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Abstract— The most widely applied resource allocation strat-
egy is to balance, or equalize, the total workload assigned to
each resource. In mobile multi-agent systems, this principle
directly leads to equitable partitioning policies in which (i) the
workspace is divided into subregions of equal measure, (ii) each
agent is assigned to a unique subregion, and (iii) each agent
is responsible for service requests originating within its own
subregion. In this paper, we design distributed and adaptive
policies to allow a team of agents to achieve a convex and
equitable partition of a convex workspace. Our approach is
related to the classic Lloyd algorithm, and exploits the unique
features of Power Diagrams. We discuss possible applications
to routing of vehicles in stochastic and dynamic environments,
and to wireless networks. Simulation results are presented and
discussed.

I. INTRODUCTION

In the near future, large groups of autonomous agents will
be used to perform complex tasks including transportation
and distribution, logistics, surveillance, search and rescue
operations, humanitarian demining, environmental monitor-
ing, and planetary exploration. The potential advantages of
multi-agent systems are, in fact, numerous. For instance,
the intrinsic parallelism of a multi-agent system provides
robustness to failures of single agents, and in many cases can
guarantee better time efficiency. Moreover, it is possible to
reduce the total implementation and operation cost, increase
reactivity and system reliability, and add flexibility and
modularity to monolithic approaches.

In essence, agents can be interpreted as resources to
be allocated to customers. In surveillance and exploration
missions, customers are points of interest to be visited; in
transportation and distribution applications, customers are
people demanding some service (e.g., utility repair) or goods;
in logistics tasks, customers could be troops in the battlefield.

The most widely applied resource allocation strategy is to
balance, or equalize, the total workload assigned to each re-
source. While, in principle, several strategies are able to guar-
antee workload-balancing in multi-agent systems, equitable
partitioning policies are predominant [1]–[4]. A partitioning
policy is an algorithm that, as a function of the number m of
agents and, possibly, of their position and other information,
partitions a bounded workspace A into subregions Ai, for
i ∈ {1, . . . ,m}. Then, each agent i is assigned to subregion
Ai, and each customer in Ai receives service from the agent
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assigned to Ai. Accordingly, if we model the workload for
subregion S ⊆ A as λS

.=
∫

S
λ(x) dx, where λ(x) is a

measure over A, then the workload for agent i is λAi
. Then,

load balancing calls for equalizing the workload λAi
in the

m subregions or, in equivalent words, requires to compute
an equitable partition of the workspace A (i.e., a partition
in subregions with the same measure).

Equitable partitioning policies are predominant for three
main reasons: (i) efficiency, (ii) ease of design and (iii) ease
of analysis; they are, therefore, ubiquitous in multi-agent
system applications. To date, nevertheless, to the best of
our knowledge, all equitable partitioning policies inherently
assume a centralized computation of the workspace’s tes-
sellation. This fact is in sharp contrast with the desire of a
fully distributed architecture for a multi-agent system. The
lack of a fully distributed architecture limits the applicability
of equitable partitioning policies to limited-size multi-agent
systems operating in a known static environment.

The contribution of this paper is three-fold. First, utilizing
appropriate partitioning policies, we design distributed and
adaptive policies to allow a team of agents to achieve an
equitable partition. Our approach is related to the classic
Lloyd algorithm from quantization theory [5], and exploits
the unique features of Power Diagrams, a generalization of
Voronoi Diagrams (see [6] for another interesting application
of Power Diagrams in mobile sensor networks). A remark-
able feature of our algorithms is that they guarantee convex
Ai subregions (provided that the workspace is convex).
Second, we design heuristic distributed algorithms that not
only yield equitable partitions, but also provide “fat” (i.e.,
with a small diameter for a given area) subregions. Fat
subregions, in general, improve overall performance. Third,
we discuss some applications of our algorithms; we focus,
in particular, on the Dynamic Traveling Repairman Problem
(DTRP) [1], and on hybrid networks.

We, finally, mention that our algorithms, although mo-
tivated in the context of multi-agent systems, are a novel
contribution to the field of computational geometry. In par-
ticular we address, using a dynamical system framework,
the well-studied equitable convex partition problem (see [7]
and references therein); moreover, our results provide new
insights in the geometry of Voronoi Diagrams and Power
Diagrams.

