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Abstract— Design trade-offs between estimation perfor-
mance, processing delay and communication cost for a sensor
scheduling problem is discussed. We consider a heterogeneous
sensor network with two types of sensors: the first type
has low-quality measurements, small processing delay and a
light communication cost, while the second type is of high
quality, but imposes a large processing delay and a high
communication cost. Such a heterogeneous sensor network is
common in applications, where for instance in a localization
system the poor sensor can be an ultrasound sensor while the
more powerful sensor can be a camera. Using a time-periodic
Kalman filter, we show how one can find an optimal schedule
of the sensor communication. One can significantly improve
estimation quality by only using the expensive sensor rarely. We
also demonstrate how simple sensor switching rules based on
the Riccati equation drives the filter into a stable time-periodic
Kalman filter.

I. INTRODUCTION

The resource limimitations of wireless sensor networks is
an important issue in the design of emerging applications [1],
[2]. The need for minimizing the communication of individ-
ual sensor nodes poses interesting challenges for estimation
and control strategies [3]. In this paper we consider a novel
networked estimation problem for a situation in which two
types of sensors with different resource demands share the
same network.

As a motivating example, consider the problem of tracking
a mobile object using observations from two types of sensors.
The sensors communicate their data to a central node that
perform the processing. The first type of sensors are proxim-
ity sensors with low-quality measurements, small processing
delay and a light communication cost. The second type
of sensor is a camera with high-quality measurements, but
large processing delay and high communication cost. Given
a TDMA scheme for the wireless network, an important
problem now is how each sensor should be used at each
time instant. Some sensor measurements with not much
information are available almost immediately at the tracking
station. On the other hand, there are some high quality sensor
measurements of which only a delayed and intermittent
version is available to the tracking station.

The main contribution of the paper is a design trade-
off between estimation performance, processing delay and
communication cost for a sensor scheduling problem with
heterogeneous sensors. We show how optimal periodic sensor
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schedules can be found by means of a search over a finite set.
We also show that by switching with a certain period between
two relatively poorly performing sensors, one can achieve
strictly better estimates. The switching between the sensors
can be decided off-line. We also show how sensor switching
can be done on-line using covariance estimates from Riccati
equation for the off-line problem. This switching rule is
shown to give a stable periodic switching schedule.

Sensor selection problems have been studied extensively,
e.g., [4]. Our approach is novel in that we incorporate com-
munication cost in the cost criterion together with processing
delays. See [5] for another recently studied problem. The
motivation for our formulation comes from the trade-off one
need to do in new systems utilizing wireless networks. Our
solution relies on the studied periodic prediction problem [6],
[7].

The outline of the paper is as follows. Section II presents
the model of the considered system and formulates a perfor-
mance criterion that takes both the estimation quality and
communication cost into account. By utilizing results on
periodic Riccati equation for the periodic prediction problem,
we present a solution to the optimal filtering problem.
Section III illustrates the result on a sensing problem for the
random walk. We then show in Section IV how the solution
can be implemented by letting the sensor switching be based
on how much increase in accuracy one can get from using
one particular sensor. This covariance-based sensor switching
is then applied to the random walk problem in Section V.
The paper is concluded in Section VI.

II. OPTIMAL PERIODIC SENSOR SCHEDULES AND

FILTERS

In this section, it is assumed a priori that the high-quality
sensor is used once every N -th sample. In between the
high-quality samples, the low-quality sensor is used in every
sample. How the period N should be chosen is one of the
main problems in the paper, and will be discussed in the
following.

We define the sets Thq(N) and Tlq(N) as follows

Thq(N) := {N − 1, 2N − 1, 3N − 1, . . .}
= {k ≥ 0|(k + 1) mod N = 0},

Tlq(N) := {0, 1, . . . , N − 2, N, . . .}
= {k ≥ 0|(k + 1) mod N �= 0},

where the period is N ≥ 1 and k is the discrete time index.
That is, when k ∈ Thq(N) the high-quality sensor is used,
and when k ∈ Tlq(N) the low-quality sensor is used.
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It is also assumed that the plant we measure is linear,

x(k + 1) = Ax(k) + Bw(k), k ≥ 0, (1)

y1(k) = C1x(k) + v1(k), k ∈ Tlq(N), (2)

y2(k) = C2x(k − d) + v2(k), k ∈ Thq(N), (3)

