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Abstract— A network of nodes communicate via noisy chan-
nels. Each node has some real-valued initial measurement or
message. The goal of each of the nodes is to acquire an
estimate of a given function of all the initial measurements
in the network. We survey our recent results that relate
limitations imposed by the communication constraints to the
nodes’ performance in computing the desired function. In
particular, we determine a lower bound on computation time
that must be satisfied by any algorithm used by the nodes to
communicate and compute, so that the mean square error in
the nodes’ estimates is within a given interval around zero.

We apply the lower bound to a specific scenario where we find
the bound to be asymptotically tight. Specifically, we consider a
scenario where nodes are required to learn a linear combination
of the initial values in the network while communicating over
erasure channels. Our results suggest that in this scenario,
the computation time depends reciprocally on “conductance.”
Conductance is a property of the network which captures the
information-flow bottle-neck that arises due to topology and
channel capacities.

I. INTRODUCTION

We consider a network of nodes communicating via noisy

channels. Each node has some real-valued initial measure-

ment or message. The goal of each of the nodes is to acquire

an estimate of a given function of all the initial measurements

in the network.

We seek to understand the limitations imposed by the

communication constraints on the nodes’ performance in

computing the desired function. The performance is mea-

sured by the mean square error in the nodes’ estimates of

the desired function. The communication constraints consist

of (1) the topology of the network, that is, the connectivity

of the nodes, and (2) the noisy channels between nodes

that communicate. In order to capture the limitation due

to the communication constraints, we assume that that the

nodes have unlimited computation capability. Each node can

perform any amount of computation as well as encoding and

decoding for communication.

The formulation we consider lends itself to Informa-

tion Theoretic techniques. We use Information Theoretic

inequalities to derive lower bounds on information exchange

necessary between nodes for the mean square error in the

nodes’ estimates to converge to zero. We use the Information

Theoretic technique to determine a lower bound on computa-

tion time that must be satisfied by any algorithm used by the

nodes to communicate and compute, so that the mean square

error in the nodes’ estimates is within a given interval around

zero. The bound is in terms of the channel capacities, the size

of the desired interval, and the uncertainty in the function to

be computed.

Next, we apply the lower bound developed in this paper to

a specific scenario where we find our bounds to be asymp-

totically tight. Specifically, we consider a scenario where

nodes are required to learn a linear combination of the initial

values in the network while communicating over erasure

channels. Our lower bound suggests that in this scenario,

the computation time depends reciprocally on “conductance.”

Conductance essentially captures the information-flow bottle-

neck that arises due to topology and channel capacities. The

more severe the communication limitations, the smaller the

conductance.

To establish the tightness of our lower bound, we describe

an algorithm whose computation time matches the lower

bound. The algorithm that we describe here can in fact be

more generally used for distributed computation of separable

functions, a special case of which is the sum. The desired

function, a sum, is simple, and the algorithm that we describe

has computational demands that are not severe. So, the time

until the performance criterion is met using this algorithm is

primarily constrained by the limitations on communication.

Indeed, we show that the upper bound, on the time until

this algorithm guarantees the performance criterion, depends

reciprocally on conductance. Hence, we conclude that that a

lower bound we derive using Information Theoretic analysis

is tight in capturing the limitations due to the network

topology. Alternatively, one can interpret this tightness as

the fact that the algorithm we describe here is the fastest

with respect to its dependence on the network topology, as

quantified by the conductance.

A. Comparison to Other Work

Existing results include algorithms with upper and/or

lower bounds on the time for the nodes to reach agreement

or compute a certain quantity with given accuracy, when

communication is subject to topological constraints, but

perfect when present [2], [3], [15], [14]. Another set of

work investigates algorithms for computation when com-

munication is unreliable. The channels in the network are

explicitly modelled. The researchers propose an algorithm

that will perform the desired computation while satisfying
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some performance criterion. For example, in [5], each node

in the network has one bit. Nodes broadcast messages to

each other via binary symmetric channels. The goal is for

a fusion center to compute the parity of all the bits in the

network. Gallager proposes an algorithm that can be used

while guaranteeing a desired probability of error. He exhibits

an upper bound that is a constant multiple of the bits that

must be transmitted per node. Recently, it has been shown

in [7] that this algorithm is optimal. The authors produce an

algorithm-independent lower bound that is of the same order

as the upper bound.

