.

The major differences between a CPET hybrid system Ĥ
subject to assumptions B1-B3 and a hybrid system H subject

to assumptions A1-A3 are (a) the initial time for Ĥ is fixed

at s = 0, and the durations of all epochs are 1, and (b) the

form of the underlying differential equations for each mode.
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The corresponding relaxations for the implied state bounds

are given by the following:

Definition 9 (Implied State Bounds): Define the follow-

ing convex sets for all i ∈ E . For any fixed s ∈ Îi:

X̂(i, s; P̂ ) ≡ [x̂L(s), x̂U (s)] |

x̂L(s) ≤ x̂(p̂, s) ≤ x̂U (s),∀p̂ ∈ P̂ .

In addition, X̂(i, P̂ ) ≡ [x̂L, x̂U ] | X̂(i, s; P̂ ) ⊂
[x̂L, x̂U ],∀ s ∈ Îi.

The transformed problem is then given by the following

Problem 2:

min
p̂∈P̂

F̂ (p̂)

s.t. Ĝ(p̂) ≤ 0,

where x̂(i, p̂, s) is given by the solution of the embedded

nonlinear hybrid system in Definition 6 subject to assump-

tions B1-B3; F̂ (p̂) and Ĝ(p̂) are given by (5) and (6)

respectively; f̂i and ĝi are piecewise continuous mappings

f̂i : X̂(i, P̂ )×P̂× Îi → R and ĝi : X̂(i, P̂ )×P̂× Îi → R
nc ,

for all i ∈ E , with a finite number of stationary simple

discontinuities; nφi is the number of fixed point objectives

in epoch Îi, α̂ij ∈ Îi and φ̂ij is a continuous mapping

φ̂ij : X̂(i, α̂ij ; P̂ ) × P̂ → R for all j = 1, . . . , nφi and

i ∈ E ; and nηi is the number of fixed point constraints

in epoch Ii, β̂ij ∈ Îi and η̂ij is a continuous mapping

η̂ij : X̂(i, β̂ij ; P̂ ) × P̂ → R
nc for all j = 1, . . . , nηi and

i ∈ E . Additionally, we require that the set Ĝ = {p̂ ∈ P̂ |
Ĝ(p̂) ≤ 0} is nonempty.

Lemma 1: Consider H subject to A1-A3 and Ĥ subject

to B1-B3. Then, for any (p̂, s) ∈ P̂ × Îi, x̂(i, p̂, s) =
x(i,p, δ, t(δ, s)) for all i ∈ E , where t(δ, s) is given by

(3).

IV. CONVEX RELAXATION

To solve Problem 2, a convex relaxation has to be con-

structed for the objective function (5) and constraints (6),

subject to the transformed nonlinear hybrid system. This will

enable a convex relaxation of the problem to be solved.

It is shown later that the constructed convex relaxations

possess the same consistent bounding properties of the

convex relaxation techniques used in their construction. This

implies that their incorporation into a branch-and-bound

framework [9] leads to an infinitely convergent algorithm

[10], which implies ε global optimality within a finite number

of iterations.

The steps for constructing the convex relaxation are out-

lined below:

1) Estimating the implied state bounds, X̂(i, s; P̂ ) in

Definition 9;

2) Constructing convex and concave relaxations for the

states;

3) Applying convex relaxation techniques on subsets of

Euclidean spaces to construct the required convex

relaxation.

Definition 10: Let x̂(i, p̂, s) be the solution of Ĥ subject

to assumptions B1-B3, and let x̂j(i, p̂, s) ∈ X̂j(i, p̂, s) for

each p̂ ∈ P̂ , i ∈ E , j = 1, . . . , nx where X̂j(i, p̂, s) ⊂ R is

a bounding set that is known independently. For each fixed

s ∈ Îi∈E , let ̺j(i, r, s) = inf X̂j(i, r, s) and ςj(i, r, s) =
sup X̂j(i, r, s) for each r ∈ P̂ , j = 1, . . . , nx. Furthermore,

let X̂ (i, s) be defined pointwise in (transformed) time for

each i ∈ E by X̂ (i, s) = [zL, zU ] such that

zL
j = inf

r∈P̂

̺j(i, r, s), z
U
j = sup

r∈P̂

ςj(i, r, s), ∀j = 1, . . . , nx

where zL
j and zU

j are in the extended real number system.

Theorem 1: Consider Ĥ subject to assumptions B1-B3.

