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Abstract— We address the problem of distributively obtaining
average-consensus among a connected network of sensors that
each respectively track, by linear stochastic approximation,
the stationary distribution of an ergodic Markov chain with
slowly switching regimes. A hyper-parameter modeled as a
Markov process on a slow time-scale modulates the regime
of each observed Markov chain, thus at any given time the
hyper-parameter determines what stationary distribution will
be estimated by each sensor. If the Markov chains share a
common stationary distribution conditional on the regime, it is
shown the sequence of sensor state-values weakly-converge to
an average-consensus under the distributed linear consensus-
filter for all network communication graphs. Conversely, if the
Markov chains have unique stationary distributions in each
regime, then the average-consensus can be achieved only when
sensors communicate state-values at a frequency that is on the
same time-scale as the frequency at which they observe the fast
Markov chain. In this scenario, unlike a static consensus filter,
the state-value communication graph need not be connected for
an average-consensus to be reached, however this is true only
when the communication graph of observation data satisfies
a specific connectivity condition. Simulations illustrate our
conclusions and observation model.

1. INTRODUCTION

We consider consensus formation in an ad-hoc network

of coupled sensors where each sensor individually tracks

by an adaptive stochastic (SA) approximation the stationary

distribution of a set of Markov chains with time-varying

regime. By sharing information the sensors supplement each

others incomplete knowledge of the entire set of observed

parameters, our focus is on how distributive linear aver-

aging can ensure all sensors eventually reach a common

empirically-based estimate of the average of all observed

stationary distributions as they vary in time, we refer to the

desired estimate as an average-consensus.

Initially we will assume the sensor estimates are updated

according to a distributed linear consensus filter similar to

that proposed in [7], although in contrast to [7] we model

the observed parameter as a finite-state Markov chain with

piece-wise constant stationary distributions, also known as

slowly switching regimes. We show the model of [7] implies

the frequency of communication occurs on a slower time-

scale than that of sensor observation, and in this case the

average-consensus is generally unattainable. As an alterna-

tive we consider the same algorithm when the frequency
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of communication occurs on the same time-scale as sensor

observations, and in this case we derive connectivity condi-

tions on the network communication graph required to attain

average-consensus.

Analogous to [7], each sensor i = 1, . . . , n observes the

state X i ∈ R
S×1 of a respective S-state Markov chain X i.

By a linear SA adaptive algorithm with fixed step-size 0 <
µ ≪ 1 each sensor forms their local estimate of the stationary

distribution πi associated with X i,

si
k+1 = si

k − µ(X i
k − si

k) , si
0 = X i

0 , k = 0, 1, . . . . (1.1)

The sensor estimates {s1, . . . , sn} will, as the number of

observations approaches infinity, then take the form of an

empirical distribution, thus the sensors maintain “type” data

[2].

Distributed communication of type data to a single fusion

center is considered in, for instance, [11]. Due to the pre-

sumption of a fusion base node, the algorithms for processing

communicated data proposed in works such as [11] are

in general quite different from the distributed algorithms

presented in [6], [12], [3]. The latter works assume no base

node, rather it is assumed individual sensors are connected

by a limited number and arbitrarily placed set of coupling

links. This is identical to the ad-hoc network design that we

consider. For consensus it is required that, in some sense, the

union of all coupling links implies a path between any two

sensors, but we emphasize there is no fusion center assumed,

as this might imply consensus trivially.

A. Consensus Algorithm

As an averaging algorithm we consider the one-hop dis-

tributed linear consensus-algorithm proposed in [7], that is

at every iteration k ∈ {0, 1, 2 . . . , } each sensor i computes

the state-value si
k+1 ∈ R

S×1 by taking an element-wise

weighted average of their previous state-value si
k, their

current observed value X i
k, and the state and observed values

received from all sensors that are adjacent to sensor i. In

combination with (1.1) this algorithm has been expressed

in [7] as a discrete-time iteration with constant step-size

0 < µ ≪ 1,

sk+1 = sk − µ(Lv + Do)sk + µWoXk (1.2)

where we define the network communication weight ma-

trices, Do = diag(Wo11), Lv = Dv − Wv, and Dv =
diag(Wv11). The elements of the matrices {Wv,Wo} are

the linear weights attributed to each transmission of a state-

value (si
k) or observation values (X i

k), respectively.

