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Abstract— This paper represents a preliminary contribution
in the direction of characterizing geometric properties of the
trajectory manifold of nonlinear systems. We introduce the
notion of curvature of the trajectory manifold and define it
by means of a nonlinear quadratic optimal control problem.
The quadratic cost can be viewed as a weighted L2 norm
induced by a suitable inner product that provides a notion of
orthogonality. The curvature at a given trajectory is defined
in terms of the curves orthogonal to the tangent space at
the given trajectory. We characterize the set of orthogonal
curves. We show that it is a topological complement of the
tangent space. We provide numerical techniques to compute
orthogonal curves and to compute a lower bound of the
curvature. We test these techniques on the inverted pendulum
example.

I. INTRODUCTION

A fundamental contribution to the analysis of dynamical

systems and the design of control strategies has come from

optimal control theory. Optimal control allows to study the

trajectories of control systems in order to optimize a desired

cost and possibly taking into account constraints on the state

and the input of the system. Also, the well known (and quite

effective) Receding Horizon (or Model Predictive) control

strategy, relies on the solution of an optimal control prob-

lem. An important issue in optimal control that arises both

in studying trajectories and in designing a Receding Horizon

scheme, is the following. Given a desired curve, find the

trajectory of the given system that is “closest” (according to

given criteria) to the desired curve. It is well known that for

linear systems, under reasonable assumptions, it is possible

to find a unique closest trajectory for any desired curve (that

has enough regularity). This is due to the linearity of the

constraint enforced by the dynamics. For nonlinear systems,

depending on the nature of the nonlinearity, existence and

uniqueness problems may arise when the desired curve is

too far from the space of trajectories. In this paper we want

to define a parameter that provides information on how

different the desired curves can be chosen while preserving

conditions that guarantee i) existence and uniqueness of a

local (at least) minimizer and (possibly) ii) convergence

of numerical techniques to compute it. Equivalently, we

want to provide a parameter that measures how much the
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nonlinear dynamics departs from its linear approximation

at a given trajectory.

In the last fifty years important contributions have been

done from a theoretical point of view in order to provide

conditions for existence and characterization of the mini-

mizer and from a numerical point of view to provide tools

for solving optimal control problems. A detailed analysis

of conditions for existence of optimal trajectories may be

found, e.g., in [1] and [2]. In [3] and [4] the important role

played by strong positive definiteness in the minimization

of quadratic functional was emphasized.

In this paper we introduce for the first time, at the best

of our knowledge, the idea of curvature of the trajectory

manifold of a nonlinear system. That is, a measure of

how much the space of bounded (state-input) trajectories

departs from its linear approximation at a given trajectory.

In analogy with a curve in a finite dimensional space,

we provide a well suited definition of curvature for the

trajectory manifold by use of a (nonlinear) quadratic op-

timal control problem. In order to define and estimate the

curvature of the trajectory manifold, we introduce a suitable

notion of inner product (namely a weighted L2 product),

which induces a notion of orthogonality for “state-input”

curves. We characterize the space of curves orthogonal

(in L2 sense) to the tangent space at a point (namely a

trajectory) on the trajectory manifold. Also, we prove that

such space is a closed subspace with respect to the L∞ norm

and, therefore, an orthogonal complement for the tangent

space (thus showing that the tangent space splits the space).

We provide numerical techniques to compute curves in

the orthogonal complement. These techniques are based

on a projection operator based Newton method for the

solution of nonlinear optimal control problems [5]. Finally,

we show how to provide a lower bound for the curvature

along one direction in the orthogonal complement. We apply

the numerical techniques to the example of an inverted

pendulum.