Many different formulations and corresponding bounds

can be found in the literature. Two examples are [4], [8].

In [4], the authors derive Information Theoretic bounds

on the number of bits that must be exchanged for nodes

communicating via noiseless channels to acquire each other’s

data. In [8], the authors present lower bounds to the number

of messages that must be communicated by two sensors to a

fusion center that must determine a given function of the

nodes’ data. However, the transmitted messages are real-

valued vectors and the lower bound is on the sum of the

dimensions of the message functions. Several formulations

and results relevant to computation in wireless sensor net-

works can be found in a detailed survey by Giridhar and

Kumar [6].

Our approach and, hence results, are quite different. We

capitalize on Martins’ successful use of Information The-

oretic tools in [9], [10], [11], [12] to characterize funda-

mental performance limits of feedback control systems with

communication constraints. We use Information Theoretic

inequalities, reminiscent of those of Rate-Distortion theory,

in a different setting with different objectives. In particular,

we have a network of nodes whose objective is to compute a

given function of the nodes’ data, rather than to communicate

reliably to each other their data.

The Information Theoretic approach captures fundamental

performance limitations that arise in the network due to

the communication constraints. This happens because the

analysis is independent of the communication algorithm

used by the nodes. The lower bound we derive in this

paper enables us to characterize the effect of the network

structure on algorithm running time. For nodes exchanging

information over erasure channels to compute the sum of

their initial conditions, the lower bound is indeed tight in

capturing the network constraints.

In the next two sections, we describe the problem for-

mulation and state our main theorems. In section IV we

motivate our use of conductance to capture the effects of

the underlying network structure on computation time. All

proofs are omitted here, but can be found in [1].

II. PROBLEM FORMULATION

A network consists of n nodes, each having a random

initial condition or value. We represent the initial condition

at node i by the random variable Xi(0). Let X(0) represent

the vector of all the initial condition random variables,

[X1(0) . . . Xn(0)]′. Each node is required to compute a

given function of all the initial conditions. That is, node

i is required to estimate Ci = fi(X(0)). We let C =
[C1 . . . Cn]′. Suppose that nodes 1 to m belong to set S.
Whenever we use a set as a subscript to a variable, we mean

the vector whose entries are that variable subscripted by the

elements of the set. For example, CS = [C1 . . . Cm]′.
We assume that time is discretized into intervals, and

enumerated by positive integers, {1, 2, . . . }. During each

time step, a node can communicate with its neighbors. At

the end of time-slot k, node i uses the information it has

received thus far to form an estimate of Ci. We denote this

estimate by Xi(k). Let, Xk
i denote the finite sequence of

estimates at node i, {Xi(1),Xi(2), . . . Xi(k)}. The estimates

of all nodes in the network at the end of time slot k are

denoted by the vector X(k) = [X1(k) . . . Xn(k)]′. And,

the estimates of nodes in set S are denoted by XS(k) =
[X1(k) . . . Xm(k)]′.

The nodes communicate via noisy channels. The network

structure is described by a graph, G = (V,E), where V
is the set of nodes and E is the set of edges, (i, j). If

node i communicates with node j via channel with capacity

Cij > 0, then (i, j) ∈ E. If (i, j) /∈ E, we set Cij = 0. 1

We assume that all channels in the network are independent

memoryless discrete-time. Further, for each of the channels,

one channel symbol is sent per τc = 1 time units. Each node

generates an input for its encoder every τ time units, and by

the kth input generated, Xi(k), N channel digits have been

sent; so, Nτc = kτ . When τc = 1, the time T until the kth

node estimate, Xi(k), has been generated is T = kτ. With

no loss of generality, we assume in what follows that τ = 1.
So, Xi(k) = Xi(T ).