II. BACKGROUND

In this section, we introduce some notation and briefly
review some concepts from calculus and locational optimiza-
tion, on which we will rely extensively later in the paper.
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A. Notation

Let ‖ · ‖ denote the Euclidean norm. Let A be a com-
pact, convex subset of Rd. We denote the boundary of
A as ∂A. The distance from a point x to a set M is
defined as dist(x,M) .= infp∈M ‖x − p‖. We define Im

.=
{1, 2, · · · ,m}. Let G = (g1, · · · , gm) ⊂ (Rd)m denote the
location of m points. A partition (or tessellation) of A is
a collection of m closed subsets A = {A1, · · · , Am} with
disjoint interiors whose union is A. The partition of A is
convex, if each subset Ai, i ∈ Im, is convex.

B. Variation of an Integral Function due to a Domain
Change.

The following result is related to classic divergence the-
orems [8]. Let Ω = Ω(y) ⊂ A be a region that depends
smoothly on a real parameter y ∈ R and that has a well-
defined boundary ∂Ω(y) for all y. Let h be a density function
over A. Then

d

dy

∫
Ω(y)

h(x) dx =
∫

∂Ω(y)

(dx
dy
· n(x)

)
h(x) dx, (1)

where v · w denotes the scalar product between vectors v
and w, where n(x) is the unit outward normal to ∂Ω(y), and
where dx/dy denotes the derivative of the boundary points
with respect to y.

C. Voronoi Diagrams and Power Diagrams

We refer the reader to [9] and [10] for comprehensive
treatments, respectively, of Voronoi diagrams and Power
Diagrams. Assume that G is an ordered set of distinct
points. The Voronoi Diagram V(G) = (V1(G), · · · , Vm(G))
generated by points G = (g1, · · · , gm) is defined by

Vi(G) = {x| ‖x− gi‖ ≤ ‖x− gj‖, ∀j 6= i, j ∈ Im}. (2)

We refer to G as the set of generators of V(G), and to Vi(G)
as the Voronoi cell of the i-th generator. For gi, gj ∈ G,
i 6= j, let

b(gi, gj) = {x| ‖x− gi‖ = ‖x− gj‖} (3)

be the bisector of gi and gj ; face b(gi, gj) bisects the line
segment joining gi and gj , and this line segment is orthogonal
to the face (Perpendicular Bisector Property). It is easy to
verify that each Voronoi cell is a convex set.

Assume, now, that each generator gi ∈ G has assigned
an individual weight wi ∈ R, i ∈ Im. We define W =
(w1, · · · , wm). In some sense, wi measures the capability of
gi to influence its neighborhood. This is expressed by the
power distance

dP (x, gi;wi)
.= ‖x− gi‖2 − wi. (4)

We refer to the pair (gi, wi) as a power point. We define
GW =

(
(g1, w1), · · · , (gm, wm)

)
∈ (Rd×R)m. Two power

points (gi, wi) and (gj , wj) are coincident if gi = gj and
wi = wj . Assume that GW is an ordered set of distinct power
points. Similarly as before, the Power Diagram V(GW ) =

(V1(GW ), · · · , Vm(GW )) generated by power points GW =(
(g1, w1), · · · , (gm, wm)

)
is defined by

Vi(GW ) = {x| ‖x− gi‖2 − wi ≤ ‖x− gj‖2 − wj ,

∀j 6= i, j ∈ Im}.
(5)

We refer to GW as the set of power generators of V(GW ),
and to Vi(GW ) as the power cell of the i-th power generator;
moreover we call gi and wi, respectively, the position and
the weight of power generator (gi, wi). Notice that, when all
weights are the same, the Power Diagram coincides with the
Voronoi Diagram. Each power cell is, as well, a convex set
(as it can be easily verified). Indeed, Power Diagrams are
the generalized Voronoi Diagrams that have the strongest
similarities to the original diagrams [11]. There are some
differences, though. First, a power cell might be empty.
Second, gi might not be in its power cell. Finally, the bisector
of (gi, wi) and (gj , wj), i 6= j, is

b
(

(gi, wi), (gj , wj)
)

= {x| (gj − gi)Tx =

1
2

(‖gj‖2 − ‖gi‖2 + wi − wj)}.
(6)

Hence, b
(

(gi, wi), (gj , wj)
)

is a face still orthogonal to the
line segment gi gj and passing through the point g∗ij given
by

g∗ij =
‖gj‖2 − ‖gi‖2 + wi − wj

2‖gj − gi‖2
(gj − gi);

this last property will be crucial in the remaining of the
paper: it means that, by changing weights, it is possible
to arbitrarily move the bisector, while still preserving the
orthogonality constraint. Notice that the Power diagram of
an ordered set of possibly coincident power points is not
well-defined. We define

Γcoinc =
{
GW | gi = gj and wi = wj for some i 6= j ∈ Im

}
.

