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Abstract— Differential repetitive processes are a distinct class
of continuous-discrete two-dimensional linear systems of both
systems theoretic and applications interest. These processes
complete a series of sweeps termed passes through a set of
dynamics defined over a finite duration known as the pass
length, and once the end is reached the process is reset to
its starting position before the next pass begins. Moreover
the output or pass profile produced on each pass explicitly
contributes to the dynamics of the next one. Applications
areas include iterative learning control and iterative solution
algorithms, for classes of dynamic nonlinear optimal control
problems based on the maximum principle, and the modeling
of numerous industrial processes such as metal rolling, long-
wall cutting, etc. In this paper we develop substantial new
results on optimal control of these processes in the presence
of constraints where the cost function and constraints are
motivated by practical application of iterative learning control
to robotic manipulators and other electromechanical systems.
The analysis is based on generalizing the well-known maximum
and ε-maximum principles to them.

I. INTRODUCTION

Repetitive processes are a distinct class of two-
dimensional (2D) systems of both systems theoretic and
applications interest. The unique characteristic of such a
process is a series of sweeps, termed passes, through a set of
dynamics defined over a fixed finite duration known as the
pass length. On each pass an output, termed the pass profile,
is produced which acts as a forcing function on, and hence
contributes to, the dynamics of the next pass profile. This, in
turn, leads to the unique control problem in that the output
sequence of pass profiles generated can contain oscillations
which increase in amplitude in the pass-to-pass direction.

To introduce a formal definition, let α < +∞ denote the
pass length (assumed constant). Then in a repetitive process
the pass profile yk(t), 0 ≤ t ≤ α, generated on pass k acts as
a forcing function on, and hence contributes to, the dynamics
of the next pass profile yk+1(t), 0 ≤ t ≤ α, k ≥ 0.

Physical examples of repetitive processes include long-
wall coal cutting and metal-rolling operations (see, for ex-
ample, the references cited in [16]). Also in recent years
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applications have arisen where adopting a repetitive process
setting for analysis has distinct advantages over alternatives.
Examples of these so-called algorithmic applications include
classes of iterative learning control (ILC) schemes (see, for
example [1]–[3], [12], [13]) and iterative algorithms for
solving nonlinear dynamic optimal control problems based
on the maximum principle [14]. In the case of iterative
learning control for the linear dynamics case, the stability
theory for differential (and discrete) linear repetitive pro-
cesses is one method which can be used to undertake a
stability/convergence analysis of a powerful class of such
algorithms and thereby produce vital design information
concerning the trade-offs required between convergence and
transient performance.

Attempts to control these processes using standard (or 1D)
systems theory and associated algorithms fail (except in a
few very restrictive special cases) precisely because such an
approach ignores their inherent 2D systems structure, i.e.,
information propagation occurs from pass to pass and along
a given pass. Also the initial conditions are reset before the
start of each new pass, and the structure of these can be
somewhat complex. For example, if they are an explicit func-
tion of points on the previous pass profile, then this alone can
destroy stability. In seeking a rigorous foundation on which
to develop a control theory for these processes, it is natural
to attempt to exploit structural links which exist between
these processes and other classes of 2D linear systems. In
this paper we consider so-called differential linear repetitive
processes where information propagation along the pass is
governed by a matrix differential equation. The systems
theory for 2D discrete linear systems (such as the optimal
control results in [4]) and, in particular, the extensively
studied Roesser [15] and Fornasini Marchesini [8] state-
space models is not applicable.

In this paper we develop substantial new results on the
optimal control of differential linear repetitive processes with
constraints which we motivate from the iterative learning
control application. The results themselves are obtained
by extending the maximum principle and the ε-maximum
principle [10] to them. A sensitivity analysis of the result-
ing optimal control is also undertaken, and some relevant
differentiation properties are established. The proofs of the
results given, together with a numerical example and further
analysis, can be found in [7].
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II. PRELIMINARIES

Suppose now that the plant dynamics are described by the
following matrix differential equation over 0 ≤ t ≤ α, k ≥ 0

dxk(t)
dt

= Axk(t) +Dxk−1(t) + buk(t), (1)

where, on pass k, xk(t) is the n× 1 state (equal to the pass
profile or output) vector, uk(t) is the scalar control input,
A,D are constant n × n matrices, and b is a given n × 1
vector. (This model is chosen for simplicity of presentation
and is easily extended to the case when the pass profile vector
is a linear combination of the current pass state, input, and
previous pass profile vectors.)