Each Wv
ij = wv

ijI , i.e., a scalar multiple of the S × S
identity matrix such that wv

ij are non-zero only when a
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communication link exists between the respective sensors i
and j. The collection of all communication links comprises

an edge set E of the network communication graph G =
{n, E ,Wv}. We initially assume this graph is connected,

undirected, and fixed, thus (1.3) possesses the following

constraints,

1) Wv
ij = 0 ⇔ (i, j) /∈ E ,

2) (i, j) ∈ E ⇔ (j, i) ∈ E ,
3) ∀ i, ∃j such that (i, j) ∈ E
The same constraints apply to Wo, although we note the

diagonals of Wo are assumed non-zero, whereas by (1.2)
the diagonal elements of Wv are irrelevant and are set equal

to zero for convenience.

B. Background

Although much research has explored the properties of the

“static” consensus algorithm

si
k+1 = si

k + µ
n

∑

j=1

Wv
ij(s

j
k − si

k), i = 1, . . . , n, (1.3)

under time-varying or stochastic graphs (for instance see

[4], [10], [5]) significantly less research has considered

distributed averaging across nodes that track an external

parameter while simultaneously seeking consensus. An es-

sential example of such research is [7], which considers

the continuous-time limit of (1.3) when each node shares

and is also linearly updated by a continuous signal γt ∈
R of bounded rate, observed in i.i.d. Gaussian noise. All

nodes are then shown to remain within a bounded distance

ε of the observed parameter at all times. This framework

has subsequently been expanded in a number of respects,

such as with implementation of local Kalman-filtering, time-

varying communication graphs, as well as dynamic tracking

algorithms for mobile sensors, to name a few [9], [8].

The preliminary difference between [7] and the current

model is that we now replace the communally observed

continuous signal γ by a set of S-state Markov chains

{X1, . . . , Xn}, each of which is privately observed by a

corresponding sensor si, i = 1, . . . , n. Secondly, we con-

sider the Markov chains {X i} are dependent on a parameter

θ, where the sequence {θk} evolves according to a Markov

chain whose transitions take place infrequently and with state

space represented by Mθ = {θ1, . . . , θm}.

As the essential results of this paper, we show that

provided the transition probability matrix of θk is “near”

identity, or specifically that θ evolves on a time-scale of

the same order O(µ) as that of the sensor consensus-

tracking algorithm (1.2), then under a suitably weighted

communication graph the continuous-time linear interpo-

lation of the state-values si
k will converge weakly to a

stochastically switching consensus of the average observed

stationary distribution π̄(θ) = 1
n

∑n
i=1 πi(θ). In addition,

the sequence of tracking errors between each sensor and

the average-consensus, when properly scaled, is shown to

converge weakly to the solution of a switching diffusion.

These results constitute an altogether distinct set of network

consensus dynamics than yet reported in the literature.

The paper is organized as follows: in §2 we present the

main convergence theorems, §3 investigates some ramifica-

tions of these. Simulations are provided in Section §4 to

illustrate our results, and Section §5 provides a summary.

2. DYNAMIC CONSENSUS FORMATION

Let X i
k be an S-state Markov chain with a state space

{e1, . . . , eS}, where {ei} are orthogonal S × 1 standard

unit vectors. Each X i
k is θ dependent for θ ∈ Mθ =

{θ1, . . . , θm}, that is the transition matrix of X i
k conditioned

on θ is given by Ai(θ) = (ai
lj(θ)), where

ai
lj(θ) = P (X i

k+1 = ej |X i
k = el , θk = θ). (2.4)

In the following section we first assume the weights

{Wo,Wv} are fixed such that H = Lv + Do has only

eigenvalues with positive real parts, denoted H ≻re 0, thus

providing bounded stability of the consensus algorithm (1.2)
in the limit µ approaches zero [1]. Under this condition we

describe how the state-values sk of (1.2) will then weakly-

converge as µ vanishes.