(7)

For simplicity, we will refer to Vi(G) (Vi(GW )) as Vi.
When the two Voronoi (power) cells Vi and Vj are adjacent
(i.e., they share a face), gi ((gi, wi)) is called a Voronoi
(power) neighbor of gj ((gj , wj)), and vice-versa. The set
of indices of the Voronoi (power) neighbors of gi ((gi, wi))
is denoted by Ni. We also define the (i, j)-face as ∆ij

.=
Vi ∩ Vj .

III. PROBLEM FORMULATION

A total of m identical mobile agents provide service in a
compact, convex service region A ⊆ Rd. Let λ be a measure
whose bounded support is A (in equivalent words, λ is not
zero only on A); for any set S, we define the workload
for region S as λS

.=
∫

S
λ(x) dx. The measure λ models

service requests, and can represent, for example, the density
of customers over A, or, in a stochastic setting, their arrival
rate. Given the measure λ, a partition {Ai}i of the workspace
A is equitable if λAi = λAj for all i, j ∈ Im.
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A partitioning policy is an algorithm that, as a function of
the number m of agents and, possibly, of their position and
other information, partitions a bounded workspace A into
subregions Ai, i ∈ Im. Then, each agent i is assigned to
subregion Ai, and each service request in Ai receives service
from the agent assigned to Ai. We refer to subregion Ai as
the region of dominance of agent i. Given a measure λ and
a partitioning policy, m agents are in a convex equipartition
configuration with respect to λ if the associated partition is
equitable and convex.

In this paper we study the following problem: find a
distributed equitable partitioning policy that allows m mobile
agents to reach a convex equipartition configuration (with
respect to λ).

IV. FROM CONVEX EQUIPARTITIONS
TO POWER DIAGRAMS

In [12], the authors present a distributed algorithm for the
local computation of Voronoi cells. Therefore, it is tempting
to consider the set of agents as a set of Voronoi generators;
then, each agent i computes, using the algorithm in [12],
its Voronoi cell Vi, and the set Ai

.= Vi ∩ A becomes its
region of dominance. By the properties of Voronoi Diagrams,
the resulting regions of dominance are convex, tessellate A,
but, in general, the resulting partition is not equitable. To
overcome this problem, in [13] we introduced the idea of
enabling the generators (in this setting the agents) to move,
according to a distributed control law, along the gradient of a
locational optimization function toward an equitable Voronoi
Diagram, where each Voronoi cell has the same measure
with respect to λ (i.e., λVi = λA/m for all i ∈ Im); in fact,
an equitable Voronoi Diagram yields an equitable partition
{Ai}i of A, since λVi

= λVi∩A = λAi
for all i ∈ Im.

However, this approach assumes that an equitable Voronoi
Diagram exists.

Indeed, while an equitable Voronoi Diagram always exists
when λ is constant over A [14], in general, for non-
constant λ, an equitable Voronoi Diagram fails to exist, as
the following counterexample shows.

Example 4.1 (Existence problem on a line): Consider a
one-dimensional Voronoi Diagram. In this case a Voronoi
cell is a half line or a line segment (called a Voronoi line).
It is easy to notice that the boundary point between two
adjacent Voronoi lines is the mid-point of the generators
of those Voronoi lines. Consider the measure λ in Fig. 1,
whose support is the interval [0, 1]. Assume m = 5. Let bi
(i = 1, . . . , 4) be the position of the i-th rightmost boundary
point and gi be the position of the i-th rightmost generator
(i = 1, . . . , 5). It is easy to verify that the only admissible
configuration for the boundary points in order to obtain an
equitable Voronoi Diagram is the one depicted in Fig. 1.
Now, by the Perpendicular Bisector Property, we require:{

g3 − b2 = b2 − g2,
g4 − b3 = b3 − g3.

