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Abstract— We present a decentralized, communication-less
approach to the dynamic allocation of a swarm of homogeneous
robots to a target distribution among multiple sites. Building
on our work in [1], we optimize stochastic control policies for
the robots that cause the population to quickly redistribute
among the sites while adhering to a limit on inter-site traffic
at equilibrium. We propose a way to account for delays due to
navigation between sites in our controller synthesis procedure.
Control policies that are designed with and without the use
of delay statistics are compared for a simulation in which 240

robots distribute themselves among four buildings.

I. INTRODUCTION

We address the problem of quickly and efficiently de-

ploying a swarm of homogeneous robots to occupy multiple

locations in a predefined distribution for parallel task execu-

tion at each site. The robots must autonomously redistribute

themselves among the sites to ensure task completion in the

presence of robot failures or changes in the environment.

This problem is relevant to applications such as the sur-

veillance of multiple buildings, search-and-rescue, and large-

scale environmental monitoring.

In the multi-robot domain, methods to optimally allocate

robots to tasks or resources often reduce to market-based

approaches [2], [3], in which robots execute complex bidding

schemes to determine an allocation based on perceived costs

and utilities. While these approaches have been successful in

various applications, optimality is often sacrificed to reduce

the computation and communication requirements, which

scale poorly as the number of robots and tasks increase. An-

other approach is to model the swarm as a partial differential

equation and use a centralized optimal control strategy [4].

As the number of robots increases, it becomes less

likely that resource-constrained robots will always have the

communication and computational capabilities required for

centralized control. It therefore makes sense to consider a

decentralized approach to allocation that is efficient, scalable

in the number of robots and sites, robust to changes in robot

population, and uses little to no communication. Some work

on task allocation has used the self-organized behavior of
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Á. Halász is with the Dept. of Mathematics, West Virginia
University, 307G Armstrong Hall, Morgantown, WV 26506, USA,
halasz@math.wvu.edu

M. A. Hsieh is with the Dept. of Mechanical Engineering and Mechanics,
Drexel University, 3141 Chestnut Street, Philadelphia, PA 19104, USA,
mhsieh1@drexel.edu

We gratefully acknowledge partial support from NSF grants CSR-CPS
0720801, IIS-0427313, NSF IIP-0742304, and IIS-0413138, ARO grant
W911NF-05-1-0219, and ONR grant N00014-07-1-0829.

insect colonies as inspiration for decentralized strategies in

which robots switch between simple behaviors in response

to local sensing [5]–[7]. We have adopted this distributed

paradigm, inspired in particular by the process of house-

hunting in ant colonies [8].

In recent work on decentralized control for task allocation,

a physical multi-robot system is abstracted to an accurate dif-

ferential equation model [9], [10]. In contrast to this “bottom-

up” analysis procedure, our methodology is based on a

“top-down” design approach that gives theoretical guarantees

on performance. The robots in our scenario redistribute

themselves by switching stochastically between pairs of sites

at probability rates specific to each transition. Our strategy

is to use a continuous approximation of the system to design

these rates to achieve our global objective.

We first applied this approach to the design of ant-inspired

behaviors that produce a predefined swarm allocation be-

tween two sites [11], [12]. We extended our methodology to

the problem of redistributing a swarm among many sites [1]

and introduced quorum-based control policies [13]. In [1],

we noted the idea of including in the analysis the effects of

robot navigation between sites when the travel times are not

negligible compared to the waiting times for transitions. In

this work, we extend our controller design methodology to

account for inter-site travel times. We optimize the rates at

which robots switch between sites for fast convergence to

a desired distribution subject to a constraint on equilibrium

traffic between sites. We compare the resulting control poli-

cies using a four-site surveillance simulation in which robot

travel time distributions have significant variability.

II. PROBLEM STATEMENT

A. Definitions and Assumptions

Consider N robots to be distributed among M sites. We

denote the number of robots at site i ∈ {1, . . . ,M} at time t
by ni(t) and the desired number of robots at site i by nd

i , a

positive integer. The population fraction at site i at time t is

xi(t) = ni(t)/N . Then the system state vector is given by

x(t) = [x1(t) ... xM (t)]
T

. We define the target distribution

as a set of desired population fractions to occupy each site,

xd = [xd
1 ... xd

M ]T , where xd
i = nd

i /N . A specification

in terms of fractions rather than absolute robot numbers is

useful for scaling and for applications in which losses of

robots to attrition and breakdown are common.

