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Abstract— This paper derives a stable multivariable model
reference adaptive control (MRAC) scheme for systems with
abrupt parameter variations (which may cause uncertain sign
changes in the system’s high frequency gain matrix), motivated
by the application to in-flight aircraft systems with damages.
Such sign changes are illustrated by an aircraft model with
asymmetric abrupt damages, and their uncertainty is handled
by a Nussbaum gain based adaptive control design to control the
aircraft for both healthy and post-damage situations, by adapt-
ing controller parameters autonomously after the damages
occur, for which the knowledge of time instants, structures and
values of the damages is not required. A piecewise continuous
Lyapunov function is utilized to prove the desired system
stability and tracking properties in the presence of damages.

I. Introduction

Aircraft safety under structural damages has been one

of the major foci in the research of aircraft flight control.

Aircraft structural damages may cause unknown changes to

aircraft mass distribution and aerodynamic features. Under

asymmetric damages, the assumption of mass symmetry

about x-z plane in aircraft body frame in standard aircraft

modeling is no longer valid, and new aircraft modeling and

control techniques are needed. Reference [11] presents a

study on the aircraft dynamics with partial losses of left wing,

vertical, and horizontal stabilizers. A neural network based

adaptive control algorithm is introduced for the control of

aircraft in the presence of structure uncertainties of asymmet-

ric damages. In [2], motion equations are introduced in detail

for aircraft with asymmetric mass loss. Simulation results are

presented for the comparison between the developed motion

equations and standard equations. In [7], we introduce a

nonlinear aircraft model with partial wing damage, and the

linearization of such an aircraft model is illustrated. In [6],

the real time identification of a damaged aircraft model is

studied. A hybrid adaptive control method is given in [10],

applied to aircraft with damages, using a neural network

based estimation scheme.

In [9], we introduced a multivariable model reference

adaptive control (MRAC) design based on the LDS decom-

position of the high frequency gain matrix for the control

of aircraft with multiple wing damages. One of the key

