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Abstract— We argue that Witsenhausen’s counterexample
provides a useful conceptual bridge between distributed control,
communication and computation. Inspired by the utility of
studying long block-lengths in information theory, we formulate
a vector version of the counterexample. Information-theoretic
arguments are then used to derive bounds on the minimum
cost for the vector problem. Restricted to the scalar case, the
lower bounds are a strict improvement over Witsenhausen’s
lower bound for some parameter values. The upper bounds
are based on two strategies that can asymptotically outperform
optimal linear and nonlinear scalar strategies. To investigate
the computational aspects of such problems, we then consider
a simpler problem of lossless source coding. From a distributed
control perspective, the computations required for encoding and
decoding can be viewed as internal communication between
virtually distributed agents. We derive new lower bounds that
establish a tradeoff between the computation, communication
and distortion costs for lossless source coding.

I. INTRODUCTION

For LQG systems with perfectly classical information

patterns, it was well known that control laws affine in the

observation are optimal. To show why distributed control is

hard, Witsenhausen gave an explicit “counterexample” in [1]

that is a two-step distributed control system that is otherwise

quadratic and Gaussian. For this system, Witsenhausen pro-

vided a nonlinear control law that outperformed the optimal

linear law and gave a non-constructive proof of the existence

of a measurable optimal law. He also gave a lower bound

to the minimum cost. However, even for this seemingly

simple distributed system, the optimal control strategy and

the minimum attainable cost are still unknown1.

In [3], Mitter and Sahai observe that it helps to interpret

Witsenhausen’s counterexample as a communication prob-

lem with an implicit noisy channel. The cost at time 1 can

be interpreted as the power that is input to this channel.

The cost at time 2 is the distortion in estimating the state

at time 1. Using this interpretation, they propose control

strategies2 based on quantization of the initial state. By gen-

erating a sequence of problems and providing the appropriate

quantization levels, they show that nonlinear strategies can

outperform the linear strategies by an arbitrary factor. This

1Lee, Lau and Ho [2] propose an achievable strategy obtained through
ordinal optimization techniques. It is conjectured by some to be close to
optimal.

2The strategies are conceptually related to Tomlinson-Harashima precod-
ing [4, Pg.454] for what is called dirty-paper coding in information theory.

work inspired a larger body of work that considered explicit

(rather than implicit) communication channels connecting the

two controllers and took asymptotics in time [5]–[11]. The

idea of implicit communication plays only a small (if vital)

role in [10], [11].

In this paper, we revisit the interpretation of Witsen-

hausen’s counterexample as an implicit communication prob-

lem, viewing the counterexample as a bridge between con-

trol and communication. The success of information the-

ory in understanding communication problems raises hopes

that information-theoretic tools may help in improving our

understanding of the counterexample. Information-theoretic

formulations often use long block-lengths to allow for the use

of the law of large numbers and to avoid the complications

associated with the geometry of finite-dimensional spaces.

Following this intuition, we formulate a vector version of

the counterexample in Section II that is really a collection

of scalar Witsenhausen problems with enhanced information

patterns. Because it is still a simple two-step distributed

control problem where linear strategies are not optimal,

the vector extension simplifies the counterexample and yet

retains its essence.

This conceptual simplification allows us to obtain a new

information-theoretic lower bound on the optimal cost that

holds for all vector lengths3. This bound is presented in

Section III and it is a strict improvement over Witsen-

hausen’s lower bound [1] for some parameter values even

when restricted to the scalar case. Section IV then provides

information-theoretic control strategies that outperform all

linear and nonlinear strategies for some parameter values.

The lower bound, together with the schemes, provides a

new dimension to the applicability of information theory to

distributed control.

Long block-lengths are easily interpreted in standard com-

munication problems as the introduction of an additional

delay. Thus information-theoretic results for these problems

can be viewed as taking asymptotics in time. Introducing

additional delay generally worsens the performance in con-

trol systems. Instead, it is more natural to take asymptotics in

space to obtain long vectors. The agents that make the obser-

vations are then spatially separated. Thus the computation of

3Because of the strict space limitations on the final version of this
conference paper, proofs of many results appear in [12].
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the controls is performed in a distributed manner, with agents

communicating with each other to enhance their information

patterns. This communication between the agents can be

interpreted as computation required to perform a collective

control operation. It is of interest to understand how this

internal computation cost trades off with the external costs

of actuation power and distortion.

