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Abstract— This paper builds on previous work on optimal
methodologies for the design of numerical subsystems for
non-linear, uncertain hardware-in-the-loop (HWIL) simulators.
Firstly, three important extensions to the existing methods are
presented: the limitation to SISO systems is removed, allowing
full MIMO design; a method for the design of an important
and previously neglected component of the numerical system is
described; and finally measurement noise and other unstruc-
tured uncertainty is tackled more rigorously and explicitly than
previously. Secondly, as a case study the extended method is
used to design a numerical system for a real HWIL simulator,
and the results are shown to outperform those produced using
classical design methods. The system used in the case study is
a high-performance simulator for small aerodynamic objects
that is in the final stages of development.

I. INTRODUCTION

Hardware-in-the-loop (HWIL) simulation is a long-

established[1] technique used to produce an estimate of the

behaviour of a system, when only a subset of the hardware of

a system is physically present. A HWIL simulator operates

by replacing parts of a system that are well understood, or

excessively expensive or awkward, by a numerical system

that is interfaced to the hardware that is present through a set

of interface transducers. In the literature, two philosophically

similar yet practically distinct classes of HWIL simulators

can be found. Examples of the first typically use HWIL

simulation to verify the real-time behaviour of embedded

computational devices (e.g. engine ECUs) using a model of

the real plant. By contrast, examples of the second class

of simulators utilise a piece of real physical hardware (e.g.

a quarter-car suspension assembly), and require significant

power transfers across the interface domain. It is this second

class of simulator that is of particular interest to the control

engineer, and which is the subject of this work. Example

applications of this type of simulation can be found in [2],

[3], [4], [5], [6], [7], [8], [9]

Previous work by the authors [10] has investigated the

problem of designing the numerical part of a HWIL simula-

tion. This problem was shown to present interesting design

challenges to the control engineer. Firstly, the systems under

simulation are always uncertain by definition, and are often

non-linear. Secondly, common design goals such as robust

stability lose meaning, as simulations can be assumed to be

always of finite duration. Finally, the design of an optimal

numerical simulation can almost be framed as a tracking
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problem, with one important complication; specifically, that

the desired trajectory to be tracked (i.e. the behaviour of the

real system) varies with the same underlying uncertainty as

the behaviour of the plant to be controlled (i.e. the simulator,

including the uncertain real hardware).

In [10], a design method was developed able to produce

efficient, optimised numerical subsystems for general, non-

linear HWIL simulators. This paper extends this method by

removing the existing limitation to SISO systems, discussing

the design of a previously neglected numerical component,

and dealing with measurement noise and similar unstructured

uncertainty more directly. The method is then applied to an

interesting case study.

The paper proceeds as follows. Section II describes the

background to the paper, and presents a summary of the

method previously developed. Section III discusses the ex-

tensions to the method. Section IV describes the example

application. Section V compares the results of the new and

classical design methods in the example application. Finally,

section VI concludes the paper.

II. BACKGROUND AND PREVIOUS WORK

The work presented in this paper is a natural extension of

previous work by the authors on designing optimal numerical

subsystems for non-linear, uncertain, SISO HWIL simula-

tors. This section summarises this previous work. Refer to

reference [10] for full details.

A. Classical HWIL Design

To begin, a model of the SISO HWIL simulation problem

is required. Figure 1 shows general diagrams of the real sys-

tem to be simulated, and a HWIL simulator. All systems W

represent non-linear, discrete time, SISO dynamical systems,

that map an input sequence a =
[

a[0] . . . a[N ]
]T

to an

output sequence b =
[

b[0] . . . b[N ]
]T

. It is assumed that

simulations are of interest over a finite time horizon N .

The real system has been broken down into subsystems

WU ,WK ,WO. The subsystems are connected via scalars qR

and vR, which represent particular quantities in the system

(e.g. positions, angles, velocities, forces, etc.). WU represents

those dynamics whose behaviour is uncertain, and that will

therefore be included as real hardware in the simulator. qR

represents the quantity upon which the behaviour of the

uncertain hardware depends. vR represents the output of the

uncertain dynamics to the rest of the system. WK represents

the dynamics of the system that close the loop around the

uncertain dynamics. Finally, WO represents the dynamics
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Fig. 1. Models of real system (left) and HWIL simulator (right)

that map the quantity vR to the output quantity that the

simulator must generate estimates of.