A. Asymptotic Properties of Stochastic Approximation Algo-

rithms

To proceed, we pose the conditions below.

(A) The following conditions hold.

1) For each θ ∈ Mθ, the transition matrix Ai(θ) is

irreducible and aperiodic with stationary measure

πi(θ).
2) Parameterize the transition probability matrix of θ

as

P ε = I + εQ,

where ε is a small parameter satisfying 0 < ε ≪ 1
and Q is the generator of a continuous-time finite-

state Markov chain.

3) The process θk is slow in the sense ε = O(µ). For

simplicity, we take ε = µ henceforth.

(B) H ≻re 0 where H = (Lv + Do).

Although the proof is omitted for brevity (see [13]), we

shall show that it is feasible for the network to track changes

of a linear combination of {π1, . . . , πn}. In particular, as

the step-size goes to zero, each sensor state value converges

weakly to the solution of a stochastically switching ODE and

possesses a scaled tracking error with a switching diffusion

limit.

Theorem 2.1: Assume conditions in (A) - (B) hold and

ε = µ. Define the interpolated sequences of iterates

sµ
t = sk, θµ

t = θk for t ∈ [kµ, (k + 1)µ).

Then as µ → 0, (sµ(·), θµ(·)) converge weakly to (s(·), θ(·))
such that θ(·) is a continuous-time Markov chain with

generator Q and s(·) satisfies

dst

dt
= −Hst + Woπ(θt), t ≥ 0, (2.5)

where

π(θ) = [π1(θ), . . . , πn(θ)]′.
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We next study the associated tracking errors. Define

vk =
sk − GE(π(θk))√

µ
, (2.6)

where G = H−1Wo. Define the interpolated sequence of

scaled tracking errors by

vµ
t = vk, t ∈ [kµ, (k + 1)µ). (2.7)

Theorem 2.2: Under the same conditions as Theorem 2.1,

vµ(·) converges weakly to v(·), which is a solution of the

switching diffusion

dvt = −Hvtdt + WoΣ1/2(θt)dw, (2.8)

where w(·) is a standard Brownian motion and for a fixed

θ, Σ(θ) is a covariance matrix.

Theorem 2.1 and Theorem 2.2 both present a convergence

result for small µ and large k such that µk remains bounded,

we refer to this time-scale as O(1). From the theorems it is

clear how the asymptotic sensor dynamics depend on both

the variation in θ and the choice of edge weights {Wo,Wv}
of the communication graph. In the following section we

focus on Theorem 2.1 regarding the sufficient or necessary

weights for all sensors to reach the average-consensus π̄(θ).

3. RAMIFICATIONS

It is clear by (2.5) that each sensor in the network

weakly-converges to an equilibrium, or steady-state, that is

modulated by θ and can be represented as the product Λπ(θ),
where

Λ = H−1Wo = (Lv + Do)−1Wo. (3.9)

If each observed Markov chain has an identical stationary

distribution π∗(θ) conditioned on θ, then π̄(θ) = π∗(θ) and

the above theorems imply weak-convergence to the average-

consensus π̄(θ) by all sensor state-values, that is, si
k → π̄(θ)

for i = 1, . . . , n. This is in fact true regardless of the network

communication graph G, provided (B) holds.

Corollary 3.1: If πi(θ) = π∗(θ) for all i and θ ∈ M,

then provided (A) - (B) and ǫ = µ, an average-consensus is

reached for all communication graphs G, including the null

graph G = {n, 0, 0}.

Proof. By the first assumption π(θ) = [π∗(θ), . . . , π∗(θ)]′

for some π∗(θ) ∈ R
S×1, thus Λπ = π for all Λ11 = 11.

We now show that all Λ satisfying (3.9) are row-stochastic,

hence the asymptotic equilibrium will be the consensus π∗.

