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Abstract—We consider a class of neighborhood consensus
algorithms for multi-agent systems. Within this class, the agents
move along the gradients of a particular function, which
can be represented as the sum of the minimums of several
quadratically symmetric nonnegative functions. For these sys-
tems, we provide generic Lyapunov functions that are non-
increasing along the trajectories. Under some mild technical
assumptions, the Lyapunov functions prove convergence of the
algorithms when the number of agents is finite. We show
that a well-known model of multi-agent systems, namely the
opinion dynamics model, is a special case of this class. The
opinion dynamics model was first introduced by Krause and
consists of a distribution of agents on the real line, where
the agents simultaneously update their positions by moving
to the average of the positions of their neighbors including
themselves. We show that a specific Lyapunov function that
was previously proposed for the opinion dynamics model by
Blondel et. al. can be recovered from our generic Lyapunov
function. In addition to providing intuition about the dynamics
of neighborhood consensus algorithms, our Lyapunov analysis
is particularly useful for analysis of the infinite-dimensional
case, where extensions of the combinatorial approaches may
not be convenient or possible.

I. INTRODUCTION

Our research is motivated by the study of a simple

model of a distributed averaging algorithm for multi-agent

systems, known as the opinion dynamics model. The opinion

dynamics model was first introduced by Krause [4], [5] and

is defined as follows: Consider a systems of n agents where
at time k ; Z, every agent i ; {1, 2..., n} has a position
(an opinion) represented by a real number xik. At each time
step k, the agents update their positions by moving to the
average of the positions of all the agents that are within a

fixed distance of R from themselves. This system can be

modeled in the following way:

xik+1 =

P
j

eijk x
j
k

P
j

eijk
(1)
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where

eijk =

T
�z

�Z

1,
¯̄
¯xik � x

j
k

¯̄
¯ � R

0,
¯̄
¯xik � x

j
k

¯̄
¯ > R

The opinion dynamics model has been studied by many

researchers. To name a few, the papers [1] and [5], contain

various results on stability, convergence properties, and/or

qualitative behavior of the system. For instance, it is shown

in [5] that if the number of agents is finite, the state of

every agents xi converges to a limit value xi in finite time,
and that the absolute difference between the limit values of

every two agents is either zero or greater than R. In [1],
the authors introduce the notion of equilibrium stability and

provide a lower bound on the inter-cluster distance between

stable equilibria. They also consider the infinite-dimensional

case where there is a continuum of agents on the real line.

They provide a Lyapunov function which proves that the

infinite-dimensional case does not produce cycles and that

the variation rate decays to zero. Based on these observations,

it is then conjectured that the continuum of agents converges

to an equilibrium. See [6], [2] for more on the infinite-

dimensional case.

In this paper, we first introduce a class of distributed multi-

agent systems. In this class, the agents update their positions

by moving along the gradient of a function which can be

represented as the sum of the minimums of several (possibly

infinite) quadratically symmetric nonnegative functions. That

is:

xik+1 = argmin
u

X

j

�
*(xik,x

j

k)

³
u, xjk

´
(2)

*
¡
xi, xj

¢
= argmin

	;�

�	
¡
xi, xj

¢
(3)

where, � is an index set which can be finite or infinite.

In addition, we require that for all 	 ; �, the quadratic
functions �	 (., .) : R

m × Rm � R be symmetric, and

nonnegative (The nonnegativity constraint can be relaxed

to being bounded from below as we will discuss in more

detail in Section II). Whenever (3) does not define *
¡
xi, xj

¢

uniquely, we pick the smallest index (assuming for simplicity

that it exists), and whenever (2) does not define xik+1
uniquely, we define xik+1 = xik. It is easy to verify that
the opinion dynamics model (1) can be recovered from (2)

by choosing:

� = {1, 2} , �1 (p, q) = (p� q)
2 , �2 (p, q) = R.
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Fig. 1. Krause’s opinion dynamics model (System (1)): Evolution of 200
agents initially distributed uniformly in the interval [0,8]. � = {1, 2} ,
�1 (x, y) = (x� y)

2 , �2 (x, y) = 1.

1 2 3 4 5 6 7 8 9 10
−8

−6

−4

−2

0

2

4

6

time

x

Fig. 2. Krause’s opinion dynamics model (System (1)): Evolution of
200 agents with an initial normal distribution of zero mean and standard
deviation equal to two. � = {1, 2} , �1 (x, y) = (x� y)

2 , �2 (x, y) = 1.