In the HWIL simulator, the interface between the uncer-

tain hardware WU and the rest of the system is broken,

and the surrounding known system dynamics are replaced

with a numerical system. In order to achieve this, interface

actuators WACT and senors WSEN are required. In a typical

classical HWIL design, the numerical system will contain

a filter/preprocessor WFIL to generate an estimate vM ≈ vS

based on measurements y, models ŴK and ŴO of the known

system dynamics, and finally a controller WCON to drive qS

to track the qM produced by the model ŴK .

The classical approach to HWIL simulator design amounts

to choosing the best available models ŴK , ŴO, and de-

signing filters and controllers to neutralise the interface

dynamics, i.e. produce WSEN ◦ WFIL ≈ 0 and WCON ◦
WACT ≈ 0. While intuitively satisfying, this design ap-

proach is both inefficient and suboptimal. The classical

approach is inefficient because it requires a complicated

series of problem-specific design tasks, possibly including

non-linear observer design, and/or controller design for an

uncertain, non-linear system. This approach is suboptimal

because the design of preprocessor, model and controller are

all performed independently, rather than as a single unified

whole. For an example of why this could potentially cause

difficulties, consider the following scenario.

Imagine a HWIL simulator is to be designed for a partic-

ular system, for which the actuator selected has a significant

lag. The classical design approach would respond to this

by designing an aggressive controller to remove this lag

and regain interface transparency. This could result in a

problems with noise sensitivity, saturation, etc. Assume, in

addition, that the model ŴK of the known dynamics also

posses a significant lag, which will in turn be included in

the numerical system. There is a clear suboptimality in this

design: the controller is designed to remove a large lag from

the actuator, which is the reintroduced by the model, inside

the same numerical system!

B. New Design Method

In order to address the problems of inefficiency and

suboptimality in the classical approach to HWIL design, an

novel design method has been developed. This new method

is general, highly automated, and mathematically justified.

The method is based on the observation that the subdivi-

sion of the numerical system into preprocessor, model, and

controller is artificial and unnecessary, as is the subdivision

of the simulator hardware into actuators, included hardware

and sensors. Instead, these system are unified into WH

(the simulator hardware), WS (the closed loop numerical

system) and WP (the simulation postprocessing system,

which produces the final simulation outputs). The design

problem then amounts to the selection of WS and WP to

produce the best possible simulator.

A very brief derivation of the actual design method is as

follows. Again, refer to [10] for full details.

To begin, it is assumed that all systems are discretised.

Next, it is assumed that the uncertainty in the shared

hardware WU (and hence also in WH ) is parametric in

nature, with probabilistic parameter vector θ ∼ P, with P

a probability distribution.

The concept of simulation optimality in general must

then be defined. An optimal (SISO) simulation is defined

as one that minimises the expected squared error between

simulation output and the output of the real system, summed

over the time horizon of interest, i.e.

(WS ,WP )OPT = arg min
(WS ,WP )

Eθ

(

N
∑

n=1

(zS [n] − zR(n))
2

)

(1)

However, while useful, this definition is incomplete in the

HWIL context, as it ignores a fundamental goal of HWIL

simulation. Unlike other forms of simulation, the goal of

HWIL simulation is to not only produce an accurate estimate

zS , but to do so in such a way that the included hardware

dynamics are driven through a trajectory that is as close as

possible to what it would be in the real system. Therefore,

WS should in fact be designed first and foremost to minimise

the error in qS compared to qR, under the assumption that

WP will then be able to produce an optimal output zS .

In other words, the output optimality definition alone will

ensure a good simulation is produced; however, to ensure that

the simulator is in fact a true HWIL simulator per se, rather

than some other more general form of system identification

/ simulation, it is necessary to match qS to qR.