Therefore, we would require g4 − g2 = 2(b3 − b2) = 1.2;
this is impossible, since g2 ∈ [0.1, 0.2] and g4 ∈ [0.8, 0.9].

Thus, for non-constant λ, in general, an equitable Voronoi
Diagram fails to exist. A possible solution is to use Power
Diagrams. On the one hand, Power Diagrams are the gener-
alized Voronoi Diagrams that have the strongest similarities
to the original diagrams [11], on the other hand, since the
bisector is not required to pass through the midpoint of
the line joining two neighbor generators, they are much
more flexible. Notice that, following the ideas in [12], it is
possible to compute Power Diagrams in a distributed way.
The problem of existence of equitable Power Diagrams is
studied next.
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Fig. 1. Example of non-existence of an equitable Voronoi Diagram on
a line. The above tessellation is an equitable partition, but not a Voronoi
Diagram.

Theorem 4.2 (Existence of equitable Power Diagrams):
Let A ⊂ Rd be a compact, convex set, and λ be a measure
whose support is A. Then, for every m ≥ 1, there exist
distinct points gi, i ∈ Im, all in the interior of A, and
weights wi, i ∈ Im, such that the corresponding Power
Diagram is equitable with respect to λ, i.e., λVi = λVj for
all i, j ∈ Im.

Proof: Notice that the power distance is preserved
under roto-translation. By compactness, there exist points
a, b ∈ A such that ‖b − a‖ = maxz,z′∈A ‖z − z′‖. By a
translation of coordinates, we can assume a = 0. Define
v
.= b/‖b‖; by a rotation of coordinates, we can assume,

without loss of generality, that v coincides with the first
vector of the canonical basis e1. For each s ∈ R, define
the slice V s .= {x ∈ A| e1 ·x = s}. Then, there exist unique
values s0 < s1 < · · · < sm such that s0 = inf{s|V s 6= ∅},
sm = sup{s|V s 6= ∅}, and

λ{x| e1·x≤si} =
i

m
λA, i = 1, . . . ,m− 1. (8)

Define: gi = e1(si−1 + si)/2, i ∈ Im. We want,
now, to choose the weights in such a way that sie1 ∈
b
(

(gi, wi), (gi+1, wi+1)
)

for i = 1, . . . ,m − 1 (see Fig.
2 for the case A ⊂ R2). This is, indeed, always possible.
Recalling, in fact, Eq. (6), we set

wi+1 = ‖gi+1‖2 − ‖gi‖2 + wi − 2(gi+1 − gi)Tsie1.

By setting w1 = 0, the above recursive equation yields the
weights wi, ∀ i.

The last step is to show that, for all i ∈ Im,

Ṽi
.={x| e1 · x ∈ [si−1, si]} =
{x| dP (x, gi;wi) ≤ dP (x, gj ;wj), ∀ j 6= i} = Vi.

(9)
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Fig. 2. Construction used for the proof of Theorem 4.2.

Together, Eq. (8) and Eq. (9) yield the desired result.
Given the weights thus computed, we have that sie1 ∈

b
(

(gi, wi), (gi+1, wi+1)
)

. As a consequence, we have (with
obvious modifications for g1 and gm):

‖x− gi‖2 − wi ≤ ‖x− gi+1‖2 − wi+1, ∀x ∈ Ṽi,

‖x− gi‖2 − wi ≤ ‖x− gi−1‖2 − wi−1, ∀x ∈ Ṽi.
(10)

First, we want to show that

‖x− gi‖2 − wi ≤ ‖x− gi+2‖2 − wi+2, ∀x ∈ Ṽi.

Assume, by contradiction, that there exists x̄ ∈ Ṽi such that

‖x̄− gi‖2 − wi > ‖x̄− gi+2‖2 − wi+2.

We can assume, without loss of generality, that x̄ · e1 ∈
[gi · e1, si]. Define x̄b

.= x̄ + (si − x̄ · e1)e1. Clearly,
x̄b ∈ b

(
(gi, wi), (gi+1, wi+1)

)
and it belongs to both Ṽi and

Ṽi+1. Since ‖x̄ − gi‖2 ≤ ‖x̄b − gi‖2 and ‖x̄ − gi+2‖2 ≥
‖ x̄b − gi+2‖2, we get

‖x̄b−gi+2‖2−wi+2 < ‖x̄b−gi‖2−wi = ‖x̄b−gi+1‖2−wi+1.