In each practical application only a finite number of
passes will actually be completed. Hence one approach to
the control of these processes is to formulate an optimal
control problem where the cost function to be minimized is
actually the sum of the cost function for each pass. Suppose
therefore that N <∞ denotes the number of passes actually
completed, introduce the set K = {1, 2, . . . , N}, and let T
denote the finite interval (the pass length) [0, α]. Then, with
the above observations in mind, consider (1) with boundary
conditions

xk(0) = dk, k ∈ K, x0(t) = f(t), t ∈ T, (2)

where dk is an n×1 vector with constant entries and f(t) is
a known function t ∈ T. Then the optimal control problem
considered is

max
uk

J(u), J(u) =
∑
k∈K

pT
k xk(α), (3)

where pk, k = 1, . . . , N , is a given n× 1 vector subject to
an end of pass (or terminal) constraint of the form

Hkxk(α) = ok, k ∈ K, (4)

where ok is an m × 1 vector and Hk is an m × n matrix,
and the control inputs satisfy the following admissibility
condition.

Definition 1: For each pass number k ∈ K the piecewise
continuous function uk : T → R is termed an admissible
control for this pass if it satisfies

|uk(t)| ≤ 1, t ∈ T, (5)

and the corresponding state vector xk(t), t ∈ T, of (1)
satisfies the boundary conditions

xk(0) = dk, Hkxk(α) = ok.

Also, without loss of generality, we assume that the matrix
A has simple eigenvalues λi, 1 ≤ i ≤ n, and that it is stable
in the sense that Re λi < 0, 1 ≤ i ≤ n. (Stability of the
matrix A is a necessary condition for so-called stability along
the pass (essentially bounded input bounded output stability)
independent of the pass length [16].)

III. OPTIMALITY CONDITIONS FOR THE SUPPORTING
CONTROL FUNCTIONS

Consider first (1)–(2) in the absence of the terminal
conditions (4). Then it has been shown elsewhere [5] that
the solution of these equations can be written as

xk(t) =
k∑

j=1

Kj(t)dk+1−j +
∫ t

0

Kk(t− τ)Df(τ)dτ

+
k∑

j=1

∫ t

0

Kj(t− τ)buk+1−j(τ)dτ,

k = 1, . . . , N, (6)

where the Ki(t) are the solutions of the following n × n
matrix differential equations:

K̇1(t) = AK1(t),
K̇i(t) = AKi(t) +DKi−1(t), i = 2, . . . , N, (7)

with initial conditions

K1(0) = In, Ki(0) = 0, i = 2, . . . , N. (8)

ow by using (6) we can rewrite the optimal problem consid-
ered here in the following integral form:

max
u1,...,uN

J(u), J(u) =
N∑

j=1

∫ α

0

cj(τ)uj(τ)dτ + γ, (9)

subject to the terminal conditions (4) and the control con-
straint (5). Also we can write∫ α

0

g11(τ)u1(τ)dτ = h1,∫ α

0

[
g21(τ)u1(τ) + g22(τ)u2(τ)

]
dτ = h2,

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .∫ α

0

[
gN1(τ)u1(τ) + · · ·+ gNN (τ)uN (τ)

]
dτ = hN ,

(10)

and

|uk(τ)| ≤ 1, τ ∈ T, k = 1, . . . , N,

where the scalar γ and the scalar functions cj(τ) are defined
as follows

γ =
N∑

k=1

k∑
j=1

pT
kKj(α)dk+1−j

+
N∑

k=1

∫ α

0

pT
kKk(α− τ)Df(τ)dτ,

cj(τ) =
N∑

k=j

pT
kKk+1−j(α− τ)b, j = 1, . . . , N,

gkj(τ) = HkKk+1−j(α− τ)b, j ≤ k,

hk = ok −
k∑

j=1

HkKj(α)dk+1−j

−
∫ α

0

HkKk(α− τ)Df(τ)dτ, k = 1, . . . , N.
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Also we require the following.
Definition 2: For each fixed k, 1 ≤ k ≤ N, the time

instances τki, 1 ≤ i ≤ m : 0 < τk1 < τk2 < · · · <
τkm < α are termed supporting, and their collection τk

sup :={
τk1, . . . , τkm

}
is termed the support of pass k for (1)–(4) if

the matrix Gk
sup := {gkk(τk1), . . . , gkk(τkm)} (i.e., the jth

column of the matrix here is the m × 1 vector gkk(τkj)) is
nonsingular.
By using (7) we have that gkk(τ) = Hke

A(α−τ)b. Therefore
the existence of the support τk

sup is guaranteed by controlla-
bility of the pair {HkA, b}.

