
Supervising a Family of Hybrid Controllers

for Robust Global Asymptotic Stabilization

Ricardo G. Sanfelice, Andrew R. Teel, and Rafal Goebel

Abstract— This paper describes an algorithm for achieving
robust, global asymptotic stabilization in nonlinear control
systems by supervising the actions of a family of hybrid
controllers. The family is such that the regions over which
they operate cover the state space in an appropriate sense.
Moreover, their behavior is such that they can be scheduled
to move the state of the system toward a desirable region,
whether it be an equilibrium point or a compact set. In
establishing our main result, we use the concept of “events”
for hybrid systems and show that, under mild assumptions,
stability of a system without events is preserved when a

finite number of events are incorporated. The algorithm is
applied to robust, global stabilization problems involving vehicle
orientation, position and orientation of a mobile robot, and the
inverted configuration of a pendulum.

I. INTRODUCTION

In certain control applications, control design tools that di-

vide the problem into subproblems for which several control

laws can be designed independently and then combined to

solve the original problem are prevalent for many reasons.

They reduce design and implementation time as well as add

modularity and flexibility to the control system. They are

appropriate when a single, continuous stabilizing control law

does not exist or when its design is not straightforward.

Such a “divide and conquer” approach to control design is

also ubiquitous in control problems where precise control is

desired nearby particular operating points while less stringent

conditions need to be satisfied at other points. This includes

the problem of uniting local and global controllers, in which

two control laws are used: one that is supposed to work

only locally, perhaps guaranteeing good performance, and

another that is capable of steering the system trajectories to a

neighborhood of the operating point, where the local control

law works; see, e.g., [23], [15], and [4]. More recently,

these ideas have been extended in [19] to allow for the

combination of more than two state-feedback laws as well

as open-loop control laws. Another asymptotically stabilizing

control strategy that, rather than insisting on a single control

law, uses multiple ones is patchy feedback control [1] for

asymptotically controllable systems. It involves partitioning

the state space into regions so that a state-feedback law can

be designed to globally asymptotically stabilize the desired
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point. The hybrid patchy feedback control strategy in [16]

provides a hysteresis-based implementation of the patchy

feedback control in [1] that guarantees robust stability for

asymptotically controllable nonlinear systems.

Control systems featuring multiple control laws employ

a mechanism acting as a “supervisor”, which selects the

control law to be applied to the plant. This selection is

typically performed in real time and involves the state, inputs,

and outputs of the plant and controllers. Supervisory control

has been addressed for linear systems in [13], [14], [8] and

for several classes of discrete-time systems in [9], [10], [17].

In this paper, following the ideas outlined in [22], we design

a supervisor for a family of hybrid controllers to achieve

robust, global asymptotic stabilization for general nonlinear

systems. The supervisor utilizes hybrid controllers designed

to operate in appropriately designed regions of the state

space, which is a condition that we express in terms of a

pre-asymptotic stability property. Using a logic variable, the

supervisor chooses a hybrid controller so that the state of the

plant is moved toward a desirable region, whether it be an

equilibrium point or, more generally, a compact set. Under

reasonable operating conditions of each hybrid controller

and exploiting properties of certain jumps called “events”,

we show in Section III that such a hybrid supervisor can

be constructed to render the desired compact set robustly,

globally asymptotically stable. In Section IV, we apply this

controller to stabilize the orientation of a vehicle orientation,

the position and orientation of a mobile robot, and the state

of a pendulum to the inverted configuration.

II. PRELIMINARIES

Throughout the paper, R
n denotes n-dimensional Eu-

clidean space; R denotes real numbers; R≥0 denotes non-

negative real numbers, i.e., R≥0 = [0,∞); Z denotes

integers; and N denotes natural numbers including 0, i.e.,

N = {0, 1, . . .}. Given a set S, S denotes its closure.

Given a vector x ∈ R
n, |x| denotes Euclidean vector norm.