This is a contradiction with respect to (10), since x̄b ∈ Ṽi+1.
It is, then, easy to show that for all r ∈ N+ such that

i+ r ≤ m

‖x− gi‖2 − wi ≤ ‖x− gi+r‖2 − wi+r, ∀x ∈ Ṽi.

By identical arguments, for all r ∈ N+ such that i− r ≥ 1

‖x− gi‖2 − wi ≤ ‖x− gi−r‖2 − wi−r, ∀x ∈ Ṽi.

Therefore, the set Ṽi is a subset of the power cell of generator
i. Finally, we have to show that every point not belonging to
Ṽi can not belong to the power cell of generator i. Assume,
by contradiction, that there exists x̄ /∈ Ṽi such that x̄ belongs
to the power cell of generator i. Since a power cell is a
convex set, then the convex set S .= {x|x = agi + (1 −
a)x̄, a ∈ [0, 1]} is entirely contained in the power cell of
generator i. Then, there exists a point in S that belongs to
the interior either of Ṽi−1 or of Ṽi+1. Therefore, because
of Eq. (10), such point can not belong to the power cell of
generator i, a contradiction. Hence, the second equality in
Eq. (9) holds.

V. GRADIENT DESCENT LAW FOR
EQUITABLE PARTITIONING

In this section, we design distributed policies to allow a
team of agents to achieve a convex equipartition configura-
tion.

A. Virtual Generators

The first step is to associate to each agent i a virtual power
generator (virtual generator for short) (gi, wi). We define the
region of dominance for agent i as the set Ai

.= Vi(GW )∩A,
where GW =

(
(g1, w1), · · · , (gm, wm)

)
, and Vi(GW ) is

the power cell of the i-th generator in the Power Diagram
V(GW ). By the properties of Power Diagrams, the resulting
regions of dominance are convex and tessellate A. Moreover,
if the Power Diagram V(GW ) is equitable, i.e., each power
cell has the same measure with respect to λ (or, in equivalent
words, λVi = λA/m for all i ∈ Im), then the resulting
partition {Ai}i of A is equitable, since λVi

= λVi∩A = λAi
,

for all i ∈ Im. Henceforth, we assume that GW ∈ (R2×R)m,
although extensions to other dimensions (i.e., to GW ∈ (Rd×
R)m with d 6= 2) are possible. A virtual generator (gi, wi)
is simply an artificial variable locally controlled by the i-
th agent; in particular, gi is a virtual point and wi is its
weight (see Fig. 3). Virtual generators allow us to decouple
the problem of achieving an equitable partition into regions
of dominance from that of positioning an agent inside its
own region of dominance.

We shall assume that each agent has sufficient information
available to determine: (1) its power cell, and (2) the loca-
tions of all outstanding events in its power cell. A control
policy that relies on information (1) and (2) is distributed in
the sense that the behavior of each agent depends only on
the location of the other agents with contiguous power cells.
A spatially distributed algorithm for the local computation
and maintenance of power cells can be designed following
the ideas in [12].

B. Locational Optimization

The key idea is to enable virtual generators to follow
a (distributed) gradient descent law such that an equitable
Power Diagram is reached. Define the set

S
.= {GW ∈ (R2 × R)m|GW 6= Γcoinc andλVi > 0 ∀i ∈ Im}.

We introduce the locational optimization function
HV : S → R>0

HV (GW ) .=
m∑

i=1

λ−1
Vi

+
1
2

m∑
i=1

dist2(gi, A). (11)

Notice that dist(gi, A) = 0 if gi ∈ A.