Rearranging (3.9) yields the necessary condition

Wo = (Lv + Do)Λ. (3.10)

If Λ11 = 11 then we have

Wo11 = Dv11 −Wv11 + Do11 , (3.11)

which is true by the definitions Dv = diag(Wv11) and Do =
diag(Wo11). If Λ11 6= 11 then, as the inverse of a matrix is

unique, (3.9) could not hold. 2

If the observed Markov chains do not have identical

stationary distributions conditioned on θ, that is πi(θ) 6=

πj(θ) for all i 6= j and θ ∈ M, then average-consensus

is achieved only if Λ = 1
n1111′. This is a much stronger

constraint than Λ11 = 11, and in fact it can only be achieved

in approximation if the edge set E is not complete, that is

there exists an ordered pair (i, j) such that (i, j) /∈ E , we

refer to such a graph as “unsaturated”.

Corollary 3.2: Under the assumption each sensor will

asymptotically observe a unique stationary distribution, con-

sensus cannot be achieved by a linear consensus-filter if G
is unsaturated.

Proof. Since any consensus requires Λ have identical rows,

left-multiplication of Λ by (Lv + Do) results in DoΛ by

definition of Lv . Since Do is diagonal, by (3.9) the matrix

Wo will have every element non-zero, thus implying a

saturated communication graph. 2

Contrary to the above result, by increasing the frequency

of communication, consensus can be achieved. We inspect

the consequences of this scenario in the following subsection.

A. Communication Step-Size

Although the observation update weights Wo must be

scaled by the step-size 0 < µ ≪ 1 in order for weak-

convergence of sensor state-values, there is no apparent

reason the update weights Wv also need to be scaled by

µ. To see this we note,

1) communication of state-values consists implicitly of

a communication of past observed values as scaled

by µ(1 − µ)l, where l denotes the lth most recent

observation since last communication.

2) if (Lv + Do) ≻re 0 then (mLv + Do) ≻re 0 for all

m > 0 only under the conditions {Lv �re 0,Do ≻re

0}. We assume the latter conditions.

Our analysis until now has assumed Wv is scaled by µ, we

now explain how this can be seen to imply a distributed linear

consensus-filter for which the frequency of communication

is much smaller than the frequency of observation.

1) Slow Communication: In §2− A we assert that as the

step-size µ approaches zero if ǫ = µ the continuous-time

piece-wise constant interpolation of the sequence {sk},

st = sk t ∈ [kµ, (k + 1)µ), (3.12)

will converge weakly to solutions of the switching ODE (2.5)
where Q is the generator of a continuous-time Markov chain,

which we emphasize is continuous on the time-scale O(1).
Taking µ to zero when ǫ = µ implies the transition matrix

P ǫ is “near” identity on the time-scale O(µ). By (1.1) this

implies the observed parameter θ evolves on the same time-

scale as the adaptive SA algorithm, or equivalently the time-

scale of sensor observation.

We now inspect the time-scale O(1), which is the time-

scale of reference for (2.5). On this time-scale the matrix P ǫ

is not near identity, and the parameter θ is seen to moderately

vary. We once again assume the observation model (1.1), but

now we explicitly model sensor communication to occur on

the slow time-scale O(1) and will subsequently show that

this is equivalent to (1.2).
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First consider the n sensors are independently updated as

(1.1) by n Markov chains X i. By (2.5) each sensor would

then weakly-converge to the solutions of

dst

dt
= −st + π(θt), t ≥ 0, (3.13)

where t is measured on the time-scale O(1). Suppose that

at every time t∗ ∈ T = {t : t ∈ N}, each sensor

i communicates its observation value X i
t∗ , along with its

current state-value si
t∗ , through all out-going communication

links; the receiving sensors then compute a weighted linear

average of their own state-value and the elements of data

(si
t∗ , X

i
t∗) they just received.

The continuous-time sensor dynamics are then expressed,

st =

{

e−At(st̄∗ − A−1π(θt)) + A−1π(θt) , if t /∈ N

(I − L−Do
−d)st + Wo

−dXt , if t ∈ N

(3.14)

where t̄∗ = maxt∗{t∗ < t}, Wo
−d equals Wo but with zeros

on the diagonal, and A = Do−Do
−d is the diagonal matrix of

each sensors individual observation update weight. We also

denote Lv = L for remainder of this section.