If the following conditions are satisfied for all i ∈ E and

j = 1, . . . , nx,

D1. vj(σ̂i) < min
r∈P̂

x̂j(i, r, σ̂i)

D2. wj(σ̂i) > max
r∈P̂

x̂j(i, r, σ̂i)

and additionally for all v(s),w(s) ∈ H(s), s ∈ [i− 1, i],

D3.

v′j = hj(mi,v,w, s; P̂ )

< inf
z∈X̂ (i,s)∩H(s),r∈P̂

zj=vj(s)

Fj(mi, z, r, s)

D4.

w′
j = hj(mi,v,w, s; P̂ )

> sup
z∈X̂ (i,s)∩H(s),r∈P̂

zj=wj(s)

Fj(mi, z, r, s)

where H(s) ≡ {z | v(s) ≤ z ≤ w(s)}, then

v(s) < x̂(i, p̂, s) < w(s), ∀(p̂, s) ∈ P̂ × Îi, i ∈ E .

It is also assumed that the solutions, in the sense of

Carathéodory, to the differential systems in v and w exist

and are unique, for all i ∈ E .

By asserting uniqueness of the solution of the bounding

differential equations, the conditions of the above theorem

may be relaxed to

D1. vj(σ̂i) ≤ min
r∈P̂

x̂j(r, σ̂i)

D2. wj(σ̂i) ≥ max
r∈P̂

x̂j(r, σ̂i)

D3.

v′j = hj(mi,v,w, s; P̂ )

≤ inf
z∈X̂ (i,s)∩H(s),r∈P̂

zj=vj(s)

Fj(mi, z, r, s)

D4.

w′
j = hj(mi,v,w, s; P̂ )

≥ sup
z∈X̂ (i,s)∩H(s),r∈P̂

zj=wj(s)

Fj(mi, z, r, s)
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i.e., replacing the strict inequalities with regular inequalities

(see [11, Remark 12.X]). Furthermore, by asserting regular

inequalities, the result of the theorem also permits

v(s) ≤ x̂(i, p̂, s) ≤ w(s), ∀(p̂, s) ∈ P̂ × Îi, i ∈ E .

We will assume that the uniqueness of the constructed

bounding differential equations hold ∀p̂ ∈ P̂ , s ∈ [0, ne],
and so it is understood that reference to Theorem 1 also

refers to the regular inequalities just described.

The bounding set X̂ (i, p̂, s) makes it possible to tighten

the implied state bounds obtained when physical insight from

the problem in the form of invariants (e.g., conservation laws)

and bounds is available, see [12], [13] for examples.

Theorem 1 enables a hybrid system of bounding differen-

tial equations to be constructed to obtain the following set,

X̂(i, s; P̂ ) ≡ {z | v(s) ≤ z ≤ w(s)}. (9)

The most difficult aspect of applying the theorem lies in

obtaining the extrema in conditions D1 – D4. As stated

in [13], while computing the exact solution to the opti-

mization problem would yield the tightest bounds possible

from the theorem, actually solving the optimization problems

at each integration step in a numerical integration would

be a prohibitively expensive task. Hence, in practice, the

solutions to the optimization problems are estimated by

interval arithmetic [14] pointwise in time.

Corollary 1: Consider Ĥ subject to assumptions B1-B3.

Define the following interval valued functions,

Y (σ̂1) = [yL(σ̂1),y
U (σ̂1)] = E(0)P + J(0)∆ + k(0), (10)

Y (σ̂l+1) = [yL(σ̂l+1),y
U (σ̂l+1)] = D(l)[v(τ̂l),w(τ̂l)]

+E(l)P + J(l)∆ + k(l), ∀l = 1, . . . , ne − 1, (11)

and let Γj(mi, vj , Z(j, i, s), P̂ , s) = [γL
j (mi), γ

U
j (mi)] and

Λj(mi, wj , Z(j, i, s), P̂ , s) = [λL
j (mi), λ

U
j (mi)] be inclu-

sion monotonic interval extensions of Fj(mi, x̂j , x̂k 6=j , p̂, s)
for all i ∈ E , j = 1, . . . , nx, where

Z(j, i, s) = {zk 6=j | cmax(vk 6=j(s),ϕk 6=j(i, s))

≤ zk 6=j ≤ cmin(wk 6=j(s),ψk 6=j(i, s))},

and X̂(i, s; P̂ ) = [ϕ(i, s),ψ(i, s)] is defined in (9) and

obtained from Theorem 1. Then, for all j = 1, . . . , nx,

s ∈ [i− 1, i] and i ∈ E , the following system of differential

equations and initial conditions

v′j = γL
j (mi,v,w, p̂

L, p̂U , s), vj(σ̂i) = yL
j (σ̂i),(12)

w′
j = λU

j (mi,v,w, p̂
L, p̂U , s), wj(σ̂i) = yU

j (σ̂i),(13)

bounds the transformed hybrid system,

v(s) ≤ x̂(i, p̂, s) ≤ w(s), ∀(p̂, s) ∈ P̂ × Îi, i ∈ E .

Next, we will show how convex and concave relaxations

for the states of the transformed hybrid system can be

constructed.