II. CURVATURE OF AN EMBEDDED MANIFOLD IN R
n

Consider (Rn, 〈·, ·〉) as an inner product space with

associated norm and let M ⊂ R
n be a C2 manifold of

dimension k < n. A sphere S ⊂ R
n is tangent to M at ξ ∈

M if S∩(ξ+TξM) = {ξ} so that TξM ⊂ TξS. Clearly the

center of each tangent sphere lies on the translated subspace

ξ + Nξ where the normal space Nξ := (TξM)⊥ is the

orthogonal complement of the tangent space TξM. Thus

the sphere Sr(η) := {x ∈ R
n : ‖x − η‖ = r} is tangent
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to M at ξ iff η − ξ ∈ Nξ and ‖η − ξ‖ = r so that every

tangent sphere at ξ ∈ M is of the form Sr(ξ + rγ) for

some γ ∈ Nξ, ‖γ‖ = 1, and r > 0.

Since M is a C2 manifold, there is a C2 mapping ψ :
R

k → R
n with ξ = ψ(0) providing local coordinates on

a neighborhood of ξ in M so that Dψ(0) is full rank and

TξM = Dψ(0) · R
k is of dimension k. In particular, there

is an open neighborhood U of 0 ∈ R
k such that ψ(·) is

one-to-one on U and Dψ(α) is full rank for each α ∈ U .

Now, for each γ ∈ Nξ, ‖γ‖ = 1, we can imagine that

there is a range of radii [0, r0] for which ξ is, locally, the

unique nearest point (in M) to each of the sphere centers

ξ + rγ, r ∈ [0, r0]. To this end, we have

Proposition 2.1: Given ξ ∈ M and γ ∈ Nξ, ‖γ‖ = 1,

there is an ǫ > 0 and an r0 > 0 such that 0 is the unique

minimizer of

min
α∈Bǫ⊂Rk

h(α; r)

for every r ∈ [0, r0] where

h(α; r) := ‖(ξ + rγ) − ψ(α)‖2/2 .

That is, the minimum norm projection of ξ + rγ onto

ψ(Bǫ) ⊂ M is ξ = ψ(0) for each r ∈ [0, r0].
Proof: Computing, we find

Dh(α; r) · β = 〈(ξ + rγ) − ψ(α), −Dψ(α) · β〉

and

D2h(α; r) · (β, β) = ‖Dψ(α) · β‖2

− 〈(ξ + rγ) − ψ(α), D2ψ(α) · (β, β)〉 .

We see that α = 0 is a stationary point of h(·; r) for all

r > 0 since

Dh(0; r) · β = −r〈γ, Dψ(0) · β〉 = 0

for all β ∈ R
k. To ensure that α = 0 is an isolated local

minimum of h(·; r), we examine the second derivative

D2h(0; r) · (β, β)

= ‖Dψ(0) · β‖2 − r〈γ, D2ψ(0) · (β, β)〉

for positive definiteness. Since the first term is positive def-

inite, it is clear that there is an r0 > 0 such that D2h(0; r)
is positive definite for every r ∈ [0, r0]. For instance, we

may take r0 = b1/2b2 where b1 = min‖β‖=1 ‖Dψ(0) · β‖2

and b2 = max‖β‖=1〈γ, D2ψ(0) · (β, β)〉 when b2 > 0 and

any r0 > 0 otherwise. Noting that the minimum eigenvalue

of D2h(0; r) depends continuously on r, we may choose

r0 to be any positive r0 < r1 where r1 is the first positive

zero of the function r 7→ λmin(D2h(0; r)) when b2 > 0
and +∞ when b2 ≤ 0.

To see that there is an ǫ > 0 such that α = 0 is the

unique minimizer for all r ∈ [0, r0], note that

h(α; r) = h(0; r) + 1
2D2h(0; r) · (α, α) + R(α, r) · (α, α)

where the bilinear operator R(α, r) is continuous in α and

r and ‖R(α, r)‖ → 0 as α → 0 for every r ≥ 0. It follows

that the continuous function α 7→ maxr∈[0,r0] ‖R(α, r)‖

goes to zero as α → 0 so that there is an ǫ > 0 such that

‖R(α, r)‖ ≤ mins∈[0,r0] λmin(D2h(0; s))/4 for all ‖α‖ ≤
ǫ and all r ∈ [0, r0].