with state vector x(k) ∈ R
n, Gaussian white process

noise w(k) ∈ R
m, measurements y1(k), y2(k) ∈ R

p, and
Gaussian white measurement noises v1(k), v2(k) ∈ R

p.
The covariance of the process noise is Ew(k)w(k′)T =
Wδ(k− k′), and the covariances of the measurement noises
Ev1(k)v1(k′)T = Σδ(k−k′), and Ev2(k)v2(k′)T = σδ(k−
s). It is assumed that the high-quality sensor measurement
y2(k) is more accurate than y1(k), i.e., σ � Σ, but it
is delayed with d samples because of an assumed higher
processing time. It is assumed that the delay of the low-
quality sensor can be neglected. Note that y1(k) is not
defined when k ∈ Thq(N) and y2(k) is not defined when
k ∈ Tlq(N).

Remark 1: It is also possible to let the dimensions of the
measurements y1(k) and y2(k) to be different, i.e., y1(k) =
C1x(k) + v1(k) ∈ R

p1 and y2(k) = C2x(k − d) + v2(k) ∈
R

p2 , with p1 �= p2.
Next, we derive the optimal filter for the model (1)–(3).

A. Performance criterion

We here introduce a performance criterion for the estima-
tion problem that makes the trade-off between communica-
tion cost for the high-quality sensor and estimation quality
explicit. As estimation quality criterion, we choose the aver-
age trace of the covariance of the estimation error over the
time interval [0, k], pav (k,N) := 1

k+1

∑k
i=0 trace P (i,N)

where

P (k,N) := E
[
(x(k) − x̂(k))(x(k) − x̂(k))T |Yk−1(N)

]
,

(4)
and Yk−1(N) are all the measurements up until time k −
1, Yk−1(N) := {y1(k′), y2(k′′)|k′, k′′ ≤ k − 1; k′ ∈
Tlq(N); k′′ ∈ Thq(N)}, using N -periodic high-quality mea-
surements. Here, x̂(k) denotes an estimate of x(k), based
on the available measurements in Yk−1(N). For notational
convenience, we will often suppress the argument N in
P (k,N) when it is clear what the period N is, i.e., P (k) :=
P (k,N).

The average trace of the error covariance, pav (k,N), is
a measure of how accurately we know the state and takes
the information from both sensors into account. We hope to
decrease pav (k,N) by a proper choice of the period N .

The performance criterion V (k,N) we want to minimize
is now defined by the sum of an average communication cost
and the average error covariance,

V (k,N) :=
λ

N
+ pav (k,N). (5)

There is a communication cost λ associated with each
measurement y2(k). The unit for λ is chosen to be the
unit for estimation quality. The average communication cost
per time sample is λ/N , and without any requirement for

estimation quality, N = ∞ is optimal. When only the
high-quality sensor is used, the performance is V (k, 1) =
λ + pav (k, 1), and when only the low-quality sensor is
used, the performance is V (k,∞) = pav (k,∞). Thus the
communication cost λ is a measure of how much better
(measured in resulting average error covariance) than the
low-quality sensor the high-quality sensor must be for us
to prefer to use it (V (k, 1) < V (k,∞)).

We would like to minimize the criterion (5) with respect
to sensor cycle period N and the error covariance, i.e.,
minN minP (0),...,P (k) V (k,N), subject to the model (1)–(3)
for all times k. The minimization problem can be solved in
two steps,

min
N

(
λ

N
+ min

P (0),...,P (k)
pav (k,N)

)

= min
N

(
λ

N
+ p∗av (k,N)

) (6)

Intuitively, one would think that a small period N always
decreases the estimation error pav since more high-quality
measurements are used, at the price of increasing the com-
munication cost λ/N . However, the situation is a little bit
more complicated than that, as we shall see.

In the next subsection, we characterize the optimum
p∗av (k,N). We return to the outer minimization over N in
the subsection II-C.

B. Minimizing the average estimation error

Here, we focus on minimizing the term pav (k,N) in the
performance criterion V (k,N), for fixed period N . It is
well known that the optimal predictor for a linear system
(a predictor that minimizes trace P (k,N) for all k) is given
by the Kalman filter, see, [8], for example. In order to apply
the Kalman filter to the model (1)–(3), the model has to be
rewritten to accommodate for the time delay d. Introduce a
new state vector x̄ by

x̄(k) =
[
x(k) x(k − 1) . . . x(k − d)

]T ∈ R
n(d+1).