Follwing from this observation, an approximation is then

made; for reasons of tractability, the final optimisation cri-

teria used is to minimise error in inputs u to the simulation

hardware, rather than qS directly. This definition captures the

underlying intuition of matching hardware trajectories, while

allowing a useable design method to be developed.

Also for reasons of tractability, it is necessary to restrict

the form of the numerical system WS . Specifically, WS will

be restricted to affine systems, i.e. systems in which the

output at a particular time is a linear combination of previous

inputs, plus some time-varying bias.

This results in a cost function to be minimised:

J = Eθ||u − û||
2
F + λ2||G||

2
F (2)
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where u represents the vector representation of the sequence

of inputs for n ∈ {1, 2, . . . , N}, û represents the ideal

sequence of inputs that would drive the shared hardware

exactly as it would be driven in the real system. Note that

both u and û depend on the uncertain parameters θ, while

u also depends on the numerical system. G represents the

gain matrix of the affine numerical system WS . It can be

shown that the action of any affine system over a finite

horizon can be expressed as u = Gy + b, where input

and measurement sequences are seen as vectors u and y

respectively. Furthermore, any causal system will produce a

lower-triangular G. The ||G|| penalises a numerical system

that is sensitive to measurement noise, which is required as

measurement noise is not modeled explicitly here.

Next, the uncertain parameters θ are restricted to a finite

set of values (either naturally, or by approximation). This

allows the expectation operator in the cost function to be

replaced with a summation, which can then be consolidated

into an overall matrix norm:

J =
∣

∣

∣

∣

∣

∣

(

U − Û
)

P

∣

∣

∣

∣

∣

∣

2

F
+ λ2||G||

2
F (3)

=
∣

∣

∣

∣

∣

∣

(

ḠȲ − Û
)

P

∣

∣

∣

∣

∣

∣

2

F
+ λ2||G||

2
F (4)

where P is the diagonalisation of the probability mass vector,

the columns of any other matrix A represent the trajectories

a resulting from a given realisation of θ, and Ḡ and Ȳ are

defined such that ḠȲ = GY + 1b.

The minimisation of J as defined above can be proven

to be convex for sufficiently large λ2. Furthermore, the

following iterated function system (IFS) can be proven to

converge to the unique minimising numerical system ḠOPT,

again for sufficiently large λ2:

Ḡv+ = φ
(

Ḡv
)

(5)

where

φ
(

Ḡv
)

=





(

dfs
(

Ḡv
)

dḠv

)T

P2⊗ h∗
(

Ḡv
)

+ λ2I





−1

×

(

dfs
(

Ḡv
)

dḠv

)T

P2⊗ Ûs (6)

In the above, Ḡv+ is the vectorisation of the non-zero

elements of the matrix Ḡ, (·)
s

is the matrix stack operator,

P2⊗ = (P ⊗ I)(P ⊗ I), and the functions fs,h∗ are defined

such that Us = fs
(

Ḡv
)

= h∗
(

Ḡv
)

Ḡv .

While this solution method will produce the exact optimal

design, the presence of the large Jacobian of fs renders

the method computationally difficult for practical trajectory

lengths. In order to produce a more efficient method, the

following approximation is introduced:

dfs
(

Ḡv
)

dḠv
≈ h∗

(

Ḡv
)

(7)

This results in the following IFS, which should be iterated

to produce the approximate solution:

Ḡv+ =
(

h∗T
(

Ḡv
)

P2⊗ h∗
(

Ḡv
)

+ λ2I
)−1

× h∗T
(

Ḡv
)

P2⊗ Us (8)

This IFS can be implemented in practice very efficiently.

The theoretical validity of this approximation is currently

under investigation, although in practice is has been success-

fully used in a variety of simulator designs.

III. EXTENSIONS

A. MIMO Systems

Although the design method given in section II is quite

general in terms of acceptable system dynamics, a key

limitation is the restriction to SISO systems. The majority of

practical HWIL simulators are in fact MIMO, and therefore

an extension of the methodology to deal with such systems

was considered valuable.