Definition 3: A pair
{
τk
sup, uk(t), k = 1, . . . , N

}
con-

sisting of a support τk
sup and admissible control functions

uk(t), t ∈ T is termed a supporting control function for (1)–
(4).

Remark 1: These last two definitions are motivated as
follows. Often an optimal control problem solution has the
so-called bang-bang form; i.e., the control function takes
only boundary values in the admissible set U . If U = {−1 ≤
u ≤ +1}, then u0(t) = ±1 (the “switch-on/switch-off”
regime). Also the switching times are constructive elements
in the design of the optimal controller. Hence, our goal
is to apply these key elements directly to the optimality
conditions, and consequently we use the supporting time
instances and control.

Let
{
τk
sup, uk(t), k = 1, . . . , N

}
be a support con-

trol function and construct a sequence of m × 1 vectors{
ν(k), k = 1, . . . , N

}
by solving the following set of linear

algebraic equations:

(ν(N))TGN
sup − c(N)

sup = 0,

(ν(N−1))TGN−1
sup + (ν(N))TFN

(N−1)sup − c(N−1)
sup = 0,

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

(ν(1))TG1
sup+(ν(2))TF 2

1sup+· · ·+(ν(N))TFN
1sup−c(1)sup = 0,

where the 1×m vectors c(k)
sup and the m×m matrices F k

jsup

are given by

c(k)
sup :=

(
ck(τk1), . . . , ck(τkm)

)
, k = 1, . . . , N,

and for k > j, j = 1, . . . , N − 1,

F k
jsup :=

(
gkj(τj1), . . . , gkj(τjm)

)
,

respectively.
Introduce the 1×mN vectors (ν̂)T and csup as

(ν̂)T = ((ν(1))T , . . . , (ν(N))T ),
csup = (c(1)sup, c

(2)
sup, . . . , c

(N)
sup ),

Then the linear algebraic equations above can be rewritten
in the form

ν̂T G̃sup − csup = 0, (11)

where the mN × mN lower triangular matrix G̃sup is
(Definition 2) nonsingular and therefore ν̂T = csupG̃

−1
sup.

To establish the new optimality conditions, define the so-
called co-control 1×N vector function

∆(t) = (∆1(t), . . . ,∆N (t)),

as

∆1(t) = ν(1)T g11(t) + ν(2)T g21(t) + · · ·
+ ν(N)T gN1(t)− c1(t),

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

∆N−1(t) = ν(N−1)T gN−1N−1(t) + ν(N)T gNN−1(t)
− cN−1(t),

∆N (t) = ν(N)T gNN (t)− cN (t),

or, on introducing the 1×N vector function,

c(t) = (c1(t), . . . , cN (t)),

∆(t) = ν̂T Ĝ(t)− c(t),

where Ĝ(t) is an mN ×N matrix of the form

Ĝ(t) =


g11(t) 0m×1 . . . 0m×1

g21(t) g22(t) . . . 0m×1

. . . . . . . . . . . .
gN1(t) gN2(t) . . . gNN (t)

 . (12)

Note also that the mN ×mN matrix G̃sup is obtained from
Ĝ(t) in an obvious manner by evaluating the rows of the
matrix Ĝ(t) at the supporting moments t ∈ τk

sup, k =
1, . . . , N.

Definition 4: We say that the supporting control function
{τk

sup, uk(t), k = 1, . . . , N} is non-degenerate for the prob-
lem (1)–(3) if

d∆k(τj)
dt

6= 0 ∀ τj ∈ τk
sup, k = 1, . . . , N.

Remark 2: Here nondegeneracy means that in a small
neighborhood of the supporting points the admissible control
can be replaced by constant functions whose values are less
than those on the control constraint boundary and satisfy
(10); i.e., the support control function is nonsingular if there
exist numbers λ0 > 0, µ0 > 0, uk

j (λ), j = 1, . . . ,m, k =
1, . . . , N , such that the following equalities:

k∑
j=1

m∑
i=1

ui
j(λ)