Given a set S ⊂ R
n and a point x ∈ R

n, |x|S :=
infy∈S |x− y|. Given sets S1, S2 subsets of R

n, S1 + S2 :=
{x1 + x2 | x1 ∈ S1, x2 ∈ S2 }. S1 denotes the unit circle,

that is, S1 :=
{
x ∈ R

2 | |x| = 1
}

. R(θ) denotes the rotation

matrix

[
cos θ − sin θ
sin θ cos θ

]
.

A. Hybrid systems

Hybrid systems are dynamical systems with both contin-

uous and discrete dynamics. Among several mathematical

models, like those in [12], [11], [24], for the purposes of
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this paper we consider the framework outlined in [5] and

further investigated in [6] and [21] from a dynamical systems

viewpoint with an emphasis on robustness. A hybrid system

H is defined by the following objects:

• A set C ⊂ R
n called the flow set.

• A set D ⊂ R
n called the jump set.

• A map f : C → R
n called the flow map.

• A set-valued map G : R
n

⇉ R
n called the jump map.

The flow map f defines the continuous dynamics on the flow

set C, while the jump map G defines the discrete dynamics

on the jump set D. These objects are referred to as the data

of the hybrid system H, which at times is explicitly denoted

as H = (C, f, D, G) and written compactly as

H : x ∈ R
n

{
ẋ = f(x) x ∈ C

x+ ∈ G(x) x ∈ D .
(1)

Solutions are given on extended time domains by functions

that satisfy the conditions suggested by (1). More precisely:

Definition 2.1 (hybrid time domain): A set E ⊂ R≥0×N

is a compact hybrid time domain if

E =

J−1⋃

j=0

([tj , tj+1], j)

for some finite sequence of times 0 = t0 ≤ t1 ≤ t2 ... ≤
tJ . It is a hybrid time domain if for all (T, J) ∈ E, E ∩
([0, T ]× {0, 1, ...J}) is a compact hybrid time domain. △

Definition 2.2 (hybrid arc): A function x : domx → R
n

is a hybrid arc if domx is a hybrid time domain and, for

each j ∈ N, t 7→ x(t, j) is locally absolutely continuous. △

Definition 2.3 (solution to H): A hybrid arc x : domx 7→
R

n is a solution to the hybrid system H if x(0, 0) ∈ C ∪D;

(S1) ∀j ∈ N and almost all t such that (t, j) ∈ domx,

x(t, j) ∈ C, ẋ(t, j) = f(x(t, j)); and

(S2) ∀(t, j) ∈ domx such that (t, j + 1) ∈ domx,

x(t, j) ∈ D, x(t, j + 1) ∈ G(x(t, j)) . △

Hybrid arcs, and solutions to H in particular, are

parametrized by pairs (t, j), where t is the ordinary time

component and j is the time component that keeps track of

the number of jumps. A solution x is said to be nontrivial

if domx contains at least one point different from (0, 0),
maximal if there does not exist another solution x′ such that

x is a truncation of x′ to some proper subset of domx′,

complete if domx is unbounded, and Zeno if it is complete

but the projection of domx onto R≥0 is bounded. Maximal

solutions to H may not be unique, not only due to the

jump dynamics being set-valued map, but also because when

C ∩ D 6= ∅, solutions from C ∩ D jump and, depending on

the flow map, may be able to flow as well.

We say that a hybrid system H = (C, f, D, G) is well

posed if its data satisfies the following assumption.

Assumption 2.4 (hybrid basic conditions): Given a hy-

brid system H = (C, f, D, G), its data (C, f, D, G) satisfies:

(A1) C and D are closed subsets of R
n.

(A2) f : C → R
n is continuous.

(A3) G : D ⇉ R
n is outer semicontinuous and locally

bounded, 1 and G(x) is nonempty for all x ∈ D. △

While well posedness usually refers to the uniqueness of

a solution and its continuous dependence on parameters, for

example, on initial conditions, these properties may not hold

for hybrid systems. On the other hand, hybrid systems H
satisfying only the mild conditions in Assumption 2.4 have

solution sets enjoying several structural and robustness prop-

erties. For example, given a bounded sequence of solutions

to H, there exists a subsequence that converges to a solution

to H [6, Theorem 4.4] and the set of solutions to H is equal

to the set of solutions to H with vanishing state perturbations

[21]. These properties are key in proving converse Lyapunov

theorems [3] and invariance principles [20], and guarantee

that nominal asymptotic stability of compact sets is robust

[6]. Hence, the hybrid controllers designed here will satisfy

them so that the induced stability property is automatically

robust.