C. The gradient of HV

The gradient of HV is computed in the following theorem.
We point out that this gradient can be computed in a
distributed way, since it depends only on the location of the
other agents with contiguous power cells. In the following,
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Fig. 3. Agents, virtual generators and regions of dominance.

let γij
.= ‖gj − gi‖. Moreover, let vA,gi be the vector from

the point closest to gi in A to gi; vA,gi = 0 if gi ∈ A.
Theorem 5.1: Given a measure λ, the locational optimiza-

tion function HV is continuously differentiable on S, where
for each i ∈ {1, . . . ,m}
∂HV

∂ gi
=
∑
j∈Ni

( 1
λ2

Vj

− 1
λ2

Vi

)∫
∆ij

(x− gi)
γij

λ(x) dx+ vA,gi ,

∂HV

∂ wi
=
∑
j∈Ni

( 1
λ2

Vj

− 1
λ2

Vi

)∫
∆ij

1
2γij

λ(x) dx,

(12)

Furthermore, the critical configurations of HV are genera-
tors’ locations and weights with the property that all power
cells have measure equal to λA/m, and all generators’
locations are within A.

Proof: We first consider the partial derivative with
respect to gi. Let gk

i be the k-th component of gi (k = 1, 2).
Similarly, let vk

A,gi
be the k-th component of vA,gi

(k = 1, 2).
Since the motion of a generator gi affects only power cell
Vi and its neighboring cells Vj for j ∈ Ni, we have

∂HV

∂gk
i

= − 1
λ2

Vi

∂λVi

∂gk
i

−
∑
j∈Ni

1
λ2

Vj

∂λVj

∂gk
i

+ vk
A,gi

. (13)

Now, the result in Eq. (1) provides the means to analyze
the variation of an integral function due to a domain change.
Since the boundary of Vi satisfies ∂Vi = ∪j∆ij , where
∆ij = ∆ji is the boundary between Vi and Vj , we have

∂λVi

∂gk
i

=
∑
j∈Ni

∫
∆ij

( dx
dgk

i

· nij(x)
)
λ(x) dx (14)

where we defined nij as the unit normal to ∆ij outward of
Vi (therefore we have nji = −nij). Similarly,

∂λVj

∂gk
i

=
∫

∆ij

( dx
dgk

i

· nji(x)
)
λ(x) dx. (15)

To evaluate the scalar product between the derivative of
boundary points and the unit outward normal to the border
in Eq. (14) and in Eq. (15), we differentiate Eq. (6) with
respect to gk

i at every point x ∈ ∆ij ; we get

∂x

∂gk
i

· (gj − gi) = eT
k · (x− gi), (16)

where ek is the k-th vector of the canonical basis (k = 1, 2)
in R2. From Eq. (6) we have nij = (gj − gi) /‖gj − gi‖,

and the desired explicit expressions for the scalar products in
Eq. (14) and in Eq. (15) follow immediately (recalling that
nji = −nij).

Collecting the above results, we get the partial derivative
with respect to gi. The proof for the partial derivative
with respect to wi is similar and is omitted. The proof of
the characterization of the critical points is an immediate
consequence of the expression for the gradient of HV ; we
omit it in the interest of brevity.

D. Gradient Descent Law

Assume that generators’ weights and positions obey a
first order dynamical behavior described by ġi = ug

i and
ẇi = uw

i . Consider HV an aggregate objective function to
be minimized and impose that the weight wi and the position
gi follow the gradient descent given by (12). In more precise
terms, we set up the following control law defined over the
set S

ug
i = −∂HV

∂gi
(GW ), uw

i = −∂HV

∂wi
(GW ), (17)

where we assume that the partition V(GW ) = {V1, . . . , Vm}
is continuously updated. Let Ω ⊆ S be the set such that
generators’ positions and weights starting at t = 0 at
GW (0) ∈ Ω and evolving under (17) do not reach Γcoinc.
Clearly, Ω is non-empty. One can prove the following result.

Theorem 5.2: Consider the gradient vector field on Ω
defined by equation (17). Then generators’ positions and
weights starting at t = 0 at GW (0) ∈ Ω, and evolving
under (17) remain in Ω and converge asymptotically to the
set of critical points of HV (i.e., to the set of vectors of
generators’ positions and weights that yield an equitable
Power Diagram).

Proof: First, we prove that set Ω is positively invariant
with respect to (17), i.e., that GW (t) 6= Γcoinc, t ≥ 0, and
λVi

(t) > 0, t ≥ 0, i ∈ Im. Indeed, by definition
of Ω, we have GW (t) 6= Γcoinc for all t ≥ 0 (therefore,
the Power Diagram is always well-defined). Moreover, it is
straightforward to see that ḢV ≤ 0. Therefore, it holds

λ−1
Vi

(t) ≤ HV (GW (t)) ≤ HV (GW (0)), i ∈ Im, t ≥ 0.