Definition 11: Consider the following functions, f : Z ×
P̂ × S → R and z : S → Z where Z ⊂ R

nx , P̂ ⊂ R
np+ne ,

S ⊂ R and f(·, s) is differentiable on some suitable open

set containing Z × P̂ for each s ∈ S. Define the funtion

Lf |ζ∗(s) : Z × P̂ × S → R to be a linearization of f at the

point ζ∗(s) = (z∗(s), p̂∗) where (z∗(s), p̂∗) ∈ Z × P̂ , and

given by the following:

Lf |ζ∗(s) (z, p̂, s) = f(z∗, p̂∗, s)

+

nx
∑

k=1

∂f

∂zk

∣

∣

∣

∣

∣

(ζ∗(s),s)

(

zk(s) − z∗k(s)
)

+

np
∑

k=1

∂f

∂p̂k

∣

∣

∣

∣

∣

(ζ∗(s),s)

(

p̂k − p̂∗k
)

.

Theorem 2: For i ∈ E and j = 1, . . . , nx, define the

funtions uj(mi, ·, s) : X̂(i, s; P̂ )× P̂ → R and oj(mi, ·, s) :
X̂(i, s; P̂ )× P̂ → R for each fixed s ∈ Îi. Let the following

conditions be satisfied for all i ∈ E , j = 1, . . . , nx and each

fixed s ∈ Îi,

E1. uj(mi, ·, s) is a convex underestimator and oj(mi, ·, s)
is a concave overestimator for Fj(mi, ·, s) on

X̂(i, s; P̂ ) × P̂ ;

E2. uj(mi, ·, s) and oj(mi, ·, s) are differentiable on some

suitable open set containing X̂(i, s; P̂ ) × P̂ along

some reference trajectory ζ∗(s) = (z∗(s), p̂∗) ∈
X̂(i, s; P̂ ) × P̂ ;

and the following ODE system be constructed,

c′j = hc,j(mi, c,C, p̂, s)

= inf
z∈C(p̂,s)

zj=cj(s)

Luj(mi,·)(z, p̂, s)
∣

∣

(ζ∗(s),s)
, s ∈ (i− 1, i],

C ′
j = hC,j(mi, c,C, p̂, s)

= sup
z∈C(p̂,s)

zj=Cj(s)

Loj(mi,·)(z, p̂, s)
∣

∣

(ζ∗(s),s)
, s ∈ (i− 1, i],

with initial conditions for each epoch Îi given by

c(p̂, 0) = C(p̂, 0) = E(0)p + J(0)δ + k(0), (14)

[c(p̂, σ̂l+1),C(p̂, σ̂l+1)]

= D(l)[c(p̂, τ̂l),C(p̂, τ̂l)] + E(l)p + J(l)δ + k(l), (15)

for l = 1, . . . , ne − 1, where C(p̂, s) = {z | c(p̂, s) ≤ z ≤
C(p̂, s)}. Then, for each fixed s ∈ Îi, c(·, s) is a convex

underestimator and C(·, s) is a concave overestimator for

x̂(i, ·, s) on P̂ , for all i ∈ E .

Note that the infima and suprema in Theorem 2 are

attained at the vertices of the set C(p̂, s) due to the properties

of the linearizations, and are easily computed, see [12, The-

orem 6.16]. The next theorem demonstrates the convergence

properties of the convex relaxations constructed using the

relaxation techniques presented in this section.

Theorem 3: Consider the following convex relaxation of
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(5),

Û(p̂; P̂ ) =

ne
∑

i=1






nφi
∑

j=1

ψ̂ij

(

c(p̂, α̂ij),C(p̂, α̂ij), p̂; , X̂(i, α̂ij ; P̂ ), P̂
)

+

∫ i

i−1

ûi

(

c,C, p̂, s; X̂(i, s; P̂ ), P̂
)

v(δ, s) ds







, (16)

where ψ̂ij and ûi are constructed using any relaxation

technique that possesses a consistent bounding operation [10,

Definition IV.4, pg. 128], the convex and concave relaxations

for the state and derivatives are constructed using Theorem

2, and the estimation of the state bounds constructed using

Corollary 1. If the interval vector P̂k in any partition on

P̂ approaches degeneracy P̂ ∗, then the lower bound on

this partition Û(p̂; P̂k) converges pointwise to the objective

function value F̂ (p̂) in this same partition.

V. CONCLUSION

The global optimization problem with continuous time

linear hybrid systems embedded has been considered where

the embedded systems have varying time transitions. The

CPET has been utilized to transform the problem into a

global optimization problem with nonlinear hybrid systems

embedded where the transitions are now fixed in time. A

method of constructing convex relaxations for the trans-

formed problem has been developed that is shown to be

convergent within a branch-and-bound framework.
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