The stability definitions below are generalizations of the

standard stability concepts to the setting where completeness

or even existence of solutions is not required. It is a natural

stability notion for hybrid systems since, often, the set C∪D
does not cover R

n and because local existence of solutions

is sometimes not guaranteed. For the problem of supervising

hybrid controllers studied here, it allows to specify the effect

of the individual controllers, which are not expected to

operate on the entire state space.

Definition 2.5 (pre-asymptotic stability): Consider a hy-

brid system H. Let A ⊂ R
n be compact. Then:

• A is stable for H if for each ε > 0 there exists δ >
0 such that any solution x to H with |x(0, 0)|A ≤ δ
satisfies |x(t, j)|A ≤ ε for all (t, j) ∈ domx.

• A is pre-attractive for H if there exists δ > 0 such that

any solution x to H with |x(0, 0)|A ≤ δ is bounded and

if it is complete then x(t, j) → A as t + j → ∞.

• A is pre-asymptotically stable if it is both pre-stable

and pre-attractive.

• A is asymptotically stable if it is pre-asymptotically

stable and there exists δ > 0 such that any maximal

solution x to H with |x(0, 0)|A ≤ δ is complete.

The set from which all solutions are bounded and the

complete ones converge to A is called the basin of pre-

attraction of A. A is globally (pre-)asymptotically stable

when the basin of (pre-)attraction is equal to R
n. △

By definition, the basin of pre-attraction contains a neigh-

borhood of A. Points in R
n \ (C ∪ D) always belong to it

since there are no solutions starting at such points.

B. Hybrid controllers for nonlinear systems

We consider nonlinear control systems of the form

P : ẋp = fp(xp, up), yp = hp(xp), xp ∈ Cp, (2)

1A set-valued map G defined on R
n is outer semicontinuous if for each

sequence xi ∈ R
n, xi → x ∈ R

n and each sequence yi ∈ G(xi)
converging to a point y, y ∈ G(x). It is locally bounded if, for each compact
set K ⊂ R

n there exists µ > 0 such that G(K) := ∪x∈KG(x) ⊂ µB.
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where xp ∈ Cp is the state, Cp ⊂ R
np is a closed set

where xp evolves, up ∈ R
mp is the input, and the functions

fp : Cp × R
mp → R

np , hp : Cp → R
np are continuous. A

well-posed hybrid controller K = (κc, Cc, fc, Dc, Gc),

K :





yc = κc(uc, xc)
ẋc = fc(uc, xc)

}
(uc, xc) ∈ Cc

x+
c ∈ Gc(uc, xc) (uc, xc) ∈ Dc,

(3)

where uc ∈ R
mc is the input, yc ∈ R

rc the output, xc ∈ R
nc

the state, is such that the sets Cc and Dc are closed subsets

of R
mc × R

nc , κc : Cc → R
rc and fc : Cc → R

nc are

continuous, and Gc : Dc ⇉ R
nc is outer semicontinuous,

locally bounded, and Gc(uc, xc) is a nonempty subset of

R
nc for each (uc, xc) ∈ Dc. When P is controlled by K via

the feedback interconnection uc = yp, up = yc, the resulting

system has state x := [x⊤
p x⊤

c ]⊤ ∈ R
n:

[
ẋp

ẋc

]
= f(x) :=

[
fp(xp, κc(hp(xp), xc))

fc(h(xp), xc)

]
(xp, xc)∈C

[
x+

p

x+
c

]
∈ G(x) :=

[
xp

Gc(hp(xp), xc)

]
(xp, xc)∈D,

(4)

where C := {(xp, xc) | xp ∈ Cp, (hp(xp), xc) ∈ Cc } and

D := {(xp, xc) | xp ∈ Cp, (hp(xp), xc) ∈ Dc }. By con-

struction and well-posedness of the hybrid controller K, the

hybrid system (4) is well posed.