The interconnection topology of the sites can be modeled

as a directed graph, G = (V, E), where V , the set of vertices,

represents sites {1, . . . ,M} and E , the set of NE edges,

represents physical one-way routes between sites. Sites i
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and j are adjacent, denoted by i ∼ j, if robots can travel

from i to j. We represent this relation by the ordered pair

(i, j) ∈ V × V , with the set E = {(i, j) ∈ V × V | i ∼ j }.

More generally, we can define V as a set of M tasks and

E as the set of possible transitions between tasks; then

G models precedence constraints between the tasks. It is

assumed that G is strongly connected, i.e. a directed path

exists between any pair of distinct vertices. This property

facilitates redistribution by allowing robots to travel to any

site from any other site; no sites act as sources or sinks.

We consider x(t) to represent the distribution of the state

of a Markov process on G, for which V is the state space

and E is the set of possible transitions. Every edge in E
is assigned a constant positive transition rate, kij , which

defines the probability per unit time for one robot at site

i to go to site j. It follows that the number of transitions

between two adjacent sites in a time interval t has a Poisson

distribution with parameter kijt. We use constant kij in order

to be able to abstract the system to a continuous model (see

Section II-B). In general, kij 6= kji.

We assume that each robot has knowledge of G, all kij ,

and the task to perform at each site, as well as the behaviors

necessary to navigate between sites and execute the tasks. We

also assume that each robot has a map of the environment

and can localize itself and sense neighboring robots.

B. Base Model

Our strategy for redistributing robots among the sites is

to program each robot to switch stochastically from site i to

site j with probability kij∆t at each time step ∆t [1]. In the

limit N → ∞, the physical system of individual robots can

be abstracted to a linear ordinary differential equation (ODE)

model according to the theoretical justification provided by

[14]. The model quantifies ẋi(t) as the difference between

the total influx and total outflux of robots at site i,

ẋi(t) =
∑

∀j|(j,i)∈E

kjixj(t) −
∑

∀j|(i,j)∈E

kijxi(t) . (1)

Then the system of equations for all M sites is given by

ẋ = Kx , (2)

where K ∈ R
M×M is a matrix defined as

Kij =







kji if i 6= j , (j, i) ∈ E ,
0 if i 6= j , (j, i) /∈ E ,
−

∑

(i,l)∈E kil if i = j .
(3)

Since the number of robots is conserved, the population

fractions satisfy the equation

1T x = 1 . (4)

We will refer to equation (2) subject to (4) as the switching

model, since it describes a system in which robots switch

instantaneously between sites. The following theorem was

proved in [1].

Theorem 1: If the graph G is strongly connected, then the

switching model has a unique, stable equilibrium x̄.

This equilibrium can be calculated as [15]:

x̄i = Kii/
M
∑

j=1

Kjj , i = 1, ...,M , (5)

where Kij is the cofactor of K obtained by deleting row i
and column j.

Theorem 1 implies that we can achieve the target distri-

bution xd from any initial distribution by specifying that

x̄ ≡ xd through the following constraint on K,

Kxd = 0 . (6)

When the kij are chosen to satisfy (6), robots that use the kij

as stochastic transition rules will collectively occupy the sites

in distribution xd at steady state, assuming instant switching.

C. Time-Delayed Model

In reality, the influx of robots to site j from site i is

delayed by the time taken to travel between the sites, τij .

If we assume a constant delay τij for each edge (i, j), this

effect can be included by rewriting equation (1) as a delay

differential equation (DDE):

ẋi(t) =
∑

∀j|(j,i)∈E

kjixj(t−τji) −
∑

∀j|(i,j)∈E

kijxi(t) . (7)

Modeling the time delays has the effect that 1T x(t) < 1 for

t > 0, since some robots are traveling between sites. Let

nij(t) be the number of robots traveling from site i to site

j at time t and yij(t) = nij(t)/N . Then the conservation

equation for this system is:

M
∑

i=1

xi(t) +
M
∑

i=1

∑

∀j|(i,j)∈E

yij(t) = 1 . (8)

III. ANALYSIS

In application, robot travel times between sites can be

highly variable due to changes in navigation patterns caused

by collision avoidance, crowding, and errors in localization.