Then we have:

xik+1 = argmin
u

X

j

eijk

³
u� xjk

´2
+
³
1� eijk

´
·R

=

P
j

eijk x
j
k

P
j

eijk
,

where

eijk =

½
1 if * (xi, xj) = 1
0 if * (xi, xj) = 2

Figures 1 and 2 show simulation results for system (1).

Interested readers are referred to [1], [2] for more detailed

discussions about the qualitative behavior of the opinion
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Fig. 3. Evolution of System (2) with 100 agents initially distributed
unformly in the interval [0,4]. � = {1, 2} , �1 (x, y) = (x+ y)2 ,
�2 (x, y) = 3.
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Fig. 4. Evolution of System (2) with 100 agents initially distributed
unformly in the interval [10,20]. � = {1, 2} , �1 (x, y) = (x� y)2 +
0.2xy, �2 (x, y) = 0.1 (x+ y)

2
� 0.08xy + 30.

dynamics model, including the 2R conjecture. Figures 3 and
4 show simulation results for system (2). For the system in

Figure 3, all the agents converge to the same value by time

k = 4. Yet the system does not reach an equilibrium and

produces a limit cycle. For the system in Figure 4, by time

k = 3, all the agents converge to the same value, yet they
keep updating their values until they all converge to zero

asymptotically (Not shown in the picture).

In this paper we provide Lyapunov functions that are

valid along the trajectories of (2). We prove that under some

mild technical assumptions system (2) converges when the

number of agents is finite. We also show that the discrete

analog of a specific Lyapunov function that was previously

proposed for the opinion dynamics model by Blondel et. al.
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[1] can be recovered from our generic Lyapunov function.

Finally, we will discuss the relation between our results and

already existing results, mostly in [2]. In that aspect, we

argue that Lyapunov analysis of neighborhood consensus

algorithms provides a measure for their convergence rate. In

addition, our Lyapunov analysis can be readily extended to

draw conclusions about the behavior of these algorithms in

the infinite-dimensional case, where combinatorial analysis

may not be convenient or applicable.

II. MAIN RESULTS

A. Lyapunov Analysis

We consider a system of n agents. To every agent i ;
{1, 2, .., n} , we associate a real vector xi ; Rm. We will
refer to this vector as the position vector or the value vector

of agent i. At each time step, the agents update their positions
according to (2). In this section, we discuss convergence

of such algorithms and present Lyapunov functions that

support our results. The following Lemma is central to the

development of our results.

Lemma 1: Let � (., .) : Rn×Rn � R be a quadratic form

which satisfies the following properties:

1. � (p, q) = � (q, p) , �p, q ; Rn.

2. � (p,�p) � 0, �p ; Rn.

3. � (p, 0) > 0, �p ; Rn/ {0} .

Define:

� (p) := argmin
q

� (p, q)

Then

� (� (p) , � (p)) � � (p, p) , �p ; Rn.

Proof: The first property implies that � (., .) can be
defined as � (p, q) = pTQp+ qTQq� 2pTRq, where Q and
R are symmetric matrices, and the third property implies that
Q is positive definite. By definition, � (p) = Q�1Rp. Then,
we have:

� (p, p)� � (� (p) , � (p))

= 2pT
£
Q�R�RQ�1 (Q�R)Q�1R

¤
p

= 2pT
£
Q�R�RQ�1R+RQ�1RQ�1R

¤
p

= 2pT
£¡
I �RQ�1

¢
(Q+R)

¡
I �Q�1R

¢¤
p

= 2 (p� � (p))
T
(Q+R) (p� � (p))

= � (p� � (p) ,�p+ � (p)) � 0

where the last inequality follows from property 2.

Remark 1: The Lemma remains valid if � is a quadratic

function which contains linear and/or constant terms. I.e.

� (p, q) := b� (p, q)� 2L (p, q) + c (4)

where b� satisfies properties 1, 2, 3 and L is a symmetric

linear function, i.e. L (p, q) = L (q, p) = LT (q + p) . Since

the proof idea for the general case is the same as the one

presented above, for the sake of brevity, we do not present

the proof in the presence of linear terms. For the rest of

this paper we assume that � (.)’s that satisfy conditions of
Lemma 1, are allowed to have linear and constant terms as

in (4).