(7)
Then the model (1)–(3) can be rewritten as

x̄(k + 1) = Āx̄(k) + B̄w(k), (8)

ȳ(k) = C̄(k)x̄(k) + v̄(k), (9)

where

Ā =

⎡
⎢⎢⎢⎢⎢⎣

A 0 . . . 0 0
In 0 0 0
0 In 0 0
...

...
. . .

...
...

0 0 . . . In 0

⎤
⎥⎥⎥⎥⎥⎦ , B̄ =

⎡
⎢⎢⎢⎢⎢⎣

B
0
0
...
0

⎤
⎥⎥⎥⎥⎥⎦ ,

C̄(k) =

{ [
C1 0 . . . 0 0

]
, k ∈ Tlq(N),[

0 0 . . . 0 C2

]
, k ∈ Thq(N),

Ev̄(k)v̄(k + k′)T =: V̄ (k)δ(k′),

V̄ (k) =

{
Σ, k ∈ Tlq(N),
σ, k ∈ Thq(N).
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The system (8)–(9) is a linear time-periodic system of period
N . The periodicity comes from the periodic sensing. The
minimal possible covariance P̄ ∗(k) (∗ denotes minimal) of
the estimation error satisfies a time-varying recursive Riccati
equation of the form [6], [8]

P̄ ∗(k + 1) = Ā[P̄ ∗(k) − P̄ ∗(k)C̄(k)T

×[C̄(k)P̄ ∗(k)C̄(k)T +V̄ (k)]−1C̄(k)P̄ ∗(k)]ĀT +B̄WB̄T

(10)

where

P̄ (k) = E
[
(x̄(k) − ˆ̄x(k))(x̄(k) − ˆ̄x(k))T |Yk−1(N)

]

=:

⎡
⎢⎣

P̄0,0(k) . . . P̄0,d(k)
...

. . .
...

P̄d,0(k) . . . P̄d,d(k)

⎤
⎥⎦ ∈ R

n(d+1)×n(d+1),

is the covariance of the estimation error of the state x̄(k),
and

P̄e,f (k) := E [(x(k − e) − x̂(k − e))

×(x(k − f) − x̂(k − f))T |Yk−1(N)
]
, (11)

0 ≤ e, f ≤ d, and P̄e,f (k) = P̄f,e(k)T . This means that the
covariance of any other filter, P̄ (k), is greater than that of
the Kalman filter, P̄ ∗(k). That is, P̄ (k) − P̄ ∗(k) is positive
semidefinite (P̄ (k) − P̄ ∗(k) ≥ 0), see [8, Section 3.2]

The time-varying Kalman filter that achieves the optimal
accuracy P̄ ∗(k) is given by

ˆ̄x(k + 1) = (Ā − K̄(k)C̄(k))ˆ̄x(k) + K̄(k)ȳ(k),

K̄(k) = ĀP̄ ∗(k)C̄(k)T (C̄(k)P̄ ∗(k)C̄(k)T + V̄ (k))−1.
(12)

It is known that P̄ ∗(k) converges to an N -periodic trajec-
tory in steady-state, under weak assumptions on the system.

Lemma 1: Assume that (A,C1) or (A,C2) are detectable,
and that (A,B) is stabilizable. If P̄ ∗(0) is symmetric and
positive semidefinite, then P̄ ∗(k) converges to a unique sym-
metric and positive semidefinite N -periodic solution P̄ ∗

per (k)
as k → ∞, where P̄ ∗

per (k) satisfies (10) with the boundary
conditions P̄ ∗

per (0) = P̄ ∗
per (N) ≥ 0.