∫ τij+λ

τij−λ

gkj(t)dt =
k∑

j=1

m∑
i=1

∫ τij+λ

τij−λ

X

X = gkj(t)uj(t)dt,
|uk

j | ≤ 1− µ0, (13)

j = 1, . . . ,m, k = 1, . . . , N , hold for all λ, 0 < λ < λ0,
and k, 1 ≤ k ≤ N . This fact is used in the proof of the
optimality conditions.
Associate with each supporting time instance τkj a small
subinterval Tkj from T such that the matrix Gk

gen :={ ∫
Tkj

gkk(τ)dτ, j = 1, . . . ,m
}

is nonsingular. Also without
loss of generality we can assume that τkj is one or the other
of the end points of Tkj and the supporting control functions
uk(t) = uk

j for t ∈ Tkj , j = 1, . . . , N, are constant over the
segments Tkj . Then we have the following result.
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Theorem 1: A supporting control function
{τk

sup, u0
k(t), k = 1, . . . , N} is an optimal solution

of the problem (1)–(4) if

u0
k(t) = −sgn

(
∆k(t)

)
, k = 1, . . . , N, t ∈ T. (14)

Moreover, if this supporting control function is non-
degenerate, then the above condition is necessary and suffi-
cient.

Remark 3: The analysis which now follows shows that the
above result can be reformulated in the traditional maximum
principle form. In particular, it will be shown that the
co-control functions ∆k(t), t ∈ T , here are connected
directly to the adjoint (dual) variables ψk(t), t ∈ T , as
∆k(t) = −ψT

k (t)b. Note also that the term ψT
k (t)b is part

of the Hamiltonian function which arises in the maximum
principle statement of the result here. Moreover, the vectors
{ν(k), k = 1, . . . , N} (termed Lagrange multipliers in some
literature) will be used as the boundary conditions for the
corresponding differential equations describing the adjoint
(dual) variables ψk(t) (in contrast to the classic maximum
principle, where such boundary conditions are not specified).

Let ψN (t) be the solution of

dψN (t)
dt

= −ATψN (t), ψN (α) = pN −HT
Nν

N , t ∈ T,
(15)

or
ψN (t) = KT

1 (α− t)ψ(α), t ∈ T. (16)

Hence

ψT
N (t)b =

(
pT

N − (νN )THN

)
K1(α− t)b,

= pT
NK1(α− t)b− (νN )THNK1(α− t)b,

= cN (t)− (νN )T gNN (t) = −∆N (t). (17)

In order to verify the validity of the corresponding con-
ditions for subsequent passes, let ψN−1(t), t ∈ T, be a
solution of the differential equation

dψN−1(t)
dt

= −ATψN−1(t)−DTψN (t),

ψN−1(α) = pN−1 −HT
N−1ν

N−1, t ∈ T. (18)

Then it follow that

ψT
k (t)b = −∆k(t), k = 2, . . . , N, (19)

where ψk(t), t ∈ T, are the solutions of the following
differential equations:

dψk(t)
dt

= −ATψk(t)−DTψk+1(t),

ψk(α) = pk −HT
k ν

k, t ∈ T. (20)

For each k = 1, . . . , N introduce the associated Hamilton
function as

Hk(xk−1, xk, ψk, uk) = ψT
k

(
Axk +Dxk−1 +buk

)
, t ∈ T.

(21)
Then the use of (19) yields that the optimality conditions
(14) can be reformulated in maximum principle form as the
following corollary to Theorem 1.

Corollary 1: The admissible supporting control
{τk

sup, u0
k(t), k = 1, . . . , N} is optimal if along the

corresponding trajectories x0
k(t), ψk(t) of (1)–(2) and (20)

the Hamiltonian function has maximum value, i.e.,

Hk(x0
k−1(t), x

0
k(t), ψk, u

0
k(t)) = Y, t ∈ T, (22)

Y = max
|v|≤1

Hk(x0
k−1(t), x

0
k(t), ψk, v),

for k = 1, . . . , N . If the admissible supporting control is non-
degenerate, then this condition is necessary and sufficient.

Remark 4: In order to further emphasize the relationship
between the support elements and the control function, note
that the optimality conditions given by Theorem 1 can be
equivalently stated in the form for t ∈ T

∆k(t) > 0 at u0
k(t) = −1, ∆k(t) < 0 at u0

k(t) = 1,
∆k(t) = 0 at − 1 < u0

k(t) < 1, k = 1, 2, . . . , N, (23)

Hence the supporting elements and control function of op-
timal solution are interconnected such that the supporting
instances are the switching moments for optimal bang-bang
control functions.
In the next section, the maximum principle for arbitrary
admissible control functions of (1)–(4) is established using
the sub-optimality conditions.