We conclude that the measures of all power cells are bounded
away from zero. Thus, the generators’ positions and weights
will belong to Ω for all t ≥ 0, i.e., GW (t) ∈ Ω ∀t ≥ 0.

Second, as discussed before, HV : Ω → R>0 is non-
increasing along system trajectories, i.e., ḢV (GW ) ≤ 0 in
Ω.

Third, all trajectories with initial conditions in Ω are
bounded. Indeed, (1/2)dist2(gi(t), A) ≤ HV (GW (t)) ≤
HV (GW (0)), i ∈ Im, t ≥ 0; therefore the generators’
positions will remain within a bounded set. Moreover, it
is easy to see that the sum of the weights is invariant
under control law (17), i.e., ∂

Pm
i=1 wi

∂t = 0; thus we have∑m
i=1 wi(t) =

∑m
i=1 wi(0) .= w(0) along system trajecto-

ries. This implies that weights remain within a bounded set:
If, by contradiction, a weight could become arbitrarily posi-
tive large, another weight would become arbitrarily negative
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large (since the sum of the weights is constant), and the
measure of at least one power cell would vanish (since the
positions of the generators remain within a bounded set),
which contradicts the fact that Ω is positively invariant.

Finally, by Theorem 5.1, HV is continuously differentiable
in Ω. Hence, by invoking the LaSalle invariance principle,
under the descent flow (17), the generators’ positions and
weights will converge asymptotically to the set of critical
points of HV within Ω, which is non-empty by Theorem 4.2.

Remark 5.3: A spatially distributed algorithm for the local
computation and maintenance of power cells can be designed
following the ideas in [12]. Moreover, the partial derivative of
HV with respect to the i-th virtual generator only depends on
the virtual generators with neighboring power cells. There-
fore, the gradient descent law (17) is indeed a distributed
control law. We mention that, in a Power Diagram, the
average number of neighbors of a generator is less than or
equal to six [11]; therefore, the computation of gradient (17)
is scalable with the number of agents.

Remark 5.4: The analytical characterization of set Ω is an
open problem. However, in all our simulations, the solution
of the gradient flow (17) starting at general initial conditions
GW (0) ∈ S never reached Γcoinc and always converged to the
set of critical points of HV , i.e. to an equitable partition with
generators’ locations inside A (for an in-depth discussion of
simulation results, see Section VII).

VI. LLOYD DESCENT FOR EQUITABLE PARTITIONING

The previous gradient descent law, although effective in
providing a convex equitable partition, sometimes yields
long and “skinny” subregions, whereas in some applications
“fat” subregions (i.e., with a small diameter for a given
area) are desirable. In this section, we introduce an heuristic
distributed algorithm to achieve an equitable partition into
convex and “fat” (indeed hexagon-like) subregions. As be-
fore, such algorithm is designed to be implemented by a
distributed network of agents.

The idea is to extend the continuous-time Lloyd algorithm
presented in [15]. As before, we associate to each agent i a
virtual generator (gi, wi). The mass and the centroid of the
power cell Vi, i ∈ Im, are then defined as

MVi
=
∫

Vi

λ(x) dx, CVi
=

1
MVi

∫
Vi

xλ(x) dx.

Then, each agent i ∈ Im updates its own virtual generator
according to the following Lloyd descent

ġi = −kprop(gi − CVi
), ẇi =

1
|Ni|

( ∑
j∈Ni

λV j

)
− λVi

,

(18)

where kprop is a positive gain, and |Ni| is the number of
neighbors of virtual generator i. If all weights are initialized
to the same value w̄, and if ẇi is set to zero, then the control
law (18) reduces to the continuous-time Lloyd algorithm
in [15]; in particular, the generators will converge to the
set of centroidal Voronoi configurations, where all cells are

TABLE I
PERFORMANCE OF CONTROL LAWS 1 AND 2.

Error ε Law 1 Law 2

E [ε] 1.0 · 10−4 8.0 · 10−5

σ2(ε) 2.7 · 10−4 9.0 · 10−5

max ε 1.7 · 10−3 4.1 · 10−4

approximately hexagonal [16]. Simulations illustrate how
this algorithm does indeed provide “fat” equitable partitions,
even though a proof is not yet available.