Defining s0 = X0 and t∗
−

= lim t ր t∗, we then have for

arbitrary t∗
−

the expected sensor state-values,

E(st∗
−

) = W t∗−1e−At∗s0 +
∑t∗−1

l=0 W le−Al

(I + e−A(Wo − I))π(θt∗
−

)
(3.15)

where we define W = I − L + Do and note that, without

prior knowledge, the expected value of X i
t is πi(θt).

For large t∗
−

it is clear that under §2−A (B) the coefficient

of X0 vanishes whereas the coefficient of π converges to

(I −We−A)−1(I + e−A(Wo
−d − I)) =

eA − I + Wo
−d

eA − I + L + Do
−d

(3.16)

which we find is equal to the equilibrium (3.9) under

the continuous model (1.2) when either A = ln(2) or

equivalently when the rate of continuous-time is scaled

∆tdisc = ln(2)∆tcont.

We note that in general if sensor i has an individual

observation update weight Wo
ii in the continuous model

(1.2), then the corresponding update weights of the sensors

in the discrete model (3.14) is given by Aii = ln(Wo
ii + 1).

If Aii 6= Ajj then the sensors (i, j) might operate on

time-scales that are uniquely scaled and thus would possess

asynchronous times of communication to yield (3.14).

Specifically, we find that under the discrete model there

exist an infinite subsequence of sensor state-values that, with

the correct time factors, will converge in expectation to the

sensor state-values under the continuous model. To illustrate

this fact we simulate a distributed ad hoc network of 10
sensors operating under both (1.2) and (3.14). For clarity in

Fig.1 we plot the linear sum of each sensors state-value, that

is we plot the the scalar 11′si rather than the S × 1 vector

si for each sensor i. A jump in θ occurs mid-way in our

simulation, as signified by the vertical line.

Fig. 1. Comparison of Discrete (3.14) and Continuous (1.2) Models as-
suming slow communication. As t increases from the most recent transition
time of θ, both models have identical equilibriums at the times t∗

−
.

2) Consensus Properties under Slow Communication: It

is evident from Fig.1 and proven by Corollary 3.1 that in

either the discrete or continuous model, consensus cannot be

reached when A 6= 0. However, when A = 0 no tracking

occurs, which implies that linearly tracking a set of distinct

parameters by the SA (1.1) is fundamentally opposed to

distributed linear consensus formation. Since consensus can

only be partially achieved in this setting, we refer to an

arbitrary graph has having an inherent “consensus ability”;

although we leave this term formally undefined for the

moment, it is intuitive that graphs with many strategically

placed communication links should have better consensus

ability than graphs with only a few randomly placed links,

and indeed it is only the saturated graph that can actually

attain consensus in this framework.

We also note that the discrete model requires unscaled

communication of observation data, thus the sensor iterates

are stochastic in the sense that at each time t∗
−

it is only

in expectation that (3.14) yields the same equilibrium as

(1.2). At any given time t∗
−

the sensors under (3.14) will be

sharing realizations of {X1, . . . , Xn}, not their stationary

measures πi(θ). Thus the iterates st∗
−

under the discrete

model do not actually approach π̄(θ), rather their average
∑m

l=min(l∗>lθ)
1
msl∗

−

will approach (3.16) with probability

1 (w.p.1) as m increases, where lθ denotes the most recent

transition time of θt.

In Fig.1 we parameterized the variability of X as relatively

small such that the stochastic property we are discussing

cannot be noticed. Fig.2 displays a more accurate illustration.

Fig. 2. Comparison of Discrete (3.14) and Continuous (1.2) Models
assuming slow communication but when X has large variation. As m
increases the average

∑

m

l=min(l∗>lθ)
1
m

sl∗
−

of discrete iterates and st∗
−

of (1.2) have identical equilibriums w.p.1.
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The continuous algorithm results in no visible stochastic

element, although both models possess the scaled diffusion

(2.8). The stochastic element of (3.14) is the result of

updating the sensors by the parameter X unscaled by µ. We

refer to this stochastic element as “stochastic variation” and

note that it is the essential difference between the two models

(1.2) (3.14), since otherwise their equivalence depends only

on scaling the rate at which the sensors of either algorithm

measure time.