To investigate this tradeoff, we simplify the problem by

first making the channel explicit and noiseless. We further

simplify the problem by assuming that the source is binary

instead of Gaussian. Thus we arrive at a simpler communi-

cation problem — lossless source coding, with encoding and

decoding performed in a distributed manner. In Section V,

we derive a fundamental tradeoff between the computation

costs and the performance of a lossless coding system.

This paper is an attempt to demonstrate that to under-

stand general distributed control problems, it is insufficient

to understand control, communication and computation in

isolation. Instead, there is a need to bring together ideas

from all three fields and understand their interplay. Witsen-

hausen’s counterexample provides a good setting to explore

these connections, without the clutter associated with more

realistic problems.

II. VECTOR WITSENHAUSEN PROBLEM
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Fig. 1. The block-diagram of the vector Witsenhausen problem.

We generalize the Witsenhausen problem to have states

and inputs of length m. The resulting block-diagram is shown

in Fig. 1. A vector is represented in bold font, with the

superscript used to denote a vector length (e.g. xm). As is

conventional, x denotes the states, u the input, and y the

observation.

• The state xm
0 is distributed N (0, σ2

0I).
• The state transition functions:

x
m
1 = f1(x

m
0 ,um

1 ) = x
m
0 + u

m
1 , and

x
m
2 = f2(x

m
1 ,um

2 ) = x
m
1 − u

m
2 .

• The output equations:

y
m
1 = g1(x

m
0 ) = x

m
0 , and (1)

y
m
2 = g2(x

m
1 ) = x

m
1 + w

m, (2)

where the observation noise wm ∼ N (0, σ2
wI).

• The cost expressions:

h1(x
m
1 ,um

1 ) =
1

m
k2||um

1 ||2, and

h2(x
m
2 ,um

2 ) =
1

m
||xm

2 ||2.

The cost expressions are normalized by the vector-

length so that they do not grow with the problem size.

• The information patterns (following the notation

of [13]):

Y1 = {ym
1 }; U1 = ∅,

Y2 = {ym
2 }; U2 = ∅.

Observe that in (2) there is an implicit channel defined by

xm
1 = um

1 +xm
0 and ym

2 . We denote the average input power

at time 1 by P = 1
m

E[||um
1 ||2].

III. LOWER BOUNDS ON THE REQUIRED COSTS

In [1, Pg. 145], Witsenhausen provides a lower bound to

the optimal cost for the scalar counterexample. However, his

argument does not extend to the vector problem of Section II.

The following theorem provides a lower bound for the vector

problem for any vector length m.

Theorem 1 (Lower bound to the vector problem):

The total average cost for the vector Witsenhausen problem

of Section II is lower bounded for all m ≥ 1 by

E[h1 + h2] ≥ sup
P≥0

k2P + η(P ), (3)

where

η(P ) =

{

(

√

κ(P ) −
√

P
)2

if P < κ(P )

0 otherwise
, (4)

where

κ(P ) =
σ2

0σ2
w

σ2
0 + P + 2

√
Pσ0 + σ2

w

. (5)

Proof: The full proof appears in [12]. We only outline

it here.

Using the triangle inequality, we show in [12] that
√

E[||xm
0 − um

2 ||2] ≤
√

E[||xm
0 − xm

1 ||2] +
√

E[||xm
2 ||2].

We wish to lower bound E[||xm
2 ||2]. The first term on the

RHS is
√

P . Therefore, it now suffices to lower bound

the term on the LHS. To that end, we interpret um
2 as an

estimate for xm
0 . The average power that is input to the

implicit channel defined by ym
2 and xm

1 can be at most

Pch = P +σ2
0 +2

√

Pσ2
0 . The channel capacity can be upper

bounded by C̄, the maximum mutual information at power

Pch. Then E[||xm
0 − um

2 ||2] can be lower bounded by the

distortion-rate function D(R) (for the Gaussian source that

generates xm
0 ) evaluated at rate R equal to C̄. Denoting this

lower bound by κ(P ), we get the desired expression.

IV. UPPER BOUNDS ON REQUIRED COSTS

In this section we provide two nonlinear strategies for the

vector Witsenhausen problem in the limit m → ∞. We only

sketch the proofs4 here and convey the intuition with the help

of Fig. 2. The details can be found in [12].