To begin, the quantities u, q, v, y, z relevant to simulator

design must be extended from scalars to vectors. As a

result, where previously a finite-length trajectory in time was

represented as a vector, now this quantity would naturally

become a matrix, with the dimensionality of the quantity as

one index and the sample index as the other. Finally, when

many such trajectories, each associated with a different value

of θ, are concatenated (as they must be for the algorithm to

operate), the resulting quantity is in fact a rank-three tensor.

However, rather than deal directly with these tensor quan-

tities, the problem will be kept in the domain of vectors and

matrices via reshaping of the component arrays. Specifically,

for a given quantity A ∈ (U,Q,V,Y,Z), a matrix form is

defined:

A =



































a1
1[1] . . . a1

M [1]
...

. . .
...

a1
1[N ] . . . a1

M [N ]

...
. . .

...

aSa

1 [1] . . . aSa

M [1]
...

. . .
...

aSa

1 [N ] . . . aSa

M [N ]



































(9)

where an entry asa
m [n], (n, sa,m) ∈ (N,Sa,M) represents

the value of the sath component of a, at sample time n,

under the value θm of the uncertain parameters. As a result,

the gain matrix G and bias vector of the affine numerical
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system become

G =





































g11
11 . . . g11

N1 . . . g11
1Sy

. . . g11
NSy

...
. . .

...
. . .

...
. . .

...

gN1
11 . . . gN1

N1 . . . gN1
1Sy

. . . gN1
NSy

...
. . .

...
. . .

...
. . .

...

g1Su

11 . . . g1Su

N1 . . . g1Su

1Sy
. . . g1Su

NSy

...
. . .

...
. . .

...
. . .

...

gNSu

11 . . . gNSu

N1 . . . gNSu

1Sy
. . . gNSu

NSy





































(10)

b =
[

b11 . . . bN1 . . . b1Sy
. . . bNSy

]

(11)

Ḡ =

[

b

G

]

(12)

Under these definitions, the design method described in

section II remains valid; one way to consider the effect of the

above definitions is that a MIMO system has been converted

into a SISO system by stacking the trajectories for each input

or output end-to-end.

B. Design of Output System

The previous work has concentrated on the design of the

closed loop numerical system WS , and has ignored the post-

processing system WP . Although the closed loop effects

make the design of WS a more interesting and challenging

problem in general, it is nonetheless important to design a

suitable WP in order to produce useful simulator outputs zS

from the measurements y.

In a classical design WP appears naturally, as estimates

vM are already computed for WS , and values of zS can be

therefore be computed by passing vM through the model

ŴO. However, in a simulator designed using the new

method, this is no longer the case.

In accordance with (1), and subject to WS being already

designed, the optimal WP is defined as

(WP )OPT = arg min
WP

||(ZS − ZR)P||
2
F (13)

Given that optimisation WP over the full domain of arbitrary

non-linear mappings is intractable, the form of WP must be

restricted (as was the case for WS). Again, the form chosen

is that of affine mappings, i.e.

ZS = H̄Ȳ (14)

where Ȳ is defined as before, and H̄ is defined analagously

to Ḡ, save over the dimensions of Z rather than U.

The minimisation then becomes trivial; simply the solution

of a linear least squares problem, minH̄

∣

∣

∣

∣H̄ȲP − ZRP
∣

∣

∣

∣

2

F
.

Note that there are no restrictions on the structure of H̄ due

to causality as there are on Ḡ; as WP operates offline, the

full output trajectories are accessible.

Finally, it should be noted that in practice a Tychonov

regularizing term penalising the norm of H̄ with a weighting

κ2 is also used, as for the WS design, to produce a design

that is sufficiently robust to measurement noise when such

noise is not explicitly included in the model.

C. Measurement Noise

The final extension described in this paper is to assist

in dealing more explicitly with any unstructured uncertainty

(e.g. measurement noise) present in the simulator, that exists

outside of the θ-uncertainty.