Definition 2.2: Given ξ ∈ M and γ ∈ Nξ, ‖γ‖ = 1, the

radius of curvature of M at ξ in the direction γ is

ρ(ξ, γ) = min{r > 0 : λmin(D2h(0; r)) = 0} ,

where ψ(·) is a local parametrization with ξ = ψ(0) and

h(α; r) is as defined above. By definition, ρ(ξ, γ) = +∞
if the positive radius zero set is empty.

It is easy to verify that the definition of ρ(ξ, γ) is

independent of the choice of parametrization ψ(·).
From the proof of Proposition 2.1, we see that, for each

r0 ∈ (0, ρ(ξ, γ)), there is an ǫ = ǫ(r0) > 0 such that

r0 = ‖(ξ + r0γ) − ξ‖ < ‖(ξ + r0γ) − ζ‖ for all ζ ∈
ψ(Bǫ) \ {ξ}. This helps support the notion that the sphere

Sρ(ξ,γ)(ξ + ρ(ξ, γ)γ) is a generalization of the osculating

circle to a planar curve. Furthermore, we have

Proposition 2.3: If r > ρ(ξ, γ) then the stationary point

α = 0 is not a local minimizer of h(·; r).
Proof: Let β0 be the unit eigenvector associated

with 0 = λmin(D2h(0; ρ(ξ, γ))) and note that D2h(0; r) ·
(β0, β0) < 0 for every r > ρ(ξ, γ). It follows that, for each

r > ρ(ξ, γ), there is an ǫ0 > 0 such that h(ǫβ0; r) < h(0; r)
for all ǫ ∈ (0, ǫ0).

Definition 2.4: The radius of curvature of M at ξ is

ρ(ξ) = min
γ∈Nξ,‖γ‖=1

ρ(ξ, γ) .

The curvature of M at ξ is

σ(ξ) = 1/ρ(ξ) .
Proposition 2.5: For each ξ ∈ M, there is a r1 > 0 such

that ρ(ξ) ≥ r1 > 0.

Proof: Noting that |〈γ, D2ψ(0) · (β, β)〉| ≤
‖D2ψ(0)‖ =: b3 for all ‖γ‖ = 1 and ‖β‖ = 1, we see

that ρ(ξ) ≥ b1/2b3 =: r1 where b1 = λmin(D2h(0; 0)) (the

b1 value as above).

III. THE TRAJECTORY MANIFOLD AND THE PROJECTION

OPERATOR

Here, we recall some properties of the space of trajecto-

ries proved in [8] by use of the projection operator approach.

The approach is based on the idea that a feedback system

trajectory tracking defines a continuous nonlinear projection

operator mapping curves into trajectories.

Suppose that ξ = (α(t), µ(t)), t ≥ 0, is a bounded curve

and let η = (x(t), u(t)), t ≥ 0, be the trajectory determined

by the nonlinear feedback system

ẋ(t) = f(x(t), u(t)), x(0) = x0

u(t) = µ(t) + K(t)(α(t) − x(t)).

Now, suppose that ξ0 is a trajectory of f and that K is

bounded and such that the above feedback exponentially

stabilizes ξ0. Then the feedback system defines a continuous

nonlinear projection operator

P : ξ = (α(·), µ(·)) 7→ η = (x(·), u(·))
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which is Cr (whenever f is) on an L∞ neighborhood of ξ0.

Restricted to a finite interval [0, T ], the resulting operator

continues to be Cr and, while stability is no longer an

issue, one would like to choose a bounded K that gives

P a reasonable modulus of continuity around ξ0.

We let X denote the closed subspace of Ln+m
∞ [0, T ] of

curves ζ = (β(·), ν(·)) with continuous β(·), β(0) = 0, and

bounded ν(·). Equipped with the norm ‖ζ‖X = ‖ζ‖L∞ , X
is a Banach space. Trajectories of the nonlinear system f
through x0 belong to the affine space X̃ := (x0, 0) + X .