Theorem 1: Let xi ; R
m, i ; {1, 2, .., n} represent a

multi-agent system of size n with m-dimensional position
vectors. Let � be a set of indices and �	 (., .) , 	 ; � be a
family of convex quadratic functions, where each �	 satisfies

properties 1, 2, 3 of Lemma 1, or, is possibly a constant.
Let �c 2 � be the set of indices of constant functions:

�	 ; �c, �c	 ; R, s.t. �	 (., .) = c	.

Let the index set �	 and the map * : Rm × Rm � R be

defined by:

�
	 (x, y) = {		 | �		 (x, y) � �	 (x, y) , �	 ; �}

* : (x, y)� min (�	 (x, y)) (5)

Assume that at each time step k, agents update their positions
according to:

xik+1 =

T
��z

��Z

xik, if *
³
xik, x

j
k

´
; �c, �j.

argmin
u

P
j

�
*(xik,x

j

k)

³
u, xjk

´
, otherwise.

(6)

Then, the following function is non-increasing along the

trajectories of (6):

V (xk) =
X

i,j

�
*(xik,x

j

k)

³
xik, x

j
k

´
(7)

Proof: If there exists i such that *(xik, x
j
k) ; �c for

all j, then at time k, agent i does not get influenced by any
of the other agents. Since * (., .) is symmetric, none of the
other agents gets influenced by i. Thus, for time step k, the
movement of all other agents can be isolated from that of

i. Moreover, since �
*(xi

k
,x
j

k
) is a constant for all j, and �	

is convex for all 	, the minimum at the next step cannot

increase and we necessarily have:

�
*(xik+1,x

j

k+1)
� �

*(xik,x
j

k)
, �j

Therefore, the overall contribution of agent i in V (xk) �
V (xk+1) is nonnegative as desired. We can repeat this
argument for all such agents and isolate them from other

agents which influence (and get influenced by) at least one

other agent. Therefore, without loss of generality, for the

rest of the proof we assume that at every time step k,
and for every agent i, there exists an agent j such that

*
³
xik, x

j
k

´
; �\�c. Notice that x



k+1, 
 ; {1, 2, .., n} can

be written as

x
k+1 = argmin
u


X

ij

�
*(xik,x

j

k)

³
ui, xjk

´
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Thus:

xk+1 = argmin
u

X

ij

�
*(xik,x

j

k)

³
ui, xjk

´

For fixed vectors p, q ; Rn define fpq : R
m × Rm � R

according to:

fpq (x, y) =
X

i,j

�*(pi,qj)
¡
xi, yj

¢

Then, fpq (x, y) satisfies properties 1, 2, 3 of Lemma 1.
Define

z := argmin
u

fpq (u, xk)

Lemma 1 then implies that
X

i,j

�*(pi,qj)
¡
zi, zj

¢
�
X

i,j

�*(pi,qj)

³
xik, x

j
k

´

Since this is true for arbitrary p and q, for p = q = xk we
have

X

i,j

�
*(xik,x

j

k)
¡
zi, zj

¢
�
X

i,j

�
*(xik,x

j

k)

³
xik, x

j
k

´

However, p = q = xk implies that z = xk+1, which
immediately implies that:
X

i,j

�
*(xik,x

j

k)

³
xik+1, x

j
k+1

´
�
X

i,j

�
*(xik,x

j

k)

³
xik, x

j
k

´
(8)

Next, note that by definition:

�
*(xik+1,x

j

k+1)

³
xik+1, x

j
k+1

´
� �

*(xik,x
j

k)

³
xik+1, x

j
k+1

´

Therefore,

P
i,j

�
*(xik+1,x

j

k+1)

³
xik+1, x

j
k+1

´

�
P
i,j

�
*(xik,x

j

k)

³
xik+1, x

j
k+1

´

(9)

The result immediately follows from (8) and (9).

Remark 2: It can be shown in a similar fashion that

V (xk) =
X

i,j

�
*(xik,x

j

k)

³
xik+1, x

j
k+1

´

is also a Lyapunov function for system (6).