III. HYBRID SUPERVISORS OF HYBRID CONTROLLERS

Problem 1: Given a closed set Θ ⊂ Cp ×R
nc−1, a com-

pact set A ⊂ Θ, a finite set Q := {1, . . . , qM} ⊂ N, and a

family of well-posed hybrid controllers Kq , q ∈ Q, with state

space R
nc−1 and the properties in Assumption 3.1 below, de-

sign a well-posed hybrid supervisor K = (κc, Cc, fc, Dc, Gc)
with state xc ∈ R

nc for the hybrid controllers Kq so that the

resulting feedback interconnection Hcl given in (4) satisfies:

1) A× Q is globally asymptotically stable.

2) C ∪ D = Θ × Q.

Assumption 3.1: There exists a family of well-posed hy-

brid controllers Kq = (κc,q, Cc,q, fc,q, Dc,q, Gc,q), q ∈ Q:

Kq :





yc = κc,q(uc, ξc)

ξ̇c = fc,q(uc, ξc)

}
(uc, ξc) ∈ Cc,q ⊂ Θ

ξ+
c ∈ Gc,q(uc, ξc) (uc, ξc) ∈ Dc,q ⊂ Θ,

(5)

where ξc ∈ R
nc−1 is the state. Moreover, there exists a

collection of closed sets Ψq ⊂ Cc,q∪Dc,q, q ∈ Q, satisfying:

1) ∪q∈QΨq = Θ.

2) ∀q ∈ Q, Φq :=∪i∈Q,i>qΨi, the feedback interconnec-

tion of (2) with Kq , denoted Hq, is such that:

a) The set A is globally pre-asymptotically stable.

b) Each maximal solution is complete or ends in

Hq := Φq ∪ Θ\ (Cc,q ∪ Dc,q ∪ Φq) .

c) No maximal solution starting in Ψq reaches

Θ \ (Cc,q ∪ Dc,q ∪ Φq) \ A . △

Remark 3.2: Item 2a is assuming that solutions with con-

stant q are bounded, remain close to A, and the complete

ones converge to A. If (Cc,q ∪ Dc,q) ∩ A = ∅ then item 2a

implies that Hq has no complete solutions. Item 2b implies

that solutions with controller Kq that are not complete end

at a point in a Ψ set of some controller with index different

than q. This property permits a hybrid supervisor to guarantee

that maximal solutions are complete. Item 2c combined with

2b imply that solutions from Ψq end at a Ψ set of some

controller with index larger than q. Moreover, Item 2 for qM

implies that solutions to HqM
from ΨqM

converge to A and

the set in item 2c is empty for q = 1. △

The individual hybrid controllers are combined into a sin-

gle, well-posed hybrid controller K = (κc, Cc, fc, Dc, Gc) of

the form (3) with xc := [ξ⊤c q]⊤, κc(uc, xc) := κc,q(uc, ξc),

fc(uc, xc) :=

[
fc,q(uc, ξc)

0

]
, Cc :=∪q∈Q(Cc,q × {q})

Gc(uc, xc) :=

[
Gc,q(uc, ξc)

q

]
∪ Jq(uc, ξc)

Dc := ∪q∈Q((Dc,q ∪ Hq) × {q}),

(6)

where

Jq(uc, ξc) :=





[
{uc}

{i ∈ Q | (uc, ξc) ∈ Ψi }

]

if (uc, ξc) ∈ Θ \ (Cc,q ∪ Dc,q ∪ Φq),[
{uc}

{i ∈ Q | i > q, (uc, ξc) ∈ Ψi }

]

if (uc, ξc) ∈ Hq \ (Θ \ (Cc,q ∪ Dc,q ∪ Φq)).
(7)

The feedback interconnection of K with P results in a

hybrid system as in (4) with state x, which we denote Hcl.

Theorem 3.3: Under Assumption 3.1, the hybrid con-

troller K = (κc, Cc, fc, Dc, Gc) defined in (6)-(7) is well

posed and solves Problem 1.

The well-posedness property of the hybrid supervisor K
in Theorem 3.3 combined with results in [6] imply that the

nominal asymptotic stability induced by K is robust.