We denote T the set of bounded trajectories of f on

[0, T ].

The derivative of the projection operator, ζ 7→ DP(ξ) ·ζ,

is given by the standard linearization

ż(t) = A(η(t))z(t) + B(η(t))v(t), z(0) = β(0),

v(t) = ν(t) + K(t)[β(t) − z(t)] .

where DP(ξ) · ζ = (z(·), v(·)), with ζ = (β(·), ν(·)), and

A(η(t)) = fx(x(t), u(t)) and B(η(t)) = fu(x(t), u(t)).
A key property of DP(ξ) is that it is a continuous linear

projection operator. In [8] it was shown, using this prop-

erty, that the projection operator P provides a convenient

parametrization of the trajectories in the neighborhood of a

given trajectory. Indeed, the tangent space TξT (of bounded

trajectories of the linearization of ẋ = f(x, u) about ξ ∈ T )

can be used to parametrize all nearby trajectories. That is,

given ξ ∈ T , there is an ǫ > 0 such that, for each η ∈ T
with ‖η − ξ‖ < ǫ, there is a unique ζ ∈ TξT such that

η = P(ξ + ζ). Using this property, a Cr atlas of charts,

indexed by trajectories ξ ∈ T , is available, so that T can

be shown to be a Cr Banach manifold.

The above property also allows one to prove the following

important proposition.

Proposition 3.1 (The tangent space is a split space [8]):

Let ξ0 ∈ T . The tangent space Tξ0
T is the split subspace

of X given by

Tξ0
T = {ζ ∈ X : ζ = DP(ξ0) · ζ}

where P is any projection operator defined by a bounded

(or, on [0,∞), stabilizing) K. That is, Tξ0
T has a closed

topological complement in L∞. ¤

IV. SECOND ORDER SUFFICIENCY CONDITIONS FOR

OPTIMAL CONTROL

Consider the following optimal control problem

minimize

∫ T

0

l(τ, x(τ), u(τ))dτ + m(x(T ))

subj. to ẋ(t) = f(x(t), u(t)), x(0) = x0

(1)

over the class of essentially bounded measurable inputs,

where l(t, x, u), m(x) and f(x, u) are C2 in x ∈ R
n and

u ∈ R
m, and l(t, x, u) is continuous in t. If ξ̄ = (x̄(·), ū(·))

is a local minimizer of (1), then there is an absolutely

continuous costate trajectory p̄(·) such that

˙̄x(t) = f(x̄(t), ū(t)),

˙̄p(t) = −fx(x̄(t), ū(t))T p̄(t) − lx(x̄(t), ū(t))T ,

0 = fu(x̄(t), ū(t))T p̄(t) + lu(x̄(t), ū(t))T

x(0) = x0, p̄(T ) = mx(x̄(T ))T

(2)

for (almost all) t ∈ [0, T ]. The first order optimality

condition expressed in equations (2) can be conveniently

expressed using the pre-Hamiltonian

H(t, x, p, u) := l(t, x, u) + pT f(x, u).

Remark 4.1: Note that, for the optimal control problem

(1), there is no possibility of an abnormal extremal since

the only constraints present are the initial condition and

the dynamics. This can be easily shown using a projection

operator calculation.

Next, we recall the second order sufficiency condition

(SSC) that ensures that the trajecotry ξ̄ is an isolated local

minimizer. For ζ = (z(·), v(·)), let

q(ξ̄) · (ζ, ζ) =

∫ T

0

[
z(τ)
v(τ)

]T [
Hxx(τ) Hxu(τ)
Hux(τ) Huu(τ)

]T [
z(τ)
v(τ)

]
dτ+

z(T )T mxx(T )z(T )

be the quadratic form describing the second variation of the

Lagrangian. Let Lξ̄ ⊂ Ln+m
∞ [0, T ] denote the subspace of

trajectories of the linearized dynamics

ż(t) = fx(x̄(t), ū(t))z(t) + fu(x̄(t), ū(t))v(t), z(0) = 0

for v ∈ Lm
∞[0, T ]. Also, let h(ξ) =

∫ T

0
l(τ, x(τ), u(τ))dτ+

m(x(T )) for ξ = (x(·), u(·)).
We have the following second order sufficiency condition

(SSC) [6], [3], [7].