To capture the limitations arising exclusively due to the

communication structure, we assume no limits on the compu-

tational capabilities of the nodes, such as limited memory or

power. The estimate Xi(k) is generated by node i using some

function of its initial condition, Xi(0), and the messages it

has received by the end of the kth time slot. Similarly, the

messages that the node communicates with other nodes are

a function of the node’s initial condition and messages it

has received in the past. We make no assumptions on these

functions, except that they be measureable.

We consider two mean square error criteria. The operator

‖ · ‖ is to be interpreted, when the argument is a vector, C,

as ‖C‖2 =
∑

C2
i .

R1. E(‖X(T ) − C‖2) ≤ β2−α, and,

R2. E(Xi(T ) − Ci)
2 ≤ β2−α, for all i ∈ {1, . . . , n},

where β, α ∈ R
+\{0}.

The first criterion requires that as the number of nodes

increases, the per node error is also smaller. It suggests

that as the number of nodes, n, increases, we require the

mean square errors at each of the nodes, E(Xi(k) − Ci)
2

to decrease like 1/n. This criterion is appropriate if, for

1Note that we use bold capitalized Cij for channel capacity, where the
two letters in the subscript indicate that the channel is from node i to j.
Constrast this with our notation for the function to be estimated at node i,
Ci, which is not boldface and is followed by a single-letter subscript.
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example, the initial values at the nodes are independent and

each node is to estimate the average of the initial values in

the network. As the number of nodes increases, the variance

of the average decreases. In circumstances where this does

not happen, the second criterion may be more appropriate.

The “computation time” is the first time at which the

desired performance criterion holds. We seek a lower bound

on the computation time, T, that holds if the desired mean

square error criterion, R1 or R2, is satisfied. That is, if R1

or R2 holds, then how large must T be?

A. Features of This Formulation

Our formulation (and results) are appropriate for networks

with severe communication constraints. These include cases

where

1) channel capacities are diminished, due to loss of trans-

mission power, for example, or,

2) network topology creates information-flow bottlenecks.

We place few assumptions on how the nodes communicate

and compute their estimates. Namely, each node can use

only its own initial measurement and past received messages.

But, we do not specify how the node makes its computation

or exchanges messages. Hence, our lower bound reveals

the smallest time that must elapse before it is possible to

acheive the performance desired, over all communication

and computation schemes that satisfy our assumptions. The

necessity of having this time elapse arises due to network

topology and channel capacities.

III. MAIN RESULTS

A. Computation via Noisy Channels: The Lower Bound

The first main theorem of this paper provides a lower

bound to computation time as a function of the accuracy

desired, as specified by the mean square error, and the

uncertainty in the function that nodes must learn, as captured

by the differential entropy.

Theorem III.1. For the communication network described

above, if at time, T, the mean square error is in an interval

prescribed by α, E(Xi(T ) − Ci)
2 ≤ β2−α, for every node,

then T is lower bounded by

T ≥ max
S⊂V

L̄(S)
∑

i∈Sc

∑

j∈S Cij
,

where Sc = V \S and,

L̄(S) = h(CS |XS(0)) −
|S|

2
log 2πeβ + |S|

α

2
.

This theorem captures the fact that the larger the un-

certainty in the function to be estimated, or the larger the

desired accuracy, the longer it must take for any algorithm

to converge.

B. Computation of Summation Over Erasure Channels: A

Tight Upper Bound

A network consists of n nodes, each having a random

initial condition, denoted by the random variable Xi(0).
Suppose the initial values at the nodes are independent and

uniformly distributed, Xi(0) ∼ U [1, B + 1]. Each node

is required to compute a linear function of all the initial

conditions, C =
∑n

j=1 βjXj(0). Node i’s estimate of C at

time k is denoted as Xi(k).