VII. SIMULATION

In this section, we compare the performance of the dif-
ferent control laws proposed in the previous sections. For
conciseness, we will refer to the Gradient Descent law (17)
as “Law 1” and to the Lloyd Descent law (18) as “Law 2”. In
all simulations we assume that 10 agents provide service in
the unit square A and that the measure λ is uniform over A:
λ ≡ 1. Then, agents should converge to a configuration such
that all regions of dominance have the same measure equal
to ā = 0.1. For each law, we run 50 simulations. Agents’
initial positions are independently and uniformly distributed
over A; the initial position of each virtual generator coincides
with the initial position of the corresponding agent, and all
weights are initialized to zero. Time is discretized with a
step dt = 0.01, and each simulation run consists of 800
iterations (thus, the final time is T = 8). Define the error
ε as the difference, at T = 8, between the measure of
the region of dominance with maximum measure and the
measure of the region of dominance with minimum measure.
Table I summarizes simulation results. Expectation, variance
and worst case error are with respect to 50 runs.

Recalling that the desired measure of each region of
dominance is 0.1, we argue that both control laws 1 and 2
are effective in providing a convex equipartition. Notice from
the third row of Table I that the worst case error (max ε),
at T = 8, is within 2% from ā. Therefore, convergence to
a convex equipartition seems to be robust for both policies.
In particular, in all 50 simulations of Law 1, the solution of
gradient flow (17) never reached Γcoinc. Figure 4 shows how
Law 2 provides “more regular” equipartitions.

(a) Typical equipartition of A
with Law 1

(b) Typical equipartition of A
with Law 2

Fig. 4. Comparison between the typical equipartitions achieved by using,
respectively, Law 1 and Law 2.
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VIII. APPLICATIONS

In this section we discuss some applications of the control
policies proposed in the previous sections.

A. Distributed Policies for the DTRP Problem

The first application that we consider is the Dynamic
Traveling Repairman Problem (DTRP). In the DTRP, m
agents operating in a workspace A must service demands
whose time of arrival, location and on-site service are
stochastic; the objective is to find a policy to service demands
over an infinite horizon that minimizes the expected system
time (wait plus service) of the demands. There are many
practical settings in which such problem arises. Any distri-
bution system which receives orders in real time and makes
deliveries based on these orders (e.g., courier services) is a
clear candidate. Equitable partitioning policies (with respect
to a suitable measure λ related to the probability distribution
of demand locations) are, indeed, optimal for the DTRP (see
[1], [17], [18]). Therefore, combining the optimal equitable
partitioning policies in [17] with the algorithms presented
in this paper, we immediately obtain optimal distributed
policies for the DTRP problem. Notice that, since each agent
is required to travel inside its own region of dominance, this
scheme is inherently safe against collisions.

B. Hybrid Networks

An ad-hoc network consists of a group of nodes which
communicate with each other over a wireless channel without
any centralized control; in situations where there is no fixed
infrastructure, for example, battlefields, catastrophe relief
efforts, etc., wireless ad hoc networks become valuable
alternatives to fixed infrastructure networks for nodes to com-
municate with each other. To improve throughput capacity,
a sparse network of more sophisticated nodes (supernodes)
is placed within an ad hoc network. Supernodes provide
long-distance communication. Assuming that normal nodes
are independently and uniformly located in the workspace,
supernodes should divide the area according to a hexagonal
tessellation [3], where all hexagon cells have the same area.
If we let supernodes play the role of agents in our framework,
and we set λ ≡ 1, then the Lloyd Descent algorithm is a
candidate distributed control law to allow a hybrid network
to reach an efficient configuration.

IX. CONCLUSION

We have presented distributed control policies to allow
a team of agents to achieve a convex equipartition con-
figuration, using the Power Diagram partitioning policy.
Our algorithms could find applications in many problems,
including dynamic vehicle routing, and wireless networks.
This paper leaves numerous important extensions open for
further research. First, we plan to analytically characterize
the set Ω. Second, we would like to extend our algorithms
to guarantee control on the shape of the cells. Third, we
envision considering the setting of structured environments
(ranging from simple nonconvex polygons to more realistic
ground environments). Finally, to assess the closed-loop

robustness and the feasibility of our algorithms, we plan to
implement them on a network of unmanned aerial vehicles.
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