Proof: If (A,B) is stabilizable, it is straightforward to
show that (Ā, B̄) is stabilizable. To show that the periodic
system (Ā, C̄(k)) is H-detectable, [9], requires more work.
H-detectability means that for each eigenvalue λ̄ of ĀN such
that |λ̄| > 1, the conditions

ĀN η̄ = λ̄η̄, η̄ ∈ C
n(d+1), (13)

C̄(k)Ākη̄ = 0, k ∈ [0, N − 1], (14)

imply η̄ = 0. The condition (13) means that η̄ has the
structure η̄ =

[
λdη λd−1η . . . η

]T
, where Aη = λη and

λN = λ̄. Notice that |λ| > 1. The condition (14) now reduces
to C1η = 0 and C2η = 0. Because of the assumption of the
detectability of (A,C1) or (A,C2), it follows that η = 0.
This implies that η̄ = 0, and H-detectability of (Ā, C̄(k))
follows. Since (Ā, B̄) is stabilizable and (Ā, C̄(k)) is de-
tectable, the existence of an attractive N -periodic solution
of the Riccati equation follows by Theorem 7 in [6].

Remark 2: If N = ∞, (A,C1) should be detectable, and
if N = 1, (A,C2) should be detectable.

Using the lemma, we can derive the following theorem.

Theorem 1: Assume that (A,C1) or (A,C2) are de-
tectable, and (A,B) is stabilizable. If P̄ ∗(0) is symmetric
and positive semidefinite, then it holds that

(i) the minimal estimation error covariance P ∗(k,N), see
(4), is given by the (1, 1)-block of P̄ ∗(k) (P̄ ∗

0,0(k));
(ii) the optimal covariance P ∗(k,N) converges to a peri-

odic solution P ∗
per (k,N), i.e., P ∗

per (k,N) = P ∗
per (k +

N,N), ∀k, and P ∗(k,N) → P ∗
per (k,N), as k → ∞;

(iii) the optimal average estimation quality is given by
p∗av (k,N) = 1

k+1

∑k
i=0 trace P ∗(i,N);

(iv) the optimal average estimation quality converges to
a constant p∗av (N) as k → ∞, and p∗av (N) :=
limk→∞ p∗av (k,N) = 1

N

∑N
i=1 trace P ∗

per (i,N).
Proof: (i) By inspection it is seen that P ∗(k,N) is

the (1, 1)-block of P̄ (k), that is P̄0,0(k). By the optimality
of the Kalman filter, P̄0,0(k) is minimal. (ii) By Lemma 1,
P̄ (k) (and its components) converges to a periodic trajectory.
(iii) When P (k,N) is minimized, trace P (k,N) is also min-
imized, since P (k,N) is symmetric positive semidefinite.
We have that trace P ∗(i,N) ≤ trace P (i,N), i = 0, . . . , k,
for all admissible P (i,N). Hence

∑k
i=0 trace P ∗(i,N) ≤∑k

i=0 trace P (i,N). (iv) Follows by the periodicity of
P ∗(k,N), see (ii).

The practical value of Theorem 1 is that it shows how to
compute the optimal value p∗av (k,N) that is needed to solve
the optimization problem (6). Because p∗av (k,N) converges
to a constant p∗av (N) for large k, we will usually only discuss
this limiting value. To compute it, we need to solve a periodic
Riccati equation for each period N . One can compute the
periodic solutions P̄ ∗(k) and K̄∗(k) by just iterating (10)
because of the global convergence property in Lemma 1, but
more efficient methods are available, see for example [7].
There are two cases of special interest: p∗av (1) and p∗av (∞).
Both these cases collapse into time-invariant problems, and
correspond to the cases when the high-quality or the low-
quality sensor, respectively, is used all the time.

One may think that p∗av (N) is an increasing function of N .
The argument could be as follows: The high-quality sensor
is more accurate, and the more often it is used (N small),
the better estimation quality we get. This is not always
correct, however. The reason is the time delay d of the high-
quality measurement. The high-quality sensor is accurate,
but its information can be old. If the process noise into the
system is sufficiently large (W large), then we can get that
p∗av (1) > p∗av (∞). That is, using the low-quality sensor all
the time gives better estimates than using the high-quality
sensor all the time. One could ask if it then is useful at all
to have a high-quality sensor. Maybe somewhat surprisingly
the answer is yes, as we shall show in the random walk
example in Section III. It turns out that by switching with
a suitable period N between two sensors that are poor by
themselves, we can improve the estimation quality.
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C. Minimizing the performance criterion

At time k, the optimal sensor cycle period is given by

N∗(k) = arg min
N

(
λ

N
+ p∗av (k,N)

)
, (15)

where p∗av (k,N) was characterized in Theorem 1. It is clear
that 1 ≤ N∗(k) ≤ k+1, so that (15) is a simple minimization
problem over a finite set.