The underlying concept is to attempt to include the un-

structured uncertainty in the design in a similar manner as

the structured uncertainty encoded in the θ parameter is

included, i.e. by including the unstructured uncertainty in

the expectation used to define the cost function. In order

to do this a discretisation of this unstructured uncertainty is

required. In general, it will not be computationally tractable

to provide any sort of complete coverage of the domain

of the realisations of the unstructured uncertainty, due to

its massive dimensionality (e.g. for measurement noise, one

dimension per channel per sample). Instead, a simple Monte

Carlo approach will be used, where for each realisation of

parameters θ, a number Υ of realisations of the unstructured

uncertainty will sampled, and each simulated individually.

The end result of this process is that rather than having

M columns, one for each realisation of θ, the various

quantities (U, Y, etc.) will have MΥ columns, spanning

both the shared, structured uncertainty and the unstructured

uncertainty inherent in the simulator. The new, extended

desired input Û that the simulator should match is simply

formed of Υ copies of the original, as the unstructured

uncertainty is associated with the simulator only.

In addition, the same approach can be extended to the

design of WP ; in fact, it is often possible to dispense entirely

with the Tychonov parameter κ2 from this part of the design,

provided Υ is large enough to provide sufficient conditioning.

Another minor extension to method is to use different

weighting λ2, κ2 for the gains associated with different

measurement channels, to represent the fact that different

noise amplitudes should be expected, and thus different

sensitivities designed. Specifically, good results were ob-

tained when the λ2, κ2 are proportional to the noise standard

deviations on respective channels.

IV. APPLICATION TO AERODYNAMIC HWIL SIMULATOR

The simulation scenario described in this section is based

on a real, experimental HWIL simulator that is in the final

stages of commissioning. The simulator has been discussed

previously in the literature [11]

A. System Modeling

The real system that is to be simulated is the motion

of a simple aerodynamic object. Specifically, the system

consists of a small airfoil section released into free fall, with

a particular initial angle-of-attack relative to the vertical axis.

The quantity of interest is the exact trajectory executed by

the airfoil as it approaches stall. It is assumed that the airfoil

is symmetrical about its section, so that all resulting motion
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Fig. 2. Diagram of airfoil aerodynamics.

will be constrained to a single plane. A diagrams of the

system can be seen in figure2.

A continuous-time state space model for this system is:

d

dt

















x1R

x2R

γR

ẋ1R

ẋ2R

γ̇R

















(t) =

















ẋ1R

ẋ2R

γ̇R

−FD cos βR+FL sin βR

m

−FD sin βR−FL cos βR

m
− g

MT

IA

















(t) (15)

In the data set used in this example (see [12]), the lift force,

drag force and pitching moment are defined to act at the

quarter-chord point, and hence the total moment MT around

the centre of mass will not equal the quoted pitching moment

MP . In this example, it is assumed that the centre of mass is

at the half-chord point for all airfoils; the resulting equation

could be trivially modified were this not to be the case.

MT = MP + 0.25c(sinα FD + cos α FL) (16)

The aerodynamic forces FD, FL,MP (drag force, lift force

and pitching moment respectively) take the canonical form

FD = 0.5 CD ρ ν2 A (17)

FL = 0.5 CL ρ ν2 A (18)

MP = 0.5 CM ρ ν2 A c (19)

with CD, CL, CM being the coefficients of drag, lift and

pitching moment respectively, ν being the relative airspeed,

A being the airfoil area, and c being the airfoil chord length.

The aerodynamic coefficients are assumed to be described

by non-linear functions of the angle of attack α, i.e.

CD = cD(α), CL = cL(α), CM = cM (α) (20)

In the real system, the angles γ, β and α (being the

absolute airfoil orientation, the absolute angle of the velocity

vector, and the angle of attack respectively) are defined as

follows

αR = γR − βR (21)

βR = atan2 (ẋ2R, ẋ1R) (22)

Also, the airspeed is defined as the magnitude of the airfoil

velocity, νR =
√

ẋ2
1R + ẋ2

2R, i.e. the surrounding air is

assumed to be still.