Hence, model (7) can be made more realistic by defining

the delays τij as random variables, Tij . A reasonable form

for the probability density of the Tij can be estimated from

an analogous scenario in which vehicles deliver items along

roads to various sites. Vehicle travel times in this system

have been modeled as following an Erlang distribution to

capture the properties that the times have minimum possible

values, a small probability of being large due to accidents,

breakdowns, and low energy, and their distributions tend to

be skewed toward larger values [16]. We assume that each

Tij follows this distribution with parameters ωij , a positive

integer, and θij , a positive real number:

g(t;ωij , θij) =
θ

ωij

ij tωij−1

(ωij − 1)!
e−θijt . (9)

In practice, the parameters are estimated by fitting empirical

travel time data to density (9).

Under this assumption, the DDE model (7) can be trans-

formed into an equivalent ODE model of the form (1), which
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Fig. 1. A labeled edge (i, j) = (1, 2) that consists of (a) the physical
sites, corresponding to model (2), and (b) both physical and virtual sites
(for ω12 = 2), corresponding to model (10).

allows us to optimize the rates kij using the method we

develop for this type of model. We use the fact that Tij

has the same distribution as the sum of ωij independent

random variables, T1, ..., Tωij
, with a common distribution

f(t; θij) = θije
−θijt [17]. Each of the variables represents

a portion of the travel time between sites i and j. To model

these portions of the journey, we define a directed path

composed of a sequence of virtual sites, u = 1, ..., ωij ,

between the physical sites i and j. Assume that robots

transition instantaneously from virtual site u to u+1, which

is site j when u = ωij , at a constant probability per unit

time, θij . It follows that f(t; θij) is the distribution of the

time that a robot spends at virtual site u, and so we can

define Tu as this site occupancy time.

The expected value of Tu is E(Tu) = θ−1
ij . Using the prop-

erty E(Tij) =
∑ωij

u=1 E(Tu), we see that θij = ωij/E(Tij).
Then the variance of Tij is V ar(Tij) = E(Tij)

2/ωij . Note

that V ar(Tij) → 0 as ωij → ∞; in this case the system is

described by model (7), assuming that each τij = E(Tij).
The population fraction at virtual site u along edge (i, j)

will be denoted by y
(u)
ij . Then

∑ωij

u=1 y
(u)
ij represents yij , the

fraction of robots traveling from site i to j. Fig. 1 illustrates

how an edge from model (1) is expanded with two virtual

states y
(u)
ij . The dynamics of the population fractions at all

physical and virtual sites in the expanded system can be

written as a set of linear ODE’s, as in Section II-B:

ẋi(t) =
∑

j|(j,i)∈E

θjiy
(ωji)
ji (t) −

∑

j|(i,j)∈E

kijxi(t) ,

ẏ
(1)
ij (t) = kijxi(t) − θijy

(1)
ij (t) ,

ẏ
(m)
ij (t) = θij

(

y
(m−1)
ij (t) − y

(m)
ij (t)

)

,

m = 2, ..., ωij , (10)

where i = 1, ...,M and (i, j) ∈ E .

Let y be the vector of y
(u)
ij , u = 1, ..., ωij , (i, j) ∈ E .

The system state vector is then z = [x y]T . We can interpret

each component of z as the population fraction at a site

i ∈ {1, ...,M ′}, where M ′ is the sum of all physical and

virtual sites. The interconnection topology of these sites can

be modeled as a directed graph, G′ = (V ′, E ′), where V ′ =
{1, ...,M ′} and E ′ = {(i, j) ∈ V ′ ×V ′ | i ∼ j }. Since G is

strongly connected, so is G′. Then the ODE model (10) can

be written in the form of model (2):

ż = K̂z , (11)

where K̂ ∈ R
M ′×M ′

has structure (3) with entries k̂ij (in

place of kij) defined by the corresponding coefficients in

model (10). The conservation equation (8) can be written as

1T z = 1 . (12)

We will refer to system (11) subject to (12) as the chain

model, since it incorporates a chain of virtual sites between

each pair of physical sites.

At equilibrium, the incoming and outgoing flux at each

virtual site along the path from site i to j is kij x̄i, yielding

the following equilibrium values of y
(u)
ij , u = 1, ..., ωij :

ȳ
(u)
ij = kij x̄i/θij . (13)

Substituting ȳij =
∑ωij

u=1 ȳ
(u)
ij into equation (8) gives the

conservation equation for this system at equilibrium:

M
∑

i=1

x̄i



1 +
∑

j|(i,j)∈E

kijωij/θij



 = 1 (14)

The equilibrium values x̄i can be shown to be [15]:

x̄i = Kii/
M
∑

p=1

(1+
∑

j|(p,j)∈E

kpjωpj/θpj)Kpp , i = 1, ...,M .