A. ε-optimality conditions
Often in the numerical implementation of optimal control

algorithms it is beneficial to exploit approximate solutions
with corresponding error estimation. Hence it is necessary to
introduce the “sub-optimality” concept as it is often sufficient
to stop the numerical computations when a satisfactory
accuracy level has been achieved.

Assume that {u0
k(t), k ∈ K} is the optimal control for

(1)–(4), and let J(u0) denote the corresponding optimal cost
function value.

Definition 5: We say that the admissible control function
{uε

k(t), k ∈ K} is ε-optimal if the corresponding solution
{xε

k(t), t ∈ T, k ∈ K} of (1)–(4) satisfies J(u0)−J(uε) ≤
ε.

Now we proceed to calculate an estimate of a supporting
control function

{uk, τ
k
sup, k ∈ K, t ∈ T},

i.e., a measure of the non-optimality of the control. Note
also that this estimate can be partitioned into two principal
parts: one of which evaluates the degree of non-optimality
of the chosen admissible control functions uk(t), and the
second the error produced by non-optimality of the support
τk
sup. This partition is a major advantage in the design of

numerically applicable solution algorithms.
Introduce an estimate of optimality β = β(τsup, u) as the

value of the maximum increment for the cost function here
calculated in the absence of the principal constraints (4); i.e.,
this estimate is given by the solution of the following relaxed
optimization problem:

max
∆uk

∆J(u), |uk(t) + ∆ku(t)| ≤ 1, t ∈ T, k = 1, . . . , N.

(24)
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It is easy to see that

β = β(τsup, u) =
N∑

k=1

∫
T+

k

∆k(t)(uk(t) + 1)dt

+
N∑

k=1

∫
T−k

∆k(t)(uk(t)− 1)dt, (25)

where

T+
k =

{
t ∈ T : ∆k(t) > 0

}
, T−k =

{
t ∈ T : ∆k(t) < 0

}
,

and we have the following result.
Theorem 2 (ε-maximum principle): Given any ε ≥ 0, the

admissible control {uk(t), t ∈ T, k ∈ K} is ε-optimal
for (1)–(4) if and only if there exists a support {τk

sup, k ∈ K}
such that along the solutions xk(t), ψk(t), t ∈ T, k ∈ K,
of (1)–(4) and (20) the Hamiltonian attains its ε-maximum
value, i.e.,

Hk(xk−1(t), xk(t), ψk, uk(t)) = Ŷ , t ∈ T, (26)

Ŷ = max
|v|≤1

Hk(xk−1(t), xk(t), ψk, v)− εk(t),

where the functions εk(t), k ∈ K, satisfy the following
inequality: ∑

k∈K

∫
T

εk(t)dt ≤ ε. (27)

The maximum principle now follows from this last result
on setting ε = 0 as stated formally in the following corollary.

Corollary 2: The admissible control {u0
k(t), k ∈ K, t ∈

T} is optimal if and only if there exists a support {τ0k
sup, k ∈

K} such that the supporting control {u0
k(t), τ0k

sup, t ∈ T, k ∈
K} satisfies the maximum conditions

max
|v|≤1

Hk

(
x0

k−1(t), x
0
k(t), ψk, v

)
= Ĥk,

Ĥk = Hk

(
x0

k−1(t), x
0
k(t), ψk, u

0
k(t)

)
,

for all k ∈ K, t ∈ T, where ψk(t) are the corresponding
solutions of (20).

IV. DIFFERENTIABLE PROPERTIES OF THE OPTIMAL
SOLUTIONS

An important aspect of the optimization theory is sensitiv-
ity analysis of optimal controls since, in practice, the system
considered can be subject to disturbances or parameters in
the available model can easily arise. Mathematically, pertur-
bations can, for example, be described by some parameters in
the initial data, boundary conditions, and control and state
constraints. Hence it is clearly important to know how a
problem solution depends on these parameters, and in this
section we aim to characterize the changes in the solutions
developed due to “small” perturbations in the parameters.
This could, in turn, enable us to design fast and reliable real-
time algorithms to correct the solutions for these effects. As
shown next, the major advantage of the constructive approach
developed in this paper is that the sensitivity analysis and
some differential properties of the optimal controls under
disturbances can be analyzed.