To avoid the undesirable stochastic variation present in

(3.14) we can set Wo
−d = 0, then an unscaled X is no longer

used to update the sensor state-values and thus we need

not take their expectation. When Wo
−d = 0 the equilibrium

(3.16) becomes
eA − I

eA − I + L . (3.17)

The extent to which this reduces the sensor ability to form

consensus is considered negligible, and not discussed here.

3) Fast Communication: We now inspect the sensor

equilibrium as the frequency of communication in (3.14)
increases. For some m ∈ N we take t∗ ∈ T = {t : mt ∈ N}
and consider again (3.14). In this case the equilibrium (3.16)
becomes

eA/m − I + Wo
−d

eA/m − I + L + Do
−d

. (3.18)

If the communication weights Wo are not scaled, then

an expectation must be taken to attain equivalence between

the discrete and continuous models. As m increases the

stochastic element described above will affect the sensors

at more frequent time points and thus perpetuate a random

dynamic behavior of the sensor iterates, pictured in Fig.3
below.

Fig. 3. A connected network under fast communication with unscaled
communication weights of observation data. The consensus ability is not
significantly improved as compared to the slow communication model
pictured in Fig.3−A.1−3−A.2. However, the stochastic variation present
in Fig.3 − A.2) now perturbs the sensor iterates with greater frequency as
m increases.

The sensor equilibrium remains given by nearly the same

expression as it is under the slow communication models,

that is as m approaches infinity (3.18) becomes

lim
m→∞

A/m + Wo
−d

A/m + L + Do
−d

. (3.19)

Although the above limit can be seen to aid in consensus for-

mation, we will not explore this here. We also assert without

proof that Cor.3.2 applies to (3.19) just as it did to (3.16),

thus consensus can again be attained only in approximation,

similar to the slow communication algorithms (1.2) (3.14).
Due to both the unwanted stochastic variation and the

network inability to form consensus, we now scale the

communication weights Wo by a factor of order O(m−1).
In this case, as m approaches infinity the sensor equilibrium

(3.18) becomes

lim
m→∞

(mL + Do)−1Wo . (3.20)

In contrast to Cor.3.2, the following lemma shows (3.20)
implies that weak-convergence to the average-consensus may

be attained by sensors operating under (3.14) when t∗ ∈
T = {t : mt ∈ N} as the frequency of communication m
approaches infinity.

Lemma 3.3: For any connected network graph with Lapla-

cian L, there exist left and right eigenvectors ωr and ωℓ

satisfying

Lωr = 0 , ω′

ℓL = 0 , ω′

ℓωr = 1, (3.21)

such that

lim
m→∞

(mL + Do)−1Wo = (ωℓDoωr)
−1ωrω

′

ℓWo. (3.22)

Proof. For a connected network the matrix L is guaranteed by

its definition to have eigenvectors {ωr, ωℓ} satisfying (3.21),
furthermore ωr = c11 for any c ∈ R .

Denoting the eigendecomposition of L(Do)−1 as UJU−1

we note the argument in (3.22) may be rearranged as follows,

(mL + Do)−1Wo = (Do)−1U(I + mJ)U−1 . (3.23)

Since L(Do)−1 will have the eigenvalue pair {Doωr, ωℓ}
satisfying the same conditions as (3.21) in regard to L,

the rearranged eigendecomposition U−1L(Do)−1 = JU−1

implies that if the ith row of U−1 equals ω′

ℓ then Jjj = 0
only when j = i. This in turn implies that only the ith

diagonal of the matrix (I +mJ) will remain bounded in the

limit m → ∞, and furthermore, since this element is unity,

the inverse (I + mJ)−1 will have this precise term as its

only non-zero element.