The steady-state optimal period N∗ for the sensor schedule
is given by

N∗ = arg min
N

(
λ

N
+ p∗av (N)

)
=: arg min

N
V ∗(N),

(16)
where p∗av (N) was characterized in Theorem 1. The limiting
value V ∗(∞) is easy to compute, since p∗av (∞) is a time-
invariant problem. We have the following proposition that
helps to convert the infinite-dimensional problem (16) into a
finite problem.

Proposition 1: There exists a finite period Nmono ≥
1 such that the sequence V ∗(N) − p∗av (∞), N ∈
{Nmono , Nmono +1, . . .} is monotone and converges to zero.

In the examples we have considered, V ∗(N) quickly
converges to p∗av (∞) so that it has been easy to find a
period Nmono . Then we can reduce (16) into a minimization
problem over a finite set N ∈ {1, 2, . . . , Nmono ,∞}.

Even though we have not been able to prove that there
is always a unique global minimum N∗, this has been the
case for the numerical examples considered. More details and
figures are given in the random walk example in Section III.

D. General multi-sensor case

The presented method can be extended to the case where
more than two sensors are available. Consider, for example,
the case where two high-quality sensors, with periods N1

and N2, and one low-quality sensor is available. Then one
additional measurement equation y3(k) is added to (2)–
(3). The new system can again be written as a periodic
system (8)–(9). An upper bound on the period is N1N2.
One needs to be careful about the times when the high-
quality measurements coincide. One solution is to use both
measurements (dimension of ȳ(k) can vary). As before we
can define a performance criterion

V (k,N1, N2) :=
λ1

N1
+

λ2

N2
+ pav (k,N1, N2),

for communication costs λ1 and λ2. The minimum of the
criterion can be found by first finding p∗av (k,N1, N2) for
fixed N1 and N2 using the Riccati equation (10). Again, the
optimal periods, N∗

1 and N∗
2 , can be found from a search

over a finite set, although this set will grow exponentially
with the number of sensors available.
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Fig. 1. The function p∗av (N) for four different delays d.

III. EXAMPLE: THE RANDOM WALK

As an example for a plant, we use the random walk in
one dimension:

x(k + 1) = x(k) + w(k), x(k) ∈ R,

y1(k) = x(k) + v1(k), k ∈ Tlq(N),
y2(k) = x(k − d) + v2(k), k ∈ Thq(N).

This means the system matrices are chosen as A = B =
C1 = C2 = 1. For this simple system, we can express the
optimal P ∗(k) ∈ R as

P ∗(k + 1) = P ∗(k) + W − P ∗(k)2

P ∗(k) + Σ
, k ∈ Tlq(N),

(17)

P ∗(k + 1) = P ∗(k) + W − P̄ ∗
0,d(k)2

P̄ ∗
d,d(k) + σ

, k ∈ Thq(N),

(18)

which is the the (1,1)-block of (10) and where we have used
that P̄ ∗

0,0(k) = P ∗(k). As seen, it is only when k ∈ Thq(N)
that more information than P̄ ∗

0,0(k) is needed from P̄ ∗(k).
Next, we compute p∗av (k,N) and p∗av (N) for the random

walk for various delays, when the variance of the process
noise is W = 0.01, and the measurement noise is σ = 0.1
and Σ = 1.0. That is, the high-quality sensor is a factor
10 more accurate than the low-quality sensor. The function
p∗av (N) is shown in Fig. 1. As can be seen, it is not at all the
case that decreasing N always yields a more accurate average
estimate, at least for large delays d. In fact, in the case d = 7,
there is even a minima at N = 3 in the curve. This means that
switching between the two sensors with period N = 3 yields
a strictly better estimate than the sensors can produce by
themselves. It is also seen that all the curves converge to the
same value p∗av (∞). This is because the high-quality sensor
is not used at all when N = ∞, and the low-quality sensor
has no delay. How the covariance P ∗(k,N), N = 1, 3,∞,
and p∗av (k, 3) evolve over time for a fixed delay of d = 7
is shown in Fig. 2. As expected from Theorem 1, P ∗(k,N)
converges to periodic trajectories, and the average function
p∗av (k, 3) converges to a constant. In this case, a high-quality
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when d = 7.
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Fig. 3. The performance cost V ∗(N) = λ/N + p∗av (N), λ = 0.03, as
function of period N for four different delays d.

measurement every third sample decreases the average and
instantaneous error covariance.