The nodes communicate via noisy channels is described

by a graph, G = (V,E), where V is the set of nodes and

E is the set of edges, (i, j). If node i communicates with

node j via channel with capacity Cij > 0, then (i, j) ∈ E.

If (i, j) /∈ E, we set Cij = 0. We assume that the graph is

connected.

We assume that all channels in the network are indepen-

dent memoryless discrete-time. Further, for each of the chan-

nels, one channel symbol is sent per time unit. We assume

that the channels are symmetric, Cij = Cji. Furthermore,

they are log M -bit erasure channels: with probability pij

node j receives log M -bits from node i without error. The

capacity of this channel is Cij = pij log M. The matrix

P = [pij ] is a doubly stochastic matrix that captures the

randomness due to the noisy channels.

The conductance of a graph, Φ(G), is a property that

captures the bottle-neck of information flow. It depends on

the the connectivity, or topology, of the graph, and the

magnitudes of the channel capacities. It is defined as

Φ(G) = min
S⊂V

0<|S|≤n/2

∑

i∈S,j /∈S Cij

|S|
.

When Cij = pij , we denote the conductance of the graph

by Φ(P ), which we call the conductance of the matrix P.
In the case of our log M -bit erasure channel, we have that

Cij = pij log M. So, the graph conductance in this case is

Φ(G) = Φ(P ) log M.

Now we are ready to state the main result. We shall first

describe a lower bound (an application of Theorem III.1)

and then a matching upper bound implied by a quantized

algorithm.

Let A represent a realization of the initial conditions, A =
{X1(0) = x1, . . . ,Xn(0) = xn}. The performance of an

algorithm, H, used by the nodes to compute an estimate

of f(x, V ) =
∑n

j=1 βjxj at each node, is measured by the

algorithm’s (ε, δ)-computation time, T cmp
H (ε, δ). It is the time

until the estimates at all nodes are within a factor of 1 ± ε
of f(x, V ), with probability larger than 1− δ. The definition

follows, where ŷi(k) denotes the estimate of f(x, V ) at node

i at time k.

Definition III.2. For ε > 0 and δ ∈ (0, 1), the (ε, δ)-
computing time of an algorithm, H, denoted as T cmp

H (ε, δ)
is defined as
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T cmp
H (ε, δ) = sup

x∈Rn

inf {k :

P(∪n
i=1{ŷi(k) /∈ [(1 − ε)f(x, V ), (1 + ε)f(x, V )]}) ≤ δ} .

Here, the probability is taken with respect to ŷi(k). This

is random because nodes communicate over noisy channels.

Consider any algorithm, H, that guarantees that for any

realization of the initial values, with high probability each

node has an estimate within 1± ε of the true value of C, at

time T. The Information Theoretic lower bound maintains

that such algorithm must have a computation time, T =
T cmp
H (ε, δ), that is inversely proportional to conductance.

Theorem III.3. Nodes communicate in order for each node

to compute a linear combination of all initial values in

the network. Any algorithm that guarantees that for all

i ∈ {1, . . . , n},

P

(

|Xi(T ) − C| ≤ εC
∣

∣

∣
A

)

≥ 1 − δ,

must have

T ≥
1

Φ(G)
log

1

Bε2 + 1
B

2

n + κδ
,

where, Bε2 ∈
[

0, 1 − 1
B

2

n − κδ
]

, and κ is a constant.

Again, the probability in this theorem is taken with respect

to the measure on Xi(T ), conditional on A, and induced by

the randomness due to communication over channels.

Remark We show in [1] that our lower bound is tight in

its reciprocal dependence on the conductance term. So, for

fixed n, we have a scaling law that is tight in the case

of severe communication constraints, such as very small

channel capacities due to low transmission power.