The output quantities of interest in this example are those

defining the positional trajectory of the airfoil, i.e. x1R, x2R

and orientation γR.

In order to simulate the behaviour of this system (which

could be expensive, awkward and time-consuming to test

physically), a HWIL simulator is to be designed. The phys-

ical design of this simulator has been performed a priori,

and is based around a controlled wind tunnel combined

with a three-axis motion simulator (of which only one axis

will be used in this scenario). The airfoil is attached to

the tool point of the motion simulator, through a force-

torque sensor that is able to measure the forces FT , FN

and torque MS between the airfoil and the mounting. The

sensor is calibrated to read zero at rest. The angle αS of the

motion simulator is also measured, as is the airspeed νS . All

of these measurements are subject to independent gaussian

measurement noises ǫi ∼ N
(

0, σ2
i

)

. The measurements must

be processed by the numerical subsystem (the design of

which is the subject of this work), in order to produce inputs

to the simulator hardware; the first input sets the torque MU

applied to the motion simulator, and the second input controls

the voltage υ applied to the fan driving the wind tunnel

airspeed. Finally, these measurements must also be used

to generate an estimate of the actual quantities of interest,

namely the simulated positional trajectory (x1S , x2S , γS).

The motion simulator has been designed for high levels of

performance as well as ease of modeling. The dynamics of

the axis itself can be modeled as a simple rotational inertia

IS . The effect of friction is negligible. The tool point is at

the rotational centre of the device, and mounts to the centre

of gravity of the airfoil. The axis is controlled by a direct-

drive torque-controlled DC motor. The amplifier driving this

motor is four quadrant and fully linear, and is current-limited

to produce a maximum absolute torque of Mmax.

The wind tunnel fan can be modeled as a first order system

taking input voltage to airspeed, with a time constant τν .

The DC gain of the fan system depends on the amplifier

settings, and has little effect beyond scaling the required

voltage inputs as the maximum fan speed is significantly

beyond the speeds reached in these experiments. Therefore,

for simplicity, unity DC gain is assumed.

The continuous-time dynamics of the simulator can be

expressed as

d

dt





αS

α̇S

νS



 (t) =





α̇S
MT +MU

ISA

τν(υ − νS)



 (t) (23)

where ISA = IS + IA. Measurements are formed via

FT = FD cos αS − (FL − mg) sinαS (24)

FN = FD sinαS + (FL − mg) cos αS − mg (25)

MS = MT −
α̈S

IA

(26)
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Note that the (FL − mg) term exists because in the simulator

airflow is always horizontal, and thus lift always vertical and

directly opposing gravity. The −mg term at the end of the

FN equation exists because the force-torque sensor is always

calibrated to read zero at rest, i.e. the FN axis is shifted by

the weight of the airfoil.

The purpose of the simulator is to allow the testing

of a variety of different aerodynamic objects. Thus, the

aerodynamic behaviour of the actual airfoil under test will

be inherently uncertain. Specifically, for the purposes of

this paper, a simulator is required that can test all of the

airfoils described in [12]. These airfoils represent a sample

of 50+ airfoils that are popular in small scale glider designs.

Experimental data describing the CD, CL and CM curves

of these airfoils is available in [12]; this data is incorpo-

rated into the system model, with the uncertain parameter

θ ∈ {1, 2, 3, . . . ,M} indicating which particular airfoil is

currently under test. In the absence of any more specific prior

information, all individual airfoils are assumed to be equally

likely; therefore, θ is assumed to be uniformly distributed,

i.e. Pr (θ = i) = 1/M, ∀i ∈ {1, 2, . . . ,M}.

Before a numerical model can be designed for this simu-

lator, the above models must be discretised. In this example,

discretisation is carried out using a simple zeroth-order

method, i.e.

x[n + 1] ≈ x[n] + T ẋ[n] (27)

where T represents the sample period, and x represents any

of the states described above.