4The proofs use a random coding argument. A random coding argument
is based on generating a strategy randomly according to some distribution. It
is then shown that the performance averaged over these strategies is good.
Therefore, there exists at least one strategy that has good performance.
There exist practical schemes that approach the predicted performance of
these strategies. See, for example, [14] for a scheme that approaches the
performance of dirty-paper coding.
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Fig. 2. The figure is a geometric representation of the joint source-channel
coding scheme and the dirty-paper coding scheme of Section IV. The grey
shell contains the typical x

m

0
realizations. The JSCC scheme quantizes to

points inside this shell. The DPC scheme, on the other hand, quantizes to
points outside this shell. For the same input power, the distance between
the quantization points of the DPC scheme is larger than that for the JSCC
scheme, making it robust to larger observation noise variance.

A. The joint source-channel coding (JSCC) scheme

This strategy is conceptually similar to vector quantization,

and is thus a vector generalization of the scheme in [3]. 2mR

quantization points are chosen iid randomly with distribution

N (0, σ2
0 − P ), where the operating rate R ≈ R(P ) =

1
2 log2(σ

2
0/P ). Here R(·) is the rate-distortion function for

a Gaussian source of variance σ2
0 . Given a particular xm

0 ,

the first controller finds the quantization point closest to xm
0 .

The input um
1 then drives xm

0 to this quantization point. The

scheme is pictorially represented in Fig. 2, with ‘+’ denoting

the JSCC quantization points.

We show in [12] that as long as P ≥ σ2
w, the channel

capacity C exceeds R(P ), and the second controller can

recover xm
1 perfectly for large m. Also, the first controller

can force the state to zero by canceling it, resulting in trivial

recovery of the state by the second controller. The required

cost for this cancelation is σ2
0 . Therefore, the asymptotic total

cost can be made as small as k2 min{σ2
0 , σ

2
w}.

B. A Dirty-Paper Coding (DPC) scheme

The vector version of Witsenhausen’s counterexample is

similar to the communication problem of multiaccess chan-

nels with states known to some encoders [15]. The strategy

we propose in this section is also similar to that in [15].

In [12] we discuss the difference between the problem

addressed in [15] and the vector Witsenhausen problem.

As in the last section, dirty-paper coding (DPC) tech-

niques [16] can also be thought of as performing a quan-

tization. The quantization points5 are chosen randomly in

the space of realizations of xm
1 according to the distribution

N (0, σ2
0 + P ). This is shown in Fig. 2, with ‘◦’ denoting

the DPC quantization points. Unlike the JSCC scheme,

DPC quantization points increase the power in the state.

5The number of these quantization points is determined by an optimiza-
tion [12].

This suggests that the DPC technique can tolerate a higher

observation noise variance for the same P .

More generally (see [12] for details), the DPC strategy

recovers an “auxiliary” quantization point vm = um
1 +

αxm
0 , where um

1 is distributed N (0, P I) and is statistically

independent of xm
0 . The second controller also observes the

output of the implicit channel ym
2 . Therefore, the second

controller can perform linear MMSE estimation on vm and

ym
2 to estimate xm

1 = um
1 + xm

0 . The resulting average total

cost, k2P +MMSE, can then be minimized over P and α.

C. Comparison with linear and scalar schemes

The three schemes (the optimal linear scheme and the

two vector nonlinear schemes) are compared in Fig. 3. Also

shown is a lower bound derived in [12] for the performance

of the scheme in [3]. Fig. 4 compares the costs attained

by the DPC scheme with the information-theoretic bound

of Section III. We also plot the lower bound derived by

Witsenhausen [1] for the scalar problem. For many parameter

values, as shown in Fig. 4, our bound is tighter.
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Fig. 3. This figure shows the variation of cost (on a log-log scale) with γ,
where γ is the parameter that characterizes the family of control problems
in [3]. Thus, kγ =

100

γ2
, σ0,γ = 0.01γ2, and for the scheme in [3], the

size of bin Bγ = γ. A lower bound on the cost for the scheme in [3] is
derived in Appendix II of [12]. Since the slopes for DPC and JSCC costs
are steeper than that for the lower bound on the scheme in [3], the ratio of
costs for the scalar scheme in [3] and these schemes diverges to infinity.

V. LOSSLESS SOURCE CODING VIEWED AS A

DISTRIBUTED CONTROL PROBLEM

The lower bound of Section III and the schemes of Sec-

tion IV give insight into the tradeoff between communication

and distortion costs for the vector Witsenhausen problem.