Next, we turn to finding the optimal sensor cycle period
N∗. In Fig. 3, the optimal performance cost V ∗(N) for
the same example as in Fig. 1 is shown when the cost
per use of the high-quality sensor is λ = 0.03. As seen,
there is a unique optimum N∗ in all cases. As suggested in
Proposition 1, the curves are monotonic for large N . The
results are summarized in Table I. It is clear that putting the
communication cost to zero, λ = 0, will in most cases result
in the extreme choices N∗ = 1 or N∗ = ∞, although not
always (see d = 7 in Fig. 1 for example). This means only
one sensor is used all the time. It is interesting to notice that
if there is a communication cost λ > 0 associated with the
high-quality measurement, often nontrivial optimal periods
1 < N∗ < ∞ result.

IV. COVARIANCE-BASED SENSOR SWITCHING

In the previous section, the sensor switching was periodic
by assumption. In this section, we instead let the sensor
switching be based on how much increase in accuracy
one can get from using one particular sensor. We call
this covariance-based switching. Let us compare the two
expressions (17) and (18) for the optimal error covariance
for the random walk. We see that for a given P̄ ∗(k), the

TABLE I

THE OPTIMAL SENSOR CYCLE PERIODS FOR VARIOUS COMMUNICATION

COSTS λ AND SENSOR DELAY d.

λ d N∗ V ∗ λ d N∗ V ∗
0 0 1 0.0370 0.03 0 2 0.0635
0 3 1 0.0670 0.03 3 3 0.0883
0 7 3 0.0992 0.03 7 11 0.1047
0 10 ∞ 0.1051 0.03 10 ∞ 0.1051

high-quality measurement results in a smaller P ∗(k+1) only
if

P̄ ∗
0,d(k)2

P̄ ∗
d,d(k) + σ

− P ∗(k)2

P ∗(k) + Σ
> 0. (19)

The idea with covariance-based switching is to iterate the
recursive Riccati equation (10), and use the high-quality sen-
sor only when a condition like (19) is true. More generally,
we define a switch schedule s(k) and a continuous switch
function f : R

n(d+1)×n(d+1) → R such that

s(k) =

{
1, f(P̄ ∗(k)) ≤ 0
2, f(P̄ ∗(k)) > 0

(20)

and the following C̄ and V̄ matrices are used in the Riccati
equation (10)

C̄(k) =

{ [
C1 0 . . . 0 0

]
, s(k) = 1,[

0 0 . . . 0 C2

]
, s(k) = 2,

V̄ (k) =

{
Σ, s(k) = 1,
σ, s(k) = 2.

For a given initial covariance P̄ ∗(0), the schedule s(k) can
be computed on-line.

Remark 3: If d = 0 and σ < Σ, then (19) is always
true when P̄ ∗(k) > 0. To avoid that the high-quality sensor
always is used, and to account for its communication cost, we
can again introduce a communication cost λ and modify (19)
to P̄ ∗

0,d(k)2/(P̄ ∗
d,d(k) + σ)− λ− P ∗(k)2/(P ∗(k) + Σ) > 0.

The covariance-based schedules s(k) are robust to small
perturbations in the covariance P̄ ∗(k). Also, periodic sched-
ules are locally attracting as explained in the following
theorem.

Theorem 2: Assume that (A,C1) or (A,C2) are de-
tectable, and that (A,B) is stabilizable. Assume furthermore
that there is an N -periodic switch schedule s(k) such that
the corresponding unique periodic solution P̄ ∗

per (k) satisfies
(20) with strict inequalities for k = 1, . . . , N . Then P̄ ∗

per (k)
is a locally attracting periodic solution for a continuous filter
with switch function f , and the switch schedule s(k) remains
unchanged under small perturbations of the covariance.

Proof: Since the inequalities involving f are strictly
satisfied, and f is continuous, there are open neighborhoods
around every P̄ ∗

per (k) that result in the same switching signal
s(k). Denote the radius of the largest open ball that is
contained in all these neighborhoods by R.