The system described above can be cast in the notation

used in preceeding sections:

qR =

[

αR

νR

]

, qS =

[

αS

νS

]

(28)

vR =





FD

FL

MP





∣

∣

∣

∣

∣

∣

α=αR

vS =





FD

FL

MP





∣

∣

∣

∣

∣

∣

α=αS

(29)

zR =





x1R

x2R

γR



 , zS =





x1S

x2S

γS



 (30)

u =

[

MU

υ

]

, y =













FT + ǫ1
FN + ǫ2
MS + ǫ3
αS + ǫ4
νS + ǫ5













(31)

Finally, the parameter values in the example system are:

αR[0] = 5◦ IA = 0.00147kg m2

x1R[0] = 0m g = 9.81m s−2

x2R[0] = 0m ρ = 1.204

γR[0] = −90◦ + αR[0] A = 0.08m2

ẋ1R[0] = 0ms−1 c = 0.2m

ẋ1R[0] = 0ms−1 αS [0] = 5◦

γ̇R[0] = 0s−1 α̇S [0] = 0s−1

T = 0.002s νS [0] = 0ms−1

m = 0.3kg IS = 0.1kg m2

τν = 1s

σ1:5 =
[

10−2, 10−2, 10−3, 10−6, 10−2
]

(32)

Tests are conducted over a time horizon of 400ms (i.e.

N = 200) and M = 50 different airfoils are considered.

B. Classical Simulator Design

For the purposes of comparison with the newly developed

design method, this section describes a classical design for

the numerical subsystem of the simulator discussed in section

IV-A. The classical design consists of three core components.

First of all, the measurements y must be processed in order to

obtain an estimate of the outputs vS of the shared hardware.

These quantities vS (i.e. aerodynamic forces) must then be

fed into a model of the dynamics not included as hardware

(i.e. the inertial behaviour of the airfoil), thereby producing

outputs zS , as well as quantities qM on which future aero-

dynamic forces will depend. Finally, a controller is required

to drive the simulator hardware in such a way that the actual

quantities qS track the reference qM produced by the model.

This controller must make used of the measurements y, and

produce control inputs u.

Extracting an estimate of vS based on measurements

y requires the transformation of the forces FT , FN ,MS

into FD, FL,MT . In general this may involve filtering the

noisy measurements beforehand. In this case, however, the

negative performance impact of the filter lag was considered

excessive, and the modeled airfoil inertia sufficient to damp

out measurement noise.

The forces in the two frames are related by:

FD = (FN + mg) sinαS + FT cos αS (33)

FL = (FN + mg) cos αS − FT sinαS + mg (34)

MT = MS

(

1 +
IA

IS

)

+ MU

IA

IS

(35)

Therefore, estimates F̂D, F̂L, M̂T for use by the model can

be obtained via

F̂D =
(

y2[n] + mg
)

sin y4[n] + y1[n] cos y4[n] (36)

F̂L =
(

y2[n] + mg
)

cos y4[n] − y1[n] sin y4[n] + mg (37)

M̂T = y3[n]

(

1 +
IA

IS

)

+ u1[n − 1]
IA

IS

(38)

47th IEEE CDC, Cancun, Mexico, Dec. 9-11, 2008 ThB18.5

5059



These forces are then applied to a discretised model of the

inertial behaviour of the system:

∆

















x1M

x2M

γM

ẋ1M

ẋ2M

γ̇M

















[n] = T



















ẋ1M

ẋ2M

γ̇M

− F̂D cos βM+F̂L sin βM

m

− F̂D sin βM−F̂L cos βM

m
− g

M̂T

IA



















[n] (39)

Finally, controllers attempt to drive the quantities qS

(simulator hardware angle of attack and airspeed) to track

the quantities qM generated by the above model. The design

of these controllers presents a key difficulty in the classical

approach; the dynamics driving the qS quantities will be

determined by the dynamics of the entire system, including

the non-linear, uncertain aerodynamics. Therefore, a rigorous

design approach requires the linearisation of an uncertain

non-linear system, followed by a controller design around

these systems.