(15)

Comparing the equilibrium values (15) of the chain model

with the values (5) of the corresponding switching model, it

is evident that the ratio of x̄i between any two sites is the

same in both models. However, since kpjωpj/θpj > 0, the

x̄i of the chain model are lower than those of the switching

model. The following theorem shows that the equilibrium

distribution will be achieved from any initial state.

Theorem 2: If G is strongly connected, then the chain

model has a unique, stable equilibrium given by (13), (15).

Proof: Since the system can be represented in the same

form as model (2) subject to (4), Theorem 1 can be applied

to show that there is a unique, stable equilibrium.

IV. METHODOLOGY

We consider the problem of computing the rates kij that

cause a swarm of robots, modeled as system (2) or (11), to re-

deploy from an initial distribution to a target distribution. The

redistribution can be made arbitrarily fast by choosing high

kij , since the rates of convergence of systems (2) and (11)

are governed by the real parts of the eigenvalues of K and

K̂, respectively, which are positive homogenous functions of

the kij [18]. However, as shown by equation (13), raising kij

increases the equilibrium fraction of travelers on the route

corresponding to edge (i, j). This extraneous traffic between

sites at equilibrium expends power and can lead to backups

due to congestion. Thus, when choosing the kij , we are faced

with a tradeoff between rapid equilibration and long-term

system efficiency, i.e. few idle trips between sites once the

target distribution is achieved. In light of this tradeoff, we

define our objective as the design of an optimal transition

rate matrix K∗ or K̂∗ that maximizes the convergence rate

of the system to the target distribution while not exceeding

a limit on the inter-site traffic at equilibrium.

In this section, we outline our methodology of determining

K∗ and K̂∗ for a simulated scenario in which a swarm
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of robots surveys the perimeters of several buildings while

reallocating to a target distribution among the buildings.

A. Surveillance simulation

1) Robot motion control: Each robot is represented as

a planar agent governed by a kinematic model. A robot

that is monitoring a building circulates around the perimeter

by aligning its velocity vector with the straight lines that

comprise the perimeter; this motion can also be achieved

with feedback controllers of the form given in [19]. The

robot slows down if a robot in front of it enters its sensing

range, which results in an approximately uniform distribution

of robots around the perimeter.

To implement inter-site navigation, we first performed a

convex cell decomposition of the free space. This resulted in

a discrete roadmap on which shortest-path computations be-

tween cells can be obtained using any standard graph search

algorithm. Each edge (i, j) ∈ E is defined as a sequence

of cells to be traversed by robots traveling from a distinct

exit point on the perimeter of building i to an entry point on

the perimeter of building j. We used Dijkstra’s algorithm to

compute the sequence with the shortest cumulative distance

between cell centroids, starting from the cell adjacent to the

exit at i and ending at the cell adjacent to the entrance at

j. The robots are provided a priori with the sequence of

cells corresponding to each edge. Navigation between cells is

achieved by composing local potential functions such that the

resulting control policy ensures arrival at the last cell in the

sequence [20]. We combine these navigation controllers with

ones derived from repulsive potential functions to achieve

inter-robot collision avoidance [21]. At each time step, the

robots compute the feedback controller to move from one cell

to the next based on their current position and the positions

of robots within their sensing ranges.

2) Site-to-site transitions: Gillespie’s Direct Method [14]

was used to simulate a sequence of robot site transition

events and their initiation times using the rates kij from the

switching model or chain model. Each event is identified with

the commitment of an individual robot to travel to another

site. A transition from building i to j is assigned to a random

robot on the perimeter of i. This robot continues to track the

perimeter until it reaches the exit for edge (i, j), at which

point it begins navigating to the entrance on building j. For

more details on this stochastic simulation, see [11] and [13].

The travel time τij is measured as the the sum of τa
ij ,

the time for a robot to reach the exit on building i from

the position at which it commits to the transition, and

τ b
ij , the travel time from the exit to building j’s entrance.

Because the robots at i are uniformly distributed around the

perimeter and are randomly selected for transitions, τa
ij has

a uniform distribution. The distribution of τ b
ij is affected by

the congestion on the roads and at the target sites, which

determines the amount of time spent avoiding collisions.