However, the schemes assume that centralized systems im-

plement the control operations. From a distributed control

perspective, this is unrealistic, especially with asymptotically

long vector lengths. Because the delay constraint cannot be

tampered with in a control setting, it is natural to assume

that the agents that observe the individual states are spatially

distributed. Clearly, these agents need to communicate with
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Fig. 4. The figure illustrates the tightness of the DPC scheme in the
asymptotic regime of γ → ∞ with kγ =

100

γ2
and σ0,γ = 0.01γ2 . Also

shown is the lower bound derived by Witsenhausen for the scalar problem.
The vector lower bound is much tighter than Witsenhausen’s bound for large
γ. It is shown in [12] that the vector upper bound falls below Witsenhausen’s
lower bound in some cases, thereby showing that the vector strategies can
outperform all scalar strategies.

each other to compute the control laws. We want to under-

stand the tradeoffs between this internal communication (that

can be interpreted as a computation for a collective control

operation) and the external power and distortion costs.

Investigating this tradeoff turns out to be hard for the

vector Witsenhausen problem. Therefore, we simplify the

problem by making the channel both explicit and noiseless,

as well as considering a binary source instead of a Gaussian

source. We thus arrive at a simpler communication problem

— lossless source coding — in the hope that the tradeoffs

for this problem may offer insight into the tradeoffs for

distributed control in general.

The lossless source coding problem is as follows. A source

generates k iid binary symbols sk according to a Bernoulli

distribution where the probability of each symbol being 1 is

p (denoted Ber(p)). At the encoder, there is a set of agents,

each of which observes a single source symbol. These agents

then communicate with each other to encode sk, computing

the length-m binary codeword cm. The ratio R = k/m is

defined as the rate for source coding. At the decoder, the

codeword cm is observed by a set of agents. These agents

then communicate with each other to estimate the source

symbols.

Next we describe a model for performing distributed

encoding/decoding. We then provide a lower bound on the

tradeoff between the computational complexity, the error

probability, and the gap from the optimal rate. The result

suggests that there is a fundamental tradeoff between the

three quantities for the vector Witsenhausen problem as well.

A. The encoding/decoding model

We assume that the set of agents communicate by an

iterative message-passing algorithm. For consistency with the

message-passing literature [17], the agents can be thought

of as nodes in a graph. The encoder is physically made of

computational nodes that are connected to each other using

local communication links. A subset of nodes are designated

‘source nodes’. Each source node observes an element of

the source vector sk. Another subset of nodes, called the

‘coded nodes’ has members that will eventually store the

encoded symbols cm. There may be additional computational

nodes that are there just to help encode. To arrive at cm, the

encoding is performed in an iterative, distributed manner. At

the start, each of the source nodes is first initialized with one

element of the vector sk. In each subsequent iteration, all the

nodes send messages to the nodes that they are connected

to. At the end of le encoder iterations, the values stored in

the coded nodes constitute the encoded symbols cm.

The decoding model is analogous, with a subset of nodes

called ‘coded nodes’ storing the received codeword cm,

and the ‘reconstruction nodes’ responsible for storing the

reconstructed symbols ŝk.

The implementation technology or the underlying physical

topology is assumed to dictate that each computational node

is connected to at most α+1 > 2 neighboring nodes. Because

we are interested in deriving lower bounds on the required

computation, no other restriction is assumed on the topology

of the encoder/decoder. No restriction is placed on the size

or content of the messages except for the fact that they must

depend on the information that has reached the computational

node in previous iterations. If a node wants to communicate

with a more distant node, its message must be relayed

through other nodes. Thus, after le ≥ 1 encoder iterations,

the “neighborhood” size of each node at the encoder, which

is the number of nodes it has communicated with, is bounded

above by (α + 1)αle .

B. A lower bound on the complexity of lossless source coding

Encoding is performed for le ≥ 1 encoder iterations, and

the decoding is performed for ld ≥ 1 decoder iterations.

Reconstruction of each source symbol is performed by using

messages from at most (α + 1)αld coded symbols. Each

of these coded symbols depends on at most (α + 1)αle

source symbols. Therefore, each reconstruction is based on

a “source neighborhood” of at most (α + 1)2αle+ld source

symbols (see Fig. 5). Intuitively, errors in the reconstruction

must occur whenever the source realization in the source

neighborhood is atypical.