In the case of increasing number of nodes, however, B
must increase exponentially with n for our lower bound

to remain valid. The requirement is a by-product of using

a formulation based on random variables together with

Information Theoretic variables. This requirement ensures

that as n increases, our bound properly captures the number

of bits that are transferred.

When we consider sums of independent identically dis-

tributed random variables, Central Limit Theorem type ar-

guments imply that as the number of the random variables

increases, there is some randomness lost, because we know

that the distribution of the sum must converge to the Normal

distribution. However, in a setting where the initial conditions

are fixed values, as in the case of the algorithm we describe

below, the addition of a node clearly will not reduce the

information that needs to be communicated in the network.

To counterbalance the probabilistic effects, we need to have

B increase as the number of nodes increases.

Next, we provide an algorithm that guarantees, with high

probability, the nodes’ estimates are within the desired ε-

error interval around the true value of the sum. We provide

an upper bound on this algorithm’s computation time. The

computation time is inversely proportional to conductance.

This algorithm is based on an algorithm proposed in [13].

The difference is that in [13], nodes communicate real-valued

messages. In our algorithm, nodes communicate quantized

messages.

Theorem III.4. Suppose that node i has an initial condition,

xi. There exists a distributed algorithm APQ by which

nodes compute a linear sum, f(x, V ) =
∑n

j=1 βjxj , via

communication of quantized messages. If each quantized

message is log M bits and log M = O(log n), the quan-

tization error will be no more than a given γ = Θ( 1
n ), and

for any ε ∈ (γf(x, V ), γf(x, V ) + 1
2 ) and δ ∈ (0, 1), the

computation time of the algorithm will be

T cmp

APQ
(ε, δ) =

O

(

ε−2(1 + log δ−1)
(log n + log δ−1) log n

Φ(G)

)

.

So, setting δ = 1
n2 in the above bound, we have

T cmp

APQ

(

ε,
1

n2

)

= O

(

ε−2 log3 n

Φ(G)

)

.

The computation time of this algorithm depends on the

network topology, via the conductance of the graph, in the

same reciprocal manner manifested by the lower bound.

Thus, we conclude that the lower bound is tight in capturing

the effect of the network topology on computation time. Con-

versely, the algorithm’s running time is optimal with respect

to its dependence on the network topology, as captured by

the conductance.

IV. CAPTURING THE EFFECT OF TOPOLOGY

The conductance of a graph, Φ(G), is a property that

captures the bottle-neck of information flow. It depends on

the the connectivity, or topology, of the graph, and the

magnitudes of the channel capacities. The more severe the

network constraints, the smaller the conductance. It is also

related to time it takes for information to spread in a network;

the smaller the conductance, the longer it takes.

A. Conductance for Two Topologies

Consider two networks, each has n nodes. We calculate

conductance for two extreme cases of connectivity shown

in Figure 1. On the one hand, we have severe topological

constraints: a ring graph. Each node may contact only the

node on its left or the node on its right. On the other hand,

we have a case of virtually no topological constraints: a fully

connected graph. Each node may contact every other node

in the network.

For the purpose of illustrating the computation of con-

ductance for the two topologies, suppose that in both cases,

the links from a given node to different nodes are equally

weighted. So, for the ring graph, let Cij = C = 1
4 , for all

i 6= j; for the fully connected graph, let Cij = C = 1
n , for

all i 6= j. Assume that for the ring graph, Cii = 1
2 . If the

channels were erasure channels, this would be the probability
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that node i makes contact with no other nodes. For the fully

connected graph, let Cij = 1
n . So, in both cases, we have

that the sum of the capacities of channels leaving a node is

1,
∑

j Cij = 1.
Now, we compute the conductance of the ring graph.

Recall that conductance is

Φ(G) = min
S⊂V

0<|S|≤n/2

∑

i∈S,j /∈S Cij

|S|
.

Consider any cut that divides the ring graph into two sets,

S and Sc. For any such cut, there will be exactly two links

crossing the cut, going from S to Sc. So,
∑

i∈S,j /∈S Cij = 1
2 ,

and

Φ(G) = min
S⊂V

0<|S|≤n/2

1
2

|S|
.