Theorem 4.2 (SSC): Let ξ̄ be a stationary trajectory for

(1) with corresponding costate trajectory p̄(·) and suppose

that there is an r0 > 0 such that Huu(t) ≥ r0I for t ∈
[0, T ]. If q(ξ̄)·(ζ, ζ) > 0 for all ζ ∈ Lξ̄, then ξ̄ is an isolated

local minimum of (1). That is, there is an ǫ > 0 such that

h(ξ) > h(ξ̄) for any trajectory ξ 6= ξ̄ with ‖ξ − ξ̄‖L∞ < ǫ.

¤

The following theorem is useful, e.g., for nu-

merical computations, giving an equivalent condition

for positive definiteness of q. We denote Ã(t) =
A(t) − B(t)Huu(t)−1Hxu(t)T and Q̃(t) = Hxx(t) −
B(t)Huu(t)−1Hxu(t)T .

Theorem 4.3 (SSC and Riccati equation [7]): The fol-

lowing statements are equivalent.

(i) q > 0 on Lξ̄

(ii) the Riccati equation

Ṗ+Ã(t)T P + PÃ(t) − PB(t)R(t)−1B(t)T P

+ Q̃(t) = 0, P (T ) = P1

has a finite solution on [0, T ].
¤
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V. THE CURVATURE OF THE TRAJECTORY MANIFOLD

In this section we provide main definitions and prelimi-

nary results to answer the following question. How can we

measure the extent to which the trajectory manifold of a

nonlinear system departs from that of its linear approxima-

tion about a given trajectory?

A. A notion of orthogonality on X

Following the ideas in the finite dimensional case, we

want to define the radius of curvature of the trajectory man-

ifold relative to a suitable inner product and its associated

norm.

We begin by considering the nonlinear quadratic optimal

control problem

minimize
1

2

∫ T

0

‖x(t) − x1(t)‖
2
Q + ‖u(t) − u1(t)‖

2
R dt

+
1

2
‖x(T ) − x1(T )‖2

P1

subj. to ẋ(t) = f(x(t), u(t)), x(0) = x0,
(3)

where Q, R, and P1 are symmetric positive definite matri-

ces.

The cost in (3) may be seen to be the square of a weighted

L2 norm of the curve ξ − ξ1 = (x(·)− x1(·), u(·)− u1(·)).
Given ξ1 = (α1(·), µ1(·)) and ξ2 = (α2(·), µ2(·)), define

the inner product

〈ξ1, ξ2〉 =

∫ T

0

x1(t)
T Qx2(t) + u1(t)

T Ru2(t) dt

+ x1(T )T P1x2(T )

(4)

and write ‖ξ‖2
2 = 〈ξ, ξ〉.

With this notation, we may rewrite the optimal control

problem (3) as

min
ξ∈T

1

2
‖ξ − ξ1‖

2
2. (5)

Using this inner product, we define (analogously to the

finite dimensional case) the space of curves orthogonal to

the tangent space at the trajectory ξ0 ∈ T by

Nξ0
= {γ ∈ X | 〈γ, ζ〉 = 0, for all ζ ∈ Tξ0

T }.

B. An orthogonal complement to the tangent space: main

properties and parametrization

Next, we show that Nξ0
is a closed subspace, providing

an orthogonal splitting (with Tξ0
T ) of X . Then, we show

how to parameterize the orthogonal complement by means

of state curves.

The first order necessary condition for optimality of (5)

may be written as

〈ξ0 − ξ1, ζ〉 = 0 ∀ζ ∈ Tξ0
T . (6)

We will show that this is, in fact, a notion of orthogonality.