Suppose that disturbances influence the initial data for (1)–
(4). In particular, consider the system (1)–(4) on the interval
Ts = [s, α] with the initial data xk(s) = zk, zk ∈ Gk, k ∈ K,
where Gk ⊂ Rn is some neighborhood of the point xk = dk

and s belongs to the neighborhood G0 of t = 0. We also
assume that the following regularity condition holds: For the
given disturbance domain Gk, k ∈ K ∪ {0}, the structure of
the optimal control functions for the non-disturbed data is
preserved; i.e., the number of switching instances together
with their order is constant.

Using Theorem 1, the optimal controls {u0
k(t, s, z), k ∈

K} are determined by the supporting time instances τkj =
τkj(s, z), k ∈ K, j = 1, . . . ,m, which are dependent on
the disturbances (s, zk), s ∈ G0, zk ∈ Gk, k ∈ K. Here
we study the differential properties of the functions τkj =
τkj(s, z), k ∈ K, j = 1, . . . ,m, and for ease of notation we
set τ ≡ τ(s, z) =

{
τkj(s, z), k ∈ K, j = 1, . . . ,m

}
, z =

{zk, k ∈ K} in what follows.
Theorem 3: If (1)–(4) is regular, then for any k ∈ K and

j = 1, . . . ,m the functions τkj = τkj(s, z) are differentiable
in the domain G0 ×Gk ⊂ R× Rn.
The differential properties of the optimal controls developed
above can be used for sensitivity analysis and the solution
of the synthesis problem considered here. In particular, the
supporting control approach [9] can be used to produce the
differential equations for the switching time functions τ(s, z)
necessary to design the optimal controllers. In a similar
manner to [6] it can be shown that these satisfy the following
differential equations:

G
∂τ

∂s
+Q =

∂h

∂s
, P

∂τ

∂z
=
∂h

∂z
, (28)

where h(s, z) = (h1(s, z), . . . , hm(t, s)) is an mN × 1-
vector and the matrices G,Q, P are defined (see [6]) by those
defining the process dynamics and information associated
with the disturbance-free optimal solution. For example, G =
ΛG̃sup, where the compatibly dimensioned block matrix Λ
is constructed by the disturbance-free optimal control values
u0

k(t); k = 1, . . . , N calculated in the supporting moments
τkj from τ0

sup. Also, by Theorem 1, these values are equiva-
lent to the values of d∆i(τkj)

dt evaluated for the corresponding
indexes i; j; k, where the functions ∆i(t); i = 1, . . . , N are
designed using the switching times of the basic optimal con-
trol function. Note also that analogous differential equations
can be established for the optimal values of the cost function
(treated as the function J(s, z) ≡ J(u(τ(s, z))).

Remark 5: The equations (28) are (sometimes) termed
Pfaff differential equations and model an essentially distinct
class of continuous nD systems. The main characteristic
feature of this model is that it is over-determined (the number
of equations exceeds the unknown functions). It can also
be shown that if the non-degenerate assumption on the
supporting control functions holds, then so do the so-called
Frobenious conditions which guarantee the existence and
uniqueness of solutions of the Pfaff differential equations.
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V. CONCLUSIONS

In this paper the supporting control functions approach
has been applied to study an optimal control problem for
differential linear repetitive processes. The main contri-
bution is the development of constructive necessary and
sufficient optimality conditions in forms which can be
effectively used for the design of numerical algorithms.
The iterative method developed in this work is based on
the principle of decrease of the sub-optimality estimate;
i.e., the iteration {τk

sup, uk(t), k = 1, . . . , N} →
{τ̂k

sup, ûk(t), k = 1, . . . , N} is performed in such a way as
to achieve β(τ̂sup, û) < β(τsup, u). Moreover, it is proved
in [7] that the sub-optimality estimate is the sum of and
hence the iteration procedure can be separated into two
stages: (i) transformation of the admissible control functions
{uk(t), k = 1, . . . , N} → {ûk(t), k = 1, . . . , N}, which
decreases the non-optimality measure of the admissible
controls β(û) < β(u), and (ii) variation of the support
{τk

sup, k = 1, . . . , N} → {τ̂k
sup, k = 1, . . . , N} to again

decrease the non-optimality measure of the support, i.e.,
β(τ̂sup) < β(τsup). These transformations involve, in effect,
the duality theory for the problems defined in this work and
exploit the ε-optimality conditions also developed in this
work. These results are the first in this general area, and
work is currently proceeding in a number of followup areas.
One such area is sensitivity analysis of optimal control in the
presence of disturbances, where in the case of the ordinary
linear control systems some work on this topic can be found
in, for example, [11].
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