Now make a symmetric perturbation to P̄ ∗
per (0) and

call the perturbed covariance P̄ ∗(0), such that ‖P̄ ∗
per (0) −

P̄ ∗(0)‖2 ≤ ρ, for a positive constant ρ > 0 to be fixed later.
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If the covariance P̄ ∗(0) is iterated forward in time using
the periodic Riccati equation (10) with C̄per (k) and V̄per (k)
(corresponding to the N -periodic schedule s(k)) we obtain a
sequence P̄ ∗(k). Denote the Kalman gain corresponding to
P̄ ∗

per (k) and P̄ ∗(k) by K̄per (k) and K̄(k), respectively. Also
define Āper (k) = Ā − K̄per (k)C̄per (k), and Ā(k) = Ā −
K̄(k)C̄per (k). Then it holds that both Āper (k) and Ā(k) are
exponentially stable, see [6, Theorem 5], since the periodic
system is detectable and stabilizable. Furthermore, it holds
that the the difference ΔP (k) = P̄ ∗

per (k) − P̄ ∗(k) satisfies
the equation

ΔP (k + 1) = Āper (k)ΔP (k)Ā(k)T

= Āper (k)ΔP (k)Āper (k)T + O(‖ΔP (k)‖2
2),
(21)

see [6, Lemma 3]. Since, Āper (k) is exponentially stable,
there are constants κ > 0, 0 ≤ λ < 1, ρ′ > 0 such that for all
‖ΔP (0)‖2 < ρ′ it holds that ‖ΔP (k)‖2 ≤ κλk‖ΔP (0)‖2.

Now we choose the radius ρ such that ρ ≤ ρ′ and
ρ < R/κ. Then it follows that ‖ΔP (k)‖2 ≤ κλkρ <
R, k ≥ 0. The radius ρ ensures that that the perturbed
covariance P̄ ∗(k) always remains within the ball of radius
R around P̄ ∗

per (k), and the switching signal s(k) remains
unchanged. This means that the perturbed solution P̄ ∗(k) is
also a solution to the covariance-switched filter. Furthermore,
it converges exponentially fast to the periodic solution, as
shown in (21). This concludes the proof.

V. EXAMPLE REVISITED

In Fig. 4, a simulation of the same random walk as in
Section III with delay d = 7 is made using a switched
Kalman filter based on (19). The covariance-based filter
converges to a 3-periodic schedule after 5 samples: Two
high-quality measurements followed by a low-quality mea-
surement. The periodic filter from Section II-B with N = 3 is
also used for comparison. Interestingly, the a priori periodic
filter gives a lower error covariance. Here, it is better to use
two low-quality measurements followed by a high-quality
measurement. The reason for this is the long time delay of
d = 7. The condition (19) only tries to make P ∗(k) one step
ahead small. Then the covariance-based scheduler does not
find the globally optimal periodic schedule.

The 3-periodic solution that is used for comparison does
not give rise to its own switch schedule when (19) is
applied to it. Then it cannot be a periodic solution of the
covariance-based filter. This can also be seen because the
two filters have the same state at time k = 0 but the solutions
diverge into two different periodic trajectories. As predicted
by Theorem 2, the 3-periodic schedule that the covariance-
based filter reaches is locally stable, which can be verified
by simulations.

An interesting problem for future work is to design switch
functions f that guarantee a small average of the error
covariance and good performance. From this single example
it is clear that one needs to look more than one step ahead
when the sensors have time delays. Such switch functions
could be useful to find good switch schedules automatically.
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Fig. 4. In the upper plot, the error covariance P ∗(k) for a filter using
the covariance-based schedule (19) and a fixed periodic schedule from the
example in Section III are shown. In the lower plot, the covariance-based
sensor schedule s(k) is shown. It quickly converges to a period of three.

This could save computational efforts if one compares to the
method in Section II-C.

VI. CONCLUSIONS

We have considered the problem of scheduling two het-
erogeneous sensors. One sensor was inaccurate and the other
sensor was accurate, but could have a long time delay. As a
tool, time-periodic Kalman filters were used. It was shown
how optimal periodic sensor schedules can be found by
means of a search over a finite set. It was also shown that by
switching with a certain period between two relatively poorly
performing sensors, one can achieve strictly better estimates.
We also showed how simple sensor switching rules can be
derived from the Riccati equation and that they can be used
to obtain stable periodic switching schedules. An interesting
problem for future research is to develop methodology for
how to design switching rules that find optimal periodic
schedules.
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