That is, the vector γ1 = ξ0 − ξ1 is orthogonal (in L2 sense)

to the tangent space Tξ0
T .

Using this condition we can characterize the whole set

Nξ0
of curves orthogonal (in L2 sense) to the tangent space

Tξ0
T .

We start considering the following linear quadratic min-

imization problem. Given γ ∈ X

min
ζ∈Tξ0

T

1

2
‖ζ − γ‖2

2. (7)

Note that the above minimization problem is equivalent to

the following one

min
ζ∈Tξ0

T
−〈γ, ζ〉 +

1

2
〈ζ, ζ〉. (8)

We consider the mapping Γξ0
: X → Tξ0

T : γ 7→ γ⊤

defined as

γ⊤ = arg min
ζ∈Tξ0

T

1

2
‖ζ − γ‖2

2. (9)

It is easy to see that Γξ0
is a projection. In fact, ‖ · ‖2

is strongly positive definite. Therefore for γ ∈ Tξ0
T the

minimum is attained at ζ = γ, so that Γξ0
(γ) = γ.

In the next lemma we recall an important result in linear

quadratic optimal control on existence and uniqueness of

the minimizer for the minimization problem in (7).

Lemma 5.1 (Existence of unique minimizer for LQ case):

Let γ ∈ X be arbitrary. The quadratic minimization

problem in (7) has a unique (global) minimizer γ⊤ ∈ Tξ0
T .

From the previous lemma it follows that the unique

minimizer is also the only one satisfying the first order

necessary condition. Therefore, the mapping Γξ0
may be

also defined implicitly as

〈γ − γ⊤, ζ〉 = 0, ∀ζ ∈ Tξ0
T .

Before stating our next result, we need some more nota-

tion. Let us denote γ = (β(·), ν(·)). Using standard notation

from optimal control the problem (8) may be written as

minimize

∫ T

0

β(τ)T Qz(τ) + ν(τ)T Rv(τ) +
1

2
‖z(τ)‖2

Q

+
1

2
‖v(τ)‖2

Rdτ + β(T )T P1z(T ) +
1

2
‖z(T )‖2

P1

subj. to ż(t) = A(ξ0(t))z(t) + B(ξ0(t))v(t), z(0) = 0.

The solution of (7) may be written as ζ = (z(·), v(·))
with

ż(t) =A(ξ0(t))z(t) + B(ξ0(t))v(t), z(0) = 0,

v(t) = − R(t)−1B(ξ0(t))
T P (t)z(t)

− R(t)−1B(ξ0(t))
T r(t) + R(t)−1Rν(t).

(10)

where P and r satisfy (suppressing the t and ξ0(t)
arguments)

−Ṗ =AT P + PA − PBR−1BT P + Q,

−ṙ =(A − BR−1BT P )T r − Qβ(·) + PBR−1Rν(t),

P (T ) = P1, r(T ) = −P1β(T ).
(11)
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In the next lemma we prove that Γξ0
is a (continuous)

linear projection.

Lemma 5.2 (An LQ problem defines a linear projection):

The mapping Γξ0
: X → Tξ0

T defined in (9) is a

(continuous) linear projection. ¤

Proof: We have already seen that Γξ0
is a projection.

We need to show that it is a bounded linear mapping.

From equation (11), r(·) is a linear function of

(β(·), ν(·)). Furthermore, in the linear differential equation

for r(·), the matrices P (·), A(·) and B(·) are bounded.

Therefore, r(·) is bounded. This implies that (z(·), v(·)) is

a bounded linear function of (β(·), ν(·)).
Using the result in Lemma 5.2 we may prove the follow-

ing result.

Proposition 5.3 (Orthogonal splitting of X): Let ξ0 ∈
T be given. Any γ ∈ X may be written as

γ = γ⊤ + γ⊥,

where γ⊤ = Γξ0
· γ ∈ Tξ0

T and γ⊥ = (I −Γξ0
) · γ ∈ Nξ0

.