The argument in a proof of Theorem 3.3 is as follows.

By construction, for every solution to Hcl starting from Θ,

the number of jumps at which q changes value before the

solution reaches A×Q is finite. We call these jumps “events”

to distinguish them from the jumps of the hybrid controllers

Hq , which do not alter q, and from any other jumps at A×
Q. Note that the hybrid system resulting from removing the

(finite number of) events, which we denote by H0
cl, is such

that A×Q is globally pre-asymptotically stable. This follows

from the fact that, away from A×Q, q remains constant for

each solution to H0
cl and that each of the hybrid controllers

Hq guarantees global pre-asymptotic stability of A× Q for

its interconnection with (2). Then, Theorem 3.3 follows from

the fact that global pre-asymptotic stability of A×Q for H0
cl

is preserved when the events are re-incorporated and that

the construction of K guarantees completeness of maximal

solutions from Θ × Q. In fact, the following general fact is

true for general hybrid systems with finite number of events.

To detect the events, we define an event counter to be an
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outer semicontinuous set-valued map E : R
n×R

n
⇉ {0, 1},

nonempty on ∪x∈D(G(x) × {x}), such that, at every event,

is equal to one. For Hcl, E can be defined so that at points

(x′, x) ∈ ∪x∈D(G(x) × {x}): if x ∈ A× Q or q′ = q then

0 ∈ E(x′, x), otherwise, E(x′, x) = 1.

Theorem 3.4: Given H = (C, f, D, G), let A ⊂ R
n,

G(D ∩ A) ⊂ A, be compact and such that is globally pre-

asymptotically stable for H0 = (C, f, D0, G0), where

G0(x) := G(x) ∩ {x′ ∈ R
n | 0 ∈ E(x, x′)} ,

D0 := D ∩
{
x ∈ D

∣∣ G0(x) 6= ∅
}

,

and E : R
n × R ⇉ {0, 1} is an outer semicontinuous

set-valued map. Suppose that for each compact set X ⊂
R

n there exists N > 0 such that each solution to H =
(C, f, D, G) starting from X has no more than N events.

Then, A is globally pre-asymptotically stable for H.

Note that by construction, H0 in Theorem 3.4 is well posed

and the solutions to H0 experience no events.

IV. APPLICATIONS

A. Stabilization and tracking on the unit circle

We consider the problem of robustly globally stabilizing

the point ξ = 1 := [1 0]⊤ for the constrained system

ξ̇ = ωR(−π/2)ξ , ξ ∈ Cp := S1, (8)

where ω ∈ R. This model describes the evolution of a point

on a circle as a function of the angular velocity, which is the

control variable ω. We note that the (classical) feedback con-

trol ω = ξ2 would almost solve this problem. We would have

ξ̇1 = ξ2
2 = 1− ξ2

1 and the derivative of the function V (ξ) :=
1−ξ1 would satisfy 〈∇V (ξ), ξ2R(−π/2)ξ〉 = −(1−ξ2

1). We

note that the energy will remain constant if ξ starts at ±1.

Instead, one could also consider the discontinuous feedback

ω = sgn(ξ2) where the function “sgn” is defined arbitrarily

in the set {−1, 1} when its argument is zero. This feedback

is not robust to arbitrarily small measurement noise. From

points in Cp nearby −1 with ξ2 < 0, it steers the solutions

towards 1 counterclockwise while from points with ξ2 > 0,

it steers the solutions towards 1 clockwise. Then, from points

in Cp arbitrarily close to −1, there exists arbitrarily small

measurement noise e appropriately changing sign so that

sgn(ξ2 + e) is always pushing solutions towards −1.

To achieve a robust, global asymptotic stability result, fol-

lowing Section III, we design a well-posed hybrid supervisor

for the point 1. It uses the continuous-time controller ω = ξ2

when the state is not near −1 and the continuous-time

controller ω = ξ1, which drives the system away from −1,

when the state is near that point (it actually almost globally

asymptotically stabilize the point [0 − 1]⊤ on Cp, with the

only point not in the basin of attraction being [0 1]⊤). Let

the domain of applicability for the controller ω = ξ1 =:
κc,1(ξ) be Cc,1 := {ξ ∈ Cp | ξ1 ≤ −1/3} and domain of

applicability for the controller ω = ξ2 =: κc,2(ξ) be Cc,2 :=
{ξ ∈ Cp | ξ1 ≥ −2/3}. Notice that Cc,1∪Cc,2 = Cp =: Θ.