B. Computation of K∗ and K̂∗

We computed K∗ for the switching model and K̂∗ for two

versions of the chain model. To determine the parameters

of a full chain model that would most accurately emulate

the travel time distributions of the surveillance simulation,

we collected a set of τij from the simulation for each edge

(i, j), plotted a histogram of the τij , and then fit an Erlang

distribution (9) to the histogram to obtain ωij and θij . The

K̂∗ for this model is called K̂∗
full. We also computed a K̂∗,

called K̂∗
one, for a one-site chain model in which each ωij =

1 and each θij is 1/E(Tij) = θij/ωij from the full chain

model. In this case, the Erlang distribution reduces to an

exponential distribution with the same mean value.

We measure the degree of convergence to xd in terms of

the fraction of misplaced robots, defined as the 2-norm

∆(x) = ||x − xd||2 . (16)

We say that one system converges faster than another if it

takes less time for ∆(x) to decrease to a small fraction, such

as 0.1, of its initial value. We compute the transition rate

matrix that directly minimizes this convergence time using

Metropolis optimization [22] with the kij as the optimization

variables. This method was chosen for its simplicity and the

fact that it provides reasonable improvements in convergence

time with moderate computing resources.

Let x0 be the initial robot distribution among the sites.

We quantify the traffic associated with edge (i, j) as kijxi,

the fraction of robots per unit time that are exiting site i to

travel along the edge. For the switching model, the objective

is to find a K with structure (3) that minimizes the time

for ∆(x) to converge to 0.1∆(x0) subject to constraint (6)

and a limit c on the total traffic between sites at equilibrium,
∑

(i,j)∈E kijx
d
i . At each iteration, the kij are perturbed by

random amounts such that the resulting K satisfies (6).

Then to apply the traffic constraint, the kij are multiplied

by c/
∑

(i,j)∈E kijx
d
i , which maximizes the traffic capacity.

Since the model is a linear system, the convergence time

to 0.1∆(x0) can be easily calculated. The resulting K is

decomposed into its normalized eigenvectors and eigenval-

ues, system (2) is mapped onto the space spanned by the

normalized eigenvectors, and a transformation is applied to

compute x(t) using the matrix exponential of the diagonal

matrix of eigenvalues multiplied by time. Since the system is

stable by Theorem 1, ∆(x) always decreases monotonically

with time, so a Newton scheme can be used to calculate the

exact time when ∆(x)/∆(x0) = 0.1.

We use the same procedure to compute K̂∗ for the chain

models, with z in place of x, z0 = [x0T
0]T , and the

target distribution zd defined as the null space of K̂ at each

iteration. The θij are fixed and the kij are constrained such

that the portion of zd associated with the physical sites is a

fraction of xd (the remainder represents the travelers). The

same traffic constraint is applied so that the switching and

chain models have the same equilibrium traveler fraction,

which is necessary to have a basis for comparing the system

convergence rates due to the tradeoff between these proper-

ties that we discussed. Note that although this constraint is

formulated in terms of the xd
i , in practice the total traffic at

equilibrium is actually
∑

(i,j)∈E kijdxd
i = dc, where d is the

population fraction at the physical sites (i.e., not in transit).
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Fig. 2. Cell decomposition of the free space used for navigation. The
surveyed buildings are highlighted and numbered.

1 sec 3000 sec

8000 sec 16000 sec

Fig. 3. Snapshots of a simulation using K
∗. The maroon (dark) robots

are not engaged in a transition; the orange (light) robots have committed to
travel or are in the process of traveling. Robots navigate between sites at 1.3
m/s, which is attainable by some mobile robots that are suited to surveillance

tasks, such as PatrolBot R© and Seekur R©. The perimeter surveillance speed
is 4.5 times slower. We set c = 0.06 robots/s.

V. RESULTS

To investigate the utility of the chain model in optimizing

the kij , we simulated a surveillance task as described in

Section IV-A with kij from the matrices K∗, K̂∗
one, and

K̂∗
full computed according to Section IV-B. The swarm

consists of 240 robots, and the four buildings to be monitored

are located on the section of the University of Pennsylvania

campus shown in Fig. 2. We used a graph G for these four

sites with the edges given in Table 1. The robots are initially

split equally between sites 3 and 4, and they are required

to redistribute to occupy all sites in equal fractions. Fig. 3

illustrates this redistribution for one trial.