Also, Nξ0
is a closed linear subspace of X and, thus, a

topological orthogonal complement of Tξ0
T in X . There-

fore, X may be written as the direct sum of Tξ0
T and Nξ0

,

that is,

X = Tξ0
T ⊕Nξ0

.

Proof: The proof follows by using the result in

Lemma 5.2 combined with Propositions 2, 5 and 6 of

Section 3.9 in [10].

Remark 5.4: The above proposition proves that the space

of bounded curves orthogonal to the tangent space is a

closed set and in fact a topological complement of Tξ0
T .

From Proposition 3.1 we knew that using a suitable pro-

jection operator we could show that the tangent space

splits the space X and therefore it has a closed topological

complement. Here we have the further property that Nξ0
is

an orthogonal complement. ¤

Next, we investigate how we can parameterize Nξ0
.

In order to get conditions on β(·) and ν(·) for γ⊥ to be

in Nξ0
, we just impose (z(·), v(·)) = 0 in equation (10).

We get

ν⊥(t) = −R−1B(ξ0(t))
T r⊥(t)

with

−ṙ⊥ = AT r⊥ − Qβ⊥, r⊥(T ) = −P1β
⊥(T ). (12)

That is, we get

γ⊥ = (β⊥(·),−R−1B(ξ)T r⊥(·)).

This means that γ⊥ may be parameterized by (bounded)

state curves.

Remark 5.5: The input portion of the curve γ⊥ ∈ Nξ0
is

obtained by integrating an open loop differential equation

that may be unstable (as e.g. in the case of the inverted

pendulum shown in the next section). Numerically it is not

suitable to compute it by directly integrating equation (12).

In order to compute it, as we do in the next section, we

use numerically robust methods, based on the solution of a

suitable optimal control problem. ¤

C. Definition of the curvature of the trajectory manifold

Informally, we define the radius of curvature at ξ0 ∈ T
as the minimum norm of any curve γ ∈ X orthogonal to

Tξ0
T , such that SSC is not satisfied for the problem in (5)

with ξ1 = ξ0 + γ. Notice that here, and in the rest of the

paper, we are playing with two norms. To define the space

of curves we use L∞ because we want to deal with bounded

curves, whereas to measure the radius of curvature we use

the weighted L2 norm defined above.

Formally, we have the following definition. In order to

highlight the dependence of q(ξ0) · (ζ, ζ) from a desired

curve ξ1, we use the notation q(ξ0; ξ1) · (ζ, ζ).
Definition 5.6 (Trajectory manifold radius of curvature):

Let ξ0 ∈ T be given. The radius of curvature of T at ξ0

is defined as

ρ(ξ0)
2 = inf

γ∈Nξ0

‖γ‖2
2

subj. to q(ξ0; ξ0 + γ) · (ζ, ζ) = 0,

for some ζ ∈ Tξ0
T ¤

The curvature at ξ0 is then given by σ(ξ0) = 1/ρ(ξ0) for

ρ(ξ0) < +∞ and 0 otherwise. From now on we will omit

the words minimum and maximum respectively.

We define also the radius of curvature along a given

direction as follows.

Definition 5.7 (Radius of curvature along a direction):

Let ξ0 ∈ T and γ ∈ Nξ0
, ‖γ‖2 = 1, be given. The radius

of curvature of T at ξ0 along γ is defined as

ρ(ξ0, γ) = sup{ρ > 0 | q(ξ0; ξ0 + ργ) · (ζ, ζ) > 0,

for all ζ ∈ Tξ0
T } ¤

First, we show that the Definition 5.6 is well posed. In

particular we show that the radius of curvature is a strictly

positive number.

Theorem 5.8 (The radius of curvature is positive): The

radius of curvature is strictly positive. ¤

Proof: The proof is similar to the finite dimensional

case.