Since these are continuous-time controllers, Dc,q and Gc,q

are empty for each q ∈ Q. Let us take

Ψ1 := Cc,1, Ψ2 := Cp\Cc,1.

Next, we check Assumption 3.1. (There is no state ξc in

the controllers we are working with here.) By definition,

Ψ1 ∪ Ψ2 = Θ. For each q ∈ Q := {1, 2}, the solutions of

Hq (the system we get by using ω = κc,q(ξ) and restricting

the flow to Cc,q), are such that the point 1 is globally pre-

asymptotically stable. For q = 1, this is because there are

no complete solutions and 1 does not belong to Cc,1. For

q = 2, this is because Cc,2 is a subset of the basin of

attraction for 1. We note that every maximal solution to

H1 ends in Ψ2. Every maximal solution to H2 is complete

and every maximal solution to H2 starting in Ψ2 does

not reach Cp\Cc,2. Thus, Assumption 3.1 holds. Then, the

hybrid supervisor K = (κc, Cc, fc, Dc, Gc) given in (6)-

(7) is completely determined using the above definitions.

The proposed construction yields H1 = Ψ2 = Cp \ Cc,1,

H2 = Cp \ Cc,2, and Gc(uc, xc) = 3 − q.

Let us consider the problem of designing a controller

so that the state of (8) robustly tracks the continuously

differentiable signal ζ : R≥0 → S1. This problem can be

recast as the point stabilization problem above via the change

of coordinates ξ =

[
z1ζ1 − z2ζ2

z2ζ1 + z1ζ2

]
, z ∈ S1. It can be shown

that ξ = ζ ⇐⇒ z = 1 and that the derivative of z satisfies

ż = ω̃R(−π/2)z when ω = ζ2ζ̇1 − ζ1ζ̇2 − ω̃, where ω̃ ∈ R;

see [22]. Then, tracking of ζ is accomplished when z is

stabilized to 1. To achieve robust, global tracking of ζ, we

apply the hybrid supervisor designed above to control ω̃.

B. Stabilization of a mobile robot

Consider the model of a unicycle or mobile robot

ẋ = ξϑ, ξ̇ = ωR(−π/2)ξ , (x, ξ) ∈ Cp := R
2 × S1, (9)

where x denotes planar position from a reference point

(in meters), ξ denotes orientation, ϑ ∈ V := [−3, 30]
denotes velocity (in meters per second), and ω ∈ [−4, 4]
denotes angular velocity (in radians per second). Both ϑ
and ω are control inputs. Due to the specification of the

set V , the vehicle is able to move more rapidly in the

forward direction than in the backward direction. Our goal

is to design a robust, global stabilizer for the point A0

given by (x, ξ) = (0,1). It is well known that (9) fails

Brockett’s condition for robust local asymptotic stabilization

by classical (even discontinuous) time-invariant feedback [2],

[18], [7]. Nevertheless, a hybrid feedback stabilizer can be

designed to accomplish the goal. We build three well-posed

hybrid controllers and then combine them with the well-

posed hybrid supervisor in Section III. The three controllers

use a discrete state p ∈ P := {−1, 1} and are as follows:

• The first hybrid controller, K1, uses ϑ = ProjV(k1ξ
T x),

where k1 < 0 and ProjV denotes the projection onto

V , while the feedback for ω is given by the hybrid

controller in Section IV-A for tracking on the unit

circle with reference signal for ξ given by −x/|x|. The
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two different values for q in that controller should be

associated with the two values in P . The particular

association does not matter. The controller flow and

jump sets are such that

Cc,1 ∪ Dc,1 =
{
x ∈ R

2 | |x| ≥ ε11

}
× S1 × P

where ε11 > 0, and Cc,1, Dc,1 are constructed from the

hybrid controller in Section IV-A for tracking on the

unit circle.