The travel time data that we used to determine the chain

model parameters were a set of 750 − 850 τij per edge

collected from a simulation using K∗. Fig. 4 shows a sample

fitting of an Erlang distribution to τij data for one edge. Table

1 lists E(Tij) (the average τij) and ωij for each edge.

Fig. 5(b),(d) show that starting at ∼ 15000 sec, each

average traveler fraction over 40 runs oscillates close to the

average equilibrium value of the K∗ runs. Thus, K∗, K̂∗
one,
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Fig. 4. Histogram of the travel times from site 1 to site 4 (758 data points)
and the approximate Erlang distribution.

and K̂∗
full yield approximately the same equilibrium inter-

site traffic. Fig. 5(a),(b) show that K∗ and K̂∗
one produce

very similar average ∆(x), average traveler fraction, and

associated standard deviations. The same can be said of the

results for K∗ and K̂∗
full in Fig. 5(c),(d), since the relatively

high standard deviations indicate that any disparities may not

be significant. One disparity is the slightly lower average

traveler fraction for K̂∗
full than for K∗ during the transient

phase, which implies that the K̂∗
full runs achieve the target

distribution in about the same amount of time as the K∗ runs

using less energy to travel between sites.

Table 1. Row 1: (i, j), row 2: E(Tij) (sec), row 3: ωij .

(1,2) (1,3) (1,4) (2,3) (2,4) (3,4) (4,1)

757 738 556 1507 1628 1228 1072

14 15 9 6 5 7 6

VI. DISCUSSION AND FUTURE WORK

In summary, we have extended our framework in [1] for

redistributing a swarm of robots among multiple sites, or

more generally tasks, to include the effects of travel times

between sites. We emulate realistic travel time distributions

by augmenting a linear ODE model of the swarm with

virtual sites that represent the progress of traveling robots.

We design the transition rates between sites in the ODE

model for fast convergence to a target distribution and long-

term efficiency. These rates define stochastic switching rules

for individual robots, whose collective behavior follows the

continuous model prediction. In this way, we synthesize

decentralized robot controllers that can be computed a priori

from a set of NE rates, where NE depends on the site graph

and not on the population size. The controllers require no

communication and have guarantees on performance.

The predictive value of the chain model depends on how

well the travel time distributions are characterized. Combi-

nations of Erlang distributions can be used to approximate

more complicated (e.g. multimodal) distributions.

The similarity among the results for the surveillance

simulations run with rates from the switching and chain

models indicates that for the purpose of controller synthesis,

the switching model is a sufficiently accurate representation
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Fig. 5. (a),(c) Fraction of misplaced robots ∆(x) and (b),(d) fraction

of travelers vs. time for simulations using K
∗, K̂

∗

one, and K̂
∗

full
. Thick

lines are averages over 40 simulation runs; thin lines mark the standard
deviations. The horizontal dashed lines mark the mean equilibrium traveler
fraction, 0.237, measured from the K

∗ runs.

of our system. Hence, we can simply optimize the matrix K

and do not have to incur the greater computational expense

that is needed to optimize the larger matrix K̂. In ongoing

work on the switching model, we compare our Metropolis

K optimization method with others that maximize functions

of the eigenvalues of K, which govern the model’s rate

of convergence [23]. A possible extension of our work is

to design a time-dependent matrix K(t) that causes the

swarm to redistribute according to a trajectory of desired

configurations, xd(t). Also, we can devise an extension of

our quorum-based strategy [13] in which robots stop moving

between sites (and hence expending energy) once they detect

that a site is close enough to the target occupancy.

One avenue of future work is to investigate whether using

the chain model to optimize the rates improves performance

under different conditions. In our simulation, the average τij

for the edges are within a factor of 3 of each other. The K̂∗

for a scenario with larger differences between average τij

should assign much higher kij to edges with low τij than to

edges with high τij since this would speed up convergence;

the computation of K∗ does not account for the τij and so

would be expected to produce slower convergence. It may

also be fruitful to study scenarios in which, for each edge

(i, j), the ratio of the average τij to k−1
ij , the average waiting

time at site i, is higher than in our simulations, in which the

highest ratio (over all sets of kij) is 0.31. Another aspect

to consider is the dependence of travel times on the robot

population, which may lead to a generalized definition of

“traffic capacity” that is not well described by a linear model.
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