Second, the radius of curvature of a linear system is

+∞ at any trajectory. This can be seen observing that, for

a linear system, problem (3) or (5) is a linear quadratic

optimal control problem. It is well known that, for any

ξ1 = (x1(·), u1(·)), the problem has a unique global

minimizer (SSC is always satisfied). It is worth noting that

the viceversa is not true in general. That is, if the radius of

curvature at a given trajectory is +∞ the system may also

be nonlinear. As a counter example, consider the trajectory

manifold of the scalar nonlinear system ẋ = x3 + u.

It is easy to show that the radius of curvature at ξ0 =
(x(·), u(·)) ≡ (0, 0) is +∞. However, for any trajectory

arbitrarily close to ξ0 the radius of curvature is less than

+∞. Our conjecture is that if the radius of curvature is

+∞ at any trajectory, then the system is linear.

From the analysis done so far, there is no information on

the structure of Nξ0
. The structure of this space influences
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the minimization problem. In the next section we charac-

terize it.

VI. NUMERICAL COMPUTATIONS

In this section we deal with numerical techniques to com-

pute curves in the orthogonal complement and to compute

the radius of curvature along a given direction. We apply

these techniques to the case of an inverted pendulum.

A. Estimating the radius of curvature along a direction

From Definition 5.7 we know that, given ξ0 ∈ T and

γ ∈ Nξ0
,

ρ(ξ0, γ) = sup{ρ > 0 | q(ξ0; ξ0 + rγ) · (ζ, ζ) > 0,

for all ζ ∈ Tξ0
T and r ∈ [0, ρ]}.

Now, let Ric(ξ0 + ργ), ρ > 0, be the Riccati equation

associated to the minimization problem

min
ξ∈T

1

2
‖ξ − (ξ0 + ργ)‖2

2,

at the stationary point ξ0. Using the result in Theorem 4.3

we have that

ρ(ξ0, γ) = sup{ρ > 0 | Ric(ξ0+rγ), r ∈ [0, ρ],

has a bounded solution}.

With this equivalent definition in hand, we may compute

ρ(ξ0, γ) by simply checking the unboundedness of the

Riccati equation.

B. The inverted pendulum example

We evaluated the numerical techniques described above

on the inverted pendulum example. The dynamics of the

pendulum is given by

ϕ̈(t) =
g

l
sin ϕ(t) −

u(t)

l
cos ϕ(t). (13)

In order to get an initial trajectory of the pendulum, ξ0 ∈
T , we have chosen a desired curve and solved a nonlinear

quadratic optimal control problem by using the projection

operator based Newton method described in [5]. In Figure 2,

the dashed red curves represent respectively the ϕ portion

and the input of the initial trajectory.

Then, we have chosen a curve γ = (β(·), ν(·)) ∈
Nξ0

parametrized by β(·). The first component of β(·) is

represented in Figure 1, while the second component has

been chosen to be identically zero. Using a numerically

robust version of equation (12) we have computed the input

curve ν(·) depicted in Figure 1.

For this choice of γ we have found SSC to be preserved

at ρ = 11.6 and to fail at ρ = 11.7.

In Figure 2 we have plotted the desired state and input

curves ξ0 + ργ for ρ = 1, 11.7, together with the stationary

trajectory ξ0 (the dashed red curve). We have solved the

nonlinear quadratic optimal control problem by using the

projection operator Newton method. For any value of ρ > 0,

ξ0 turns to be a stationary trajectory.
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Fig. 1. The picture shows a possible choice of state curve (first
component) which, combined with the depicted input curve, gives
a curve in the orthogonal complement.
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Fig. 2. The picture shows the state and control portions of
the desired curves ξ0 + ργ for ρ = 1, 11.7, together with the
corresponding stationary trajectory ξ0.

VII. CONCLUSIONS

We have introduced the notion of curvature of the tra-

jectory manifold for nonlinear systems. Using a suitable

nonlinear quadratic optimal control problem we have de-

fined the curvature and characterized the set of curves

orthogonal to the tangent space. Using such curves we

provided numerical techniques to compute a lower bound

of the curvature.
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