We assume that the source neighborhood of the i−th

source symbol includes the i−th source node itself. If this

were not the case, the error probability would be p, which is

larger than the lower bound we use in the derivation. Denote

the maximum size of the source neighborhoods by n+1. The

following theorem gives a lower bound on the average error

probability 〈Pe〉 for a given n + 1. Turned around, these

bounds give lower bounds on the maximum neighborhood

size n + 1, and hence a lower bound on the total number of

iterations le + ld as a function of 〈Pe〉 and rate R.

Theorem 2: Consider a binary source P that generates

iid Ber(p) symbols, p < 0.5. Let n+1 be the maximum size
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Fig. 5. The dashed box in the figure shows the source neighborhood after
one iteration each of encoding and decoding for reconstructing s3. The
reconstruction depends only on the source realization in the neighborhood.

of the source neighborhoods for the reconstructed symbols.

Then the average probability of bit error

〈Pe〉 ≥ sup
h−1

b
(R)<g≤ 1

2

ph−1
b (δ(g))

2
2−nD(g||p)

(

p(1 − g)

g(1 − p)

)ǫ
√

n

,

where hb(·) is the base−2 binary entropy function,

D(g||p) = g log2

(

g
p

)

+ (1 − g) log2

(

1−g
1−p

)

, and δ(g) =

hb(g) − R,

ǫ =

√

1

K(g)
log2

(

2

ph−1
b (δ(g))

)

, (6)

and

K(g) =
1

1 − 2g
log2

(

1 − g

g

)

. (7)

Proof: See Appendix I.

Let gap = R−hb(p) denote the gap from the theoretically

optimal rate. For extremely low error probabilities we get the

following approximate lower bound on the neighborhood size

as a function of the error probability and the gap.

n & K2

log2

(

1
〈Pe〉

)

gap2
, (8)

for some constant K2 that does not depend on gap and

〈Pe〉. Thus the bound implies that for low computational

complexity, the rate should not be too close to hb(p).
We note that the lower bound in Theorem 2 and the

approximation in (8) are similar to those in [18, Thm. 4]

for channel coding. Unlike in [18], where the neighborhood

size is determined solely by the number of decoding opera-

tions, here it is determined by the number of decoding and

encoding operations. This seems to suggest that the encoding

costs can be reduced by making the decoding costs larger.

We suspect that this is an artifact of our bounding technique,

and is not fundamental to the problem.

VI. DISCUSSION AND CONCLUSIONS

Information theory provides fundamental limits to the

system performance that can be attained asymptotically. We

argue that taking complexity into account, one must, in fact,

operate at a certain gap from these fundamental limits. This

is shown for the lossless source coding in Section V-B, and

for channel coding in [18].

For the vector Witsenhausen problem, consider the JSCC

scheme with σ2
0 > σ2

w. For this case, we showed that P > σ2
0

suffices to make the distortion costs negligible, showing a

tradeoff between the power and distortion costs. If P is close

to σ2
w, then the channel capacity C is close to R(P ). In that

case, the operating rate R is close to C as well as R(P )
(because it lies between C and R(P )). Results in [18] and

those in Section V-B suggest that the resulting computation

costs would be high. A substantial gap between P and σ2
w

is thus needed to reduce these computation costs, suggesting

that there is a tradeoff between the computation, power, and

distortion costs for the vector Witsenhausen problem.
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APPENDIX I

PROOF OF LOWER BOUND ON COMPLEXITY FOR

LOSSLESS SOURCE CODING

The proof is similar to that for the performance-complexity

tradeoff for channel coding over a BSC [18]. In the fol-

lowing, we use P to denote the underlying source that

generates symbols distributed Ber(p). G denotes a test source

generating symbols Ber(g). We use Pr
P

(sn) to denote the

probability of a sequence of length n when the underlying

source is distributed according to P . 〈Pe,i〉P,j
denotes the

error probability of the i−th source symbol conditioned on

it being j ∈ {0, 1}. The average error probability for the

i−th symbol is 〈Pe,i〉P = p〈Pe,i〉P,1 + (1− p)〈Pe,i〉P,0, and

〈Pe〉P =
1

k

k
∑

i=1

〈Pe,i〉P , (9)

is the average bit-error probability over the source symbols.

〈Pe〉P,0 and 〈Pe〉P,1 are defined analogously.