• The second hybrid controller, K2, uses ϑ =
ProjV(k2ξ

T x), k2 ≤ 0, while the feedback for ω is

given as in Section IV-A for stabilization of the point 1

on the unit circle. Again, the q values of that controller

should be associated with the values in P and the

particular association does not matter. The controller

flow and jump sets are such that

Cc,2 ∪ Dc,2 = (
({

x ∈ R
2 | |x| ≤ ε21

}
× S1

)

∩
{
(x, ξ) ∈ R

2 × S1
∣∣ 1 − ξ1 ≥ ε22|x|2

}
) × P ,

where ε21 > ε11, ε22 > 0, and Cc,2, Dc,2 are con-

structed from the hybrid controller in Section IV-A for

stabilization of the point 1 on the unit circle.

• The third hybrid controller, K3, uses ϑ =
ProjV(k3ξ

T x), k3 < 0, while the feedback for ω
is hybrid as defined below. The controller flow and

jump sets are designed so that

Cc,3 ∪ Dc,3 =
({

x ∈ R
2 | |x| ≤ ε31

}
× S1

)

∩
{
(x, ξ) ∈ R

2 × S1
∣∣ 1 − ξ1 ≤ ε32|x|2

}
× P =: Λ3,

where ε31 > ε21 and ε32 > ε22. The control law for ω
is given by ω = pk, where k > 0 and the discrete state

p has dynamics given by ṗ = 0, p+ = −p. The flow

and jump sets are given by

Cc,3 := Λ3 ∩ ({(x, ξ, p) | σ(p)ξ2 ≤ 0}

∪
{
(x, ξ, p) | σ(p)ξ2 ≥ 0, 1 − ξ1 ≤ ε22|x|

2
}
)

Dc,3 := Λ3\Cc,3 .

This design accomplishes the following: controller K1 makes

ξ track −x/|x| as long as |x| is not too small, and thus

the vehicle drives towards x = 0 eventually using only

positive velocity; controller K2 drives ξ towards 1 to get the

orientation of the vehicle correct; and controller K3 stabilizes

ξ to 1 in a persistently exciting manner so that ϑ can be used

to drive the vehicle to the origin.

Let Θ := R
2 × S1 × P and Q := {1, 2, 3}. The control

strategy above is coordinated by a hybrid supervisor with

Ψ1 := Cc,1 ∪ Dc,1, Ψ2 :=
(
Θ\Ψ1

)
∩ (Cc,2 ∪ Dc,2)

Ψ3 := (
({

x ∈ R
2 | |x| ≤ ε21

}
× S1

)

∩
{
(x, ξ) ∈ R

2 × S1
∣∣ 1 − ξ1 ≤ ε22|x|2

}
) × P .

Proceeding as in Section IV-A, it can be verified that

∪q∈QΨq = Θ and that Assumption 3.1 holds. By Theo-

rem 3.3, the set A := A0 × P is globally asymptotically

stable. Figure 1 depicts simulation results of the mobile

robot with the hybrid controller proposed above for global

asymptotic stabilization of A× Q.
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Fig. 1. Global stabilization of a mobile robot to the origin with orientation
ξ = 1. Vehicle starts at x(0, 0) = (10, 10) (in meters) and ξ(0, 0)
corresponding to an angle of π

4
radians. (a) The vehicle is initially steered to

a neighborhood of the origin with orientation −x/|x|. At about 1/5 meters
away from it, controller K3 is enabled to accomplish the stabilization task.
(b) Zoomed version of the solution in (a) around the origin. Controller K3

steers the vehicle to x = (0, 0) and ξ = 1 by a sequence of “parking”
maneuvers.