Consider the αS axis first. An approximate transfer func-

tion from input torque u1 = MU to simulator angle of attack

q1 = αS can be obtained in a straightforward manner by

linearising around αS ≈ 0. This approximation results in

MT ≈ MP + 0.25cFL (40)

FL ≈ 0.1q1 (41)

where FL ≈ 0.1q1 uses a commonly used estimate of the

gradient of CL(α), α ≈ 0. This results in a transfer function:

q1

u1
(s) =

1

ISAs2 − 0.025c
(42)

Note that, conveniently, these approximations result in a

transfer function that is independent of the particular airfoil

used, i.e. is independent of the uncertainty θ. Thus, robust

control techniques will not be needed in this case, although

in general most classical HWIL designs will require them.

A controller can be designed for this transfer function.

Specifically, in this example a proportional-derivative form

has been chosen, with parameters resulting in a phase margin

PM = 77◦ at a frequency of 10rad/s.

A controller for the wind tunnel airspeed is simpler

to design, as the airspeed trajectory is dominated by the

gravitational acceleration, and is largely unaffected by the

aerodynamic behaviour. Thus, control can be provided in

open loop provided the time constant τν of the fan is known

accurately, or with a dominant feedforward term combined

with a small feedback term to correct any small control

mismatches. In this design, a purely open loop controller

will be used. Gravitational acceleration will produce:

q2
M (s) ≈

g

s2
(43)

which can be combined with the fan dynamics to obtain the

desired control trajectory

q2
S

u2
(s) =

τν

s + τν

(44)

⇒ u2(s) =
g

s2

τν

s + τν

(45)

⇒ u2(t) = g(1 + t) (46)

⇒ u2[n] = g(1 + Tn) (47)

C. New Design

Again, the application of the new design method is

straightforward, requiring little more than the selection of

values for a handful of parameters. The values used here

are:

K = 15 (iterations of the IFS) (48)

L = 30 (non-zero gains allowed at each time) (49)

Υ = 50 (noise realisations) (50)

λ2
b = 6 (base regulariser, is multiplied by σsy

) (51)

κ2
b = 0 (base regulariser, is multiplied by σsy

) (52)

Note that the parameters λ2
b and κ2

b represent base weights,

which are multiplied by the standard deviations of the noise

on each measurement channel.

The results of the two designs are compared in the

following section.

V. RESULTS

Figure 3 shows the trajectories executed by the airfoils in

real free flight. These are the trajectories that the simulators

are designed to predict, depending on which particular airfoil

is under test (i.e. on the value of the uncertain parameter θ).
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Fig. 3. Spatial trajectories of airfoils in real free flight.

Figure 4 shows the simulation errors (positions and orien-

tation) for both the new and classical design methods. The

plots show 90% confidence intervals, calculated by taking

a large number of trials with a variety of noise realisations

and basing statistics on this ensemble. These plots clearly
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Fig. 4. 90% confidence intervals on percentage output errors in simulators
designed using the classical and new methods.

demonstrate that the new design method outperforms the old

method with a high degree of confidence.

In addition to increased simulation accuracy, the new

method has a number of other advantages over the classical

design method. The requirement of arduous problem-specific

design work is vastly reduced, due to the automated nature

of the method; also, the new method works in situations

in which the classical design would be inherently difficult,

for example when the transformation between measurements

y to estimates of v is ill defined, as would be the case in

this example if no torque was measured, but rather had to

be observed from the dynamics of α. Finally, the numerical

system designed by the new method results in a simple affine

system that is extremely efficient to implement, whereas

the classical design requires non-linear models and other

complicated features that may not be practical inside an

embedded computational environment.

VI. CONCLUSIONS AND FUTURE WORK

In this paper, extensions to an existing proven HWIL

design method have been described. Specifically, the method

was extended to deal with MIMO systems, to fully design the

output stage of the numerical system in addition to the online

closed loop stage, and to explicitly deal with unstructured

uncertainty.

Also, and example application was presented, in which

the extended design method was compared to a competing

classical design, in the context of a real, large scale HWIL

simulator. The new method was found to outperform the

classical design and provide other practical advantages.

In the near future, it is anticipated that the physical

simulator will come online, at which time the design method

will be tested on the real plant.
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