By the same reasoning, rearranging the eigendecomposi-

tion as L(Do)−1U = UJ implies the ith column of U is

Doωr. Since U−1U = I we have ω′

ℓDoωr = 1 and thus

(3.22) is obtained by multiplying Wo on both sides of (3.23)
and taking the limit. 2

It is clear then under fast communication the sensors

may achieve consensus if and only if the weight matrices

{Wv,Wo} are such that

(ωℓDo11)−111ω′

ℓWo =
1

n
1111′ . (3.24)

Due to this, we note that when communicating on the fast

time-scale O(µ), sensor communication of observation data

is not required to attain the average-consensus, provided L
is connected. To see this we may take the Laplacian Lc of

an arbitrarily connected graph and set Wo
ii = 1

n (ωℓ)i where

ωℓ satisfies (3.21).
We also note that Lc need not be balanced, which by [6] is

in contradiction to the average-consensus requirements of the
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static algorithm (1.3). As shown in [6], only for a connected

graph will the static algorithm yield an asymptotic consensus,

and only if L is balanced, 11′L = L11, will (1.3) yield the

average-consensus.

On the other hand, if we assume communication of scaled

observation data, then by allowing two distinct commu-

nication graph edge sets Ev and Eo associated with Wv

and Wo respectively, we can extend Lem.3.3 provided an

extra connectivity condition holds in regard to the sensor

communication graphs {Ev, Eo}. Specifically we can ensure

an average-consensus even when L is not connected.

The extra connectivity condition may be stated as follows,

• {Ev ,Eo} “jointly connect” a set of nodes if for any

two nodes (i, j) there either exists a directed path

{eij
1 , . . . , eij

p(i,j)} of length 1 ≤ p(i, j) ≤ n, that is of

the form

eij
1 ∈ Eo ∪ Ev , eij

l ∈ Ev ∀ l ≥ 2, (3.25)

This definition does not require the Laplacian L to have a

connected edge set, thus under fast communication average-

consensus may be attained even when breaching the consen-

sus requirement for the static algorithm (1.3). The rationale

that necessitates (3.25) is intuitive; if any sensor does not

have an incoming state-value communication path from a

subset of the rest of the network, then that sensor must have

an incoming observation communication link from every

sensor in that subset because otherwise it receives no data

from these sensors, either directly or indirectly, and so it

cannot possibly achieve the average-consensus. A full proof

is omitted as it is trivial and requires only tedious notation,

in lieu we demonstrate this result in the following section.

To summarize then, previously on the slow time-scale we

considered Wo
−d = 0 which implies zero sensor commu-

nication of observation data, this was deemed not to have

a significant effect on the resulting network ability to form

consensus. We now see that on the fast time-scale it does

have a significant effect in terms of the network connectivity

conditions required for average-consensus.

4. CONSENSUS UNDER JOINT CONNECTIVITY

We aim here to illustrate by simulation the last result of

§3−A.3, specifically that average-consensus can be achieved

when sensors communicate state-value information through

an unconnected edge set Ev, but communicate observation

data through an edge set Eo such that {Ev, Eo} jointly

connect a group of n sensors.

For clarity we assume a network of only 4 sensors

connected by {Ev, Eo} as pictured in Fig.4. We note that

although Ev is not connected, both graphs {Ev, Eo} together

jointly connect every sensor.

Using unit weights (3.24) will hold, and consensus is

formed, illustrated below in Fig.5.

5. CONCLUSIONS

We have shown conditions on the network communication

graph edge set and weights that together ensure that under

a one-hop distributed linear consensus algorithm a network

s

s

s

s

1 3
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Fig. 4. A network that is jointy connected by {Ev, Eo}. The dotted lines
indicate observation communication links (Eo) and solid lines indicate state-
value communication links (Ev).

Fig. 5. Network average-consensus under fast communication with unit
weights for each link in Fig.4. The iterates of the continuous and discrete
model are identical in this case, provided the communication weights of
observation values are scaled by a factor O(µ).

average-consensus will be the asymptotic weak limit of sen-

sors that track a set of slowly switching Markov parameters

by linear stochastic approximation.
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