C. Stabilization of the inverted configuration of a pendulum

on a cart

Consider the task of robustly, globally asymptotically

stabilizing the point x∗ := [0 1 0]⊤ for the pendulum system

with state x := [ξ⊤ z]⊤ ∈ R
3 given by

[
ξ̇
ż

]
= f(x, u) :=

[
zR(−π/2)ξ

ξ1 + ξ2u

]
(ξ, z) ∈ Cp := S1 × R,

where ξ denotes the angle of the pendulum and z corresponds

to the angular velocity, with positive velocity in the clockwise

direction. The point ξ = [0 1]⊤ corresponds to the upright

position while ξ = [0 −1]⊤ corresponds to the down position

of the pendulum. This model was obtained after an input

transformation from force to acceleration u and with ratio

between the gravitational constant and the pendulum length

equal to one. The cart dynamics are ignored to simplify the

presentation; however, global asymptotic stabilization of the

full cart/pendulum system can be addressed with the same

tools used below. To accomplish the stabilization task, we

combine three well-posed hybrid controllers with the hybrid

supervisor in Section III. The first controller moves the

system out of a neighborhood of the point −x∗. The second

controller moves the system to a neighborhood of the point

x∗. The third controller locally asymptotically stabilizes the

point x∗. These are designed as follows:

• The third controller, K3, can be designed using the idea

of partial feedback linearization with “output” ξ1. This

is possible since ξ2 is positive and bounded away from

zero in a neighborhood of x∗. Let κc,3 : Cp → R

denote this local asymptotic stabilizer, let Cc,3 be a

compact neighborhood of the point x∗ that is also a

subset of the basin of attraction for x∗ for the system

ẋ = f(x, κc,3(x)), x ∈ Cp, and let Ψ3 be a compact

neighborhood of the point x∗ with the property that

solutions of ẋ = f(x, κc,3(x)) starting in Ψ3 do not

reach the boundary of Cc,3. Then, redefine Cc,3 and

Ψ3 by intersecting the original choices with S1 × R.

The set Ψ3 is indicated in green in Figure 2(d) while

the set Cc,3 is the union of the green and yellow regions

in the same figure.
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• For the second controller, K2, let 0 < δ < ε < 1 and

W (x) := 1

2
z2 + 1 + ξ2,

Ψ2 := {(ξ, z) ∈ S1 × R | W (x) ≥ ε} \ Ψ3,

Cc,2 := {(ξ, z) ∈ S1 × R | W (x) ≥ δ } \ Ψ3,
κ2(x) := −zξ2(W (x) − 2) ∀x ∈ Cc,2.

The set Ψ2 is indicated in green in Figure 2(b) or,

alternatively, in Figure 2(c). The set Cc,2 is the union

of the green and yellow regions in the same figures.

• For the first controller, define Cc,1 :=
(S1 × R) \ (Ψ2 ∪ Ψ3), Ψ1 := Cc,1, and κ1(x) := k
for all x ∈ Cc,1, where k >

√
δ(2 − δ)/(1 − δ). The

set Ψ1 is indicated in green in Figure 2(a).

Since each of the controllers is purely continuous, Dc,q and

Gc,q are empty for each q ∈ Q.

It can be verified that the hybrid controllers above are

well posed and that Assumption 3.1 is satisfies for A :=
{x∗}, Q := {1, 2, 3}, and Θ := S1 × R. In turn, the

hybrid supervisory control algorithm given in Section III

robustly, globally asymptotically stabilizes the point x∗ for

the pendulum system.
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Fig. 2. Sets of the hybrid supervisor for the problem of swinging up a
pendulum. The state x = [ξ⊤, z⊤]⊤ evolves on the cylinder S1×R ⊂ R

3,
while q ∈ Q = {1, 2, 3}. The inverted position (ξ, z) = ((0, 1), 0) is
indicated by a black x. The black curve represents the set of points where
W (x) := 0.5z2 + 1+ ξ2 = 2. Sets for q = 1, q = 2, and q = 3 are show
in (a), (b), and (d), respectively. In (c), the sets for q = 2 are depicted with
perspective rotated by 180 degrees.

V. CONCLUSION

We proposed a well-posed construction of general hy-

brid supervisors for robust, global asymptotic stabilization

in nonlinear systems. The hybrid supervisor schedules an

appropriate hybrid controller for every point in the region of

operation to accomplish the desired task. We provided con-

trol applications that not only illustrate the design procedure

of hybrid supervisory control but also provide motivation for

the need of robust hybrid supervisors of hybrid controllers.
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