Theorem 2: Consider a multi-agent system defined as in

Theorem 1. Define xk =
£
x1k x

2
k · · · x

n
k

¤
. Then, there exists

a vector x	 ; Rm×n such that

lim
k� 

kxk � x
	k = 0,

if the following condition holds:

�	 (p,�p)��	 (0, 0) > 0, �	 ; �\�c, p ; R\ {0} . (10)
Proof: Condition (10) implies that the function

h (x) :=
X

i,j

�*(xi,xj)
¡
xi,�xj

¢

defines a norm in Rn×m. It follows from Theorem 1 and the

proof of Lemma 1 that

V (xk)� V (xk+1)

�
X

i,j

�
*(xik,x

j

k)

³
xik+1 � x

i
k, x

j
k � x

j
k+1

´

= kxk+1 � xkkh

Therefore,
 X

k=0

kxk+1 � xkkh < . (11)

The result then follows from (11). Note that without condi-

tion (10) convergence cannot be guaranteed and the system

may indeed produce a limit cycle (See Figure 3).

Remark 3: It is well-known that for Krause’s opinion

dynamics model convergence happens in finite time when

the number of agents is finite. This need not be true for the

general case. For instance, for the system presented in Figure

4 of Section I, convergence is asymptotic.

We showed earlier that the one-dimensional Krause’s

opinion dynamics model is a special case of System (6) with

� = {1, 2} , �1 (p, q) = (p� q)
2
, �2 (p, q) = R.

Theorem 1 then implies that the function

V (xk) :=
X

i,j

eij

³
xik � x

j
k

´2
+
³
1� eijk

´
R (12)

is non-increasing along the trajectories of (1). Since

�2 (p� p) = 4p2 > 0, Theorem 2 then implies that the

opinions converge to real values. The function (12) is the

discrete analog of the Lyapunov function that Blondel et.

al. obtain in [1] for the infinite-dimensional version of (1),

where there is a continuum of agents on the real line.

This Lyapunov function proves that the infinite-dimensional

system does not produce cycles and that the variation rate

decays to zero [1].

B. Averaging with Arbitrary Weights

In this section we consider a generalized version of

Krause’s opinion dynamics model. In model (1), the agents

put a weight of either 0 or 1 on the opinions of other agents
based on their distance, and use this weighted opinion in

the averaging process. Here, we consider a case where the

weights can be arbitrary as long as they are symmetric and

monotonically non-increasing as a function of the relative

distance.

Corollary 1: Let f : R� R
+ be an even function which

is radially non-increasing. Then, the multi-agent system

defined by

xik+1 :=

P
j

f
³
xik � x

j
k

´
xj

P
j

f
³
xik � x

j
k

´ (13)
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converges.

To prove this corollary we use the following lemma:

Lemma 2: Let � 2 R, and let f : � � R
+ be an even

function which is lower semi-continuous and radially non-

increasing. Then there exists a family of convex quadratic

functions �	, 	 ; �, that satisfy the following properties:

(i) �x (x) � �	 (x) , �x,	 ; �

(ii) f (x) =
d2

dx2
min
	
�	 (x)

Proof: Since f is radially monotonic it is integrable.
Define

�	 (x) = f (	)x
2 �

Z f(	)

f(0)

t2df (t) (14)

Since f is lower semi-continuous �	 (x) is well defined.
Then, we have

�	 (x)� �x (x) = x2 (f (	)� f (x))�

Z f(	)

f(x)

t2df (t)

� x2 (f (	)� f (x))�

Z f(	)

f(x)

x2df (t)

= 0

where the last inequality follows from the fact that f (.) is
radially non-increasing and even. The first property is thus

satisfied. The second property follows from the first property

and the definition of �	 (.) .
Remark 4: If f is constant over an interval [a, b), then

�	 (x) = �a (x) , �	, x ; [a, b). Therefore, if f is piecewise
constant with finitely many points of discontinuity, then a

finite family of quadratic functions �	, 	 ; D�{0} satisfies
the conditions of Lemma 2, where D 2 � is the set of all
discontinuities of f over the positive real line.
We can now present a proof of Corollary 1.

Proof: [of Corollary 1] With � defined as in (14), define:

�	 (p, q) = �	 (p� q)
2 .