Lemma 1 (Lower bound on 〈Pe〉 for test source G):

Consider a test source G that generates iid binary symbols

distributed Ber(g). If a rate R code is used for lossless

coding of G with R < hb(g), then the average probability

of bit error

〈Pe〉G ≥ h−1
b (hb(g) − R) =: DG(R). (10)

Proof: Follows from the distortion-rate function DG(R)
for a Ber(g) source [19, Pg. 343].

Given the source sequence sk, the encoding and decoding

of i−th source symbol si are based on a particular source

neighborhood of size n + 1. Let sn
nbd,i denote the neighbor-

hood of si excluding the source symbol itself. The encoding

is error-free if sn
nbd,i lies in the region Di,0 when the i−th

symbol is 0, and in Di,1 when the i−th symbol is 1.

Lemma 2: Let A be a set of source sequences sn such

that Pr
G

(A) = δ. Then,

Pr
P

(A) ≥ f(δ) (11)

where

f(y) =
y

2
2−nD(g||p)

(

p(1 − g)

g(1 − p)

)η(y)
√

n

(12)
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is a convex-∪ increasing function of y, and where

η(y) =

√

1

K(g)
log2

(

2

y

)

, (13)

with K(g) as in (7).

Proof: Define the typical set Tǫ,G as follows

Tǫ,G = {sn s.t.

n
∑

i=1

si − ng ≤ ǫ
√

n}. (14)

Then, as shown in [18, Lemma 9],

for ǫ = η
(

Pr
G

(A)
)

, Pr
G

(T c
ǫ,G) ≤

Pr
G

(A)

2
, (15)

where T c
ǫ,G is the complement of the typical set Tǫ,G. Now,

under test source G,

Pr
G

(sn ∈ A) =
∑

s
n∈A

Pr
G

(sn)

≤
∑

s
n∈A∩Tǫ,G

Pr
G

(sn) +
∑

s
n∈T c

ǫ,G

Pr
G

(sn).

Choosing ǫ as in (15), it follows that

∑

s
n∈A∩Tǫ,G

Pr
G

(sn) ≥
Pr
G

(A)

2
. (16)

Let ns
n be the number of ones in sn. Then,

Pr
P

(A) =
∑

s
n∈A

Pr
P

(sn)

≥
∑

s
n∈A∩Tǫ,G

Pr
P

(sn)

Pr
G

(sn)
Pr
G

(sn)

=
∑

s
n∈A∩Tǫ,G

pn
s
n (1 − p)n−n

s
n

gn
s
n (1 − g)n−n

s
n

Pr
G

(sn)

=
(1 − p)n

(1 − g)n

∑

s
n∈A∩Tǫ,G

(

p(1 − g)

g(1 − p)

)n
s
n

Pr
G

(sn)

≥ (1 − p)n

(1 − g)n

∑

s
n∈A∩Tǫ,G

(

p(1 − g)

g(1 − p)

)ng+ǫ
√

n

Pr
G

(sn)

≥ 2−nD(g||p)

(

p(1 − g)

g(1 − p)

)ǫ
√

n Pr
G

(A)

2
.

The function f(·) obtained is the same as that in [18, Lemma

8] for the case of rate-complexity tradeoffs for channel

coding. Therefore, the proof of convexity and monotonicity

of f(·) are the same as that of [18, Lemma 8]. The lemma

then follows from monotonicity.

Now, to complete the proof of Theorem 2, note that 〈Pe〉P =
p〈Pe〉P,1 + (1 − p)〈Pe〉P,0. Conditioned on si = 1, choose

A = Di,0 in Lemma 2. Then, 〈Pe,i〉P,1 ≥ f(〈Pe,i〉G,1),
and a similar result holds for conditioning on si = 0.

Averaging over the source bits, and using the convexity and

the monotonicity of f(·),
〈Pe〉P = p〈Pe〉P,1 + (1 − p)〈Pe〉P,0

≥ pf(〈Pe〉G,1) + (1 − p)f(〈Pe〉G,0)

≥ f
(

p〈Pe〉G,1 + (1 − p)〈Pe〉G,0

)

≥ f
(

p〈Pe〉G,1 + p〈Pe〉G,0

)

≥ f
(

p max{〈Pe〉G,1, 〈Pe〉G,0}
)

.

From Lemma 1, g〈Pe〉G,1+(1−g)〈Pe〉G,0 ≥ DG(R). Thus,

max{〈Pe〉G,0, 〈Pe〉G,1} ≥ DG(R). The theorem follows.
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