Since we minimize over all cuts such that |S| ≤ n/2, the

ratio is minimized when the cut divides the ring into two

sets of equal size, and |S| = n/2. So, Φ(G) = 1
n .

Next, we compute the conductance of the fully connected

graph. Consider any cut that divides the graph into two sets,

S and Sc. For any such cut, there will be |S||Sc| links

crossing the cut, going from S to Sc. So,
∑

i∈S,j /∈S Cij

|S|
=

|S||Sc| 1n
|S|

=
|Sc|

n

=
n − |S|

n

The last equality is minimized where |S| = n/2, so, Φ(G) =
1
2 .

So, for two networks with the same number of nodes,

the network with the more severe topological constraints has

smaller conductance. In general, for a ring graph, we have

Φ(G) = O( 1
n ), while for a fully connected graph we have

Φ(G) = O(1).

B. Comparison to Other Algorithms

The popular algorithms for computing a linear function

of initial conditions, such as averaging and consensus, are

based on linear iterations. The convergence of such iterative

algorithms depends on a reversible (or symmetric) and graph

conformant matrix P . Usually, the running time of these

algorithms scales like 1
Φ(P )2 . Specifically, for a ring graph

it is 1
Φ(P )2 ≈ n2, which means roughly n2 iterations are

needed for the algorithm to converge. In [1], we describe

C

C =
1

4

C

C =
1

n

Fig. 1. Two ways to connect six nodes: a ring graph and a fully connected
graph.

an algorithm that does not use linear computations, and its

run-time scales like 1
Φ(P ) . So, for a ring, roughly n iterations

are needed. In the next section, we show that the run-time

necessarily scales like 1
Φ(P ) . So, for computation over a ring

graph, n iterations are both sufficient and necessary. More

generally, our algorithm scales optimally with respect to the

graph topology.

V. DISCUSSION AND CONCLUSIONS

In this paper, we’ve surveyed our recent results for a

network of n nodes communicating over noisy channels.

Each node has an initial value. The objective of each of

the nodes is to compute a given function of the initial values

in the network. We have derived a lower bound to the time

at which the mean square error in the nodes’ estimates is

within a prescribed accuracy interval. The lower bound is

a function of the channel capacities, the accuracy specified

by the mean square error criterion, and the uncertainty in

the function that is to be estimated. The bound reveals that,

first, the more randomness in the function to be estimated, the

larger the lower bound on the computation time. Second, the

smaller the mean square error that is tolerated, the larger the

lower bound on the computation time. Hence there is a trade-

off captured between computation accuracy and computation

time. In addition, the lower bound can be used to capture the

dependence of the convergence time on the structure of the

underlying communication network.

We’ve considered a network of nodes communicating via

erasure channels to compute a sum of the initial values in

the network. Each of the nodes is required to acquire an

estimate that is, with a specified probability, within a desired

interval of the true value of the sum. We’ve applied our

Information Theoretic technique to derive a lower bound on

the computation time for this scenario. We’ve shown that

the computation time is inversely related to a property of

the network called “conductance.” It captures the effect of

both the topology and channel capacities by quantifying the

bottle-neck of information flow. Next, we’ve described an

algorithm that can be used in this setting of nodes computing

a sum via erasure channels, and guarantees that with the

specified probability, each of the nodes’ estimate is within

the desired interval. We’ve determined an upper bound on

the algorithm’s computation time and show that it too is

inversely related to conductance.

Hence, we conclude that our lower bound is tight in

capturing the effect of the communication network, via con-

ductance. Equivalently, our algorithm’s run-time is optimal

in its dependence on conductance. That is, we have obtained

a scaling law for convergence time as a function of a network

property, conductance. When the number of nodes is fixed,

this scaling law becomes tighter as the communication con-

straints are more severe, like diminished channel capacities.
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