The update law (13) can then be written as:

xik+1 = argmin
u

X

j

�
*(xik,x

j

k)

³
u, xjk

´

By construction, the family of functions �	 satisfy (10) for

all 	. Theorem 2 then yields the claimed result.
Remark 5: Recent results by Hendrickx [2] (Theorem 9.4)

can in principle be used to prove the statement of Corollary

1. The advantage of our result is in providing a specific

Lyapunov function which can be used for quantifying the

convergence rate of the algorithm and in addition, can be

extended to the infinite-dimensional case.

III. MULTI-DIMENSIONAL CASE

We now investigate the dynamics of system (6) in higher

dimensions (m > 1). For simplicity, consider the case where
|�| = 3 with two quadratic functions and a constant. The

0 1 2 3 4 5 6
0

1

2

3

4

5

6

x

y

Fig. 5. Evolution of system (2) with 800 agents initially distributed
randomly in the box [0, 6]2. Simulation time: k = 0, ..60. The system
data is given in (15).

derivations will be similar when |�| > 3. An interesting case
to consider would be when the agents update their positions

based on their relative distance. Consider:

� = {1, 2, 3} , �1 (p, q) = (p� q)
T
S1 (p� q) ,

�2 (p, q) = (p� q)
T S2 (p� q) , �3 (p, q) = 1.

where p, q ; Rm, and S1 and S2 are symmetric positive-
definite matrices. Specifying the position of each agent i at
time k with an m-dimensional coordinate vector cik we
obtain:

cik+1 = �
i�1

k

X

j

³
eijk S1 + v

ij
k S2

´
cjk,

�
i
k =

X

j

eijk S1 + v
ij
k S2

where

eijk =

(
1, *

³
cik, c

j
k

´
= 1

0, otherwise
, vijk =

(
1, *

³
cik, c

j
k

´
= 2

0, otherwise

Figure 5 shows simulation results in R2 with

S1 =

}
1 �0.996

�0.996 1

¸
, S2 =

}
1 0.996

0.996 1

¸
.

(15)

Figure 6 shows simulation results in R2 with

S1 =

}
1 �0.996

�0.996 1

¸
, S2 =

}
0.004 0
0 1.996

¸
.

(16)

Another interesting case to consider in R2 is:

� = {1, 2} , �1 (p, q) = (p� q)
T S1 (p� q) , �2 (p, q) = 1.
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Fig. 6. Evolution of system (2) with 400 agents initially distributed
uniformly in the box [0, 2]2. Simulation time: k = 0, ..60. The system
data is given in (16).
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Fig. 7. The level sets of the quadratic functions of the system in Figure
5. (S1 in red and S2 in blue) The shape and the direction of the level sets
determines the movement of agents.
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Fig. 8. The level sets of the quadratic functions of the system in Figure
6. (S1 in blue and S2 in red) The shape and the direction of the level sets
determines the movement of agents.

It can be verified that this case leads to a simple averaging

of the x and y coordinates of the neighbors independently.
The measure of the distance would be quadratic norm in R2

defined by the positive-definite matrix S1. The function

V (ck) :=
X

i,j

eijk

°°°cik � cjk
°°°
2

S1

+ 1� eijk

is a Lyapunov function, where:

kvk
2
S1

: = vTS1v, ck := [xk; yk]

eijk = 1, if
°°°cik � cjk

°°°
2

S1

� 1, and eijk = 0 otherwise.

IV. CONCLUSIONS

We showed that a well-studied model of multi-agent

dynamical systems, known as the opinion dynamics model,

is a special case of a larger class of neighborhood consensus

algorithms. Within this class, the agents move along the gra-

dients of a particular function, which can be represented as

the sum of the minimums of several quadratically symmetric

convex functions. Simulation results for one and two di-

mensions show that such algorithms exhibit very interesting

dynamics. We presented a generic Lyapunov function which

is non-increasing along the trajectories of systems within

the class, and we showed that under some mild technical

assumptions, such systems converge when the number of

agents in the system is finite. We used Lyapunov function

analysis to prove that the one-dimensional opinion dynamics

model remains convergent under an arbitrary weight function

which is symmetric and radially non-increasing. Recent

results by Hendrickx [2] (Theorem 9.4) can be used to prove

the same statement via combinatorial analysis of the system

behavior. However, our Lyapunov function can be used to

provide a quantified measure of the system behavior which

is particularly convenient when extensions of the analysis to

the infinite-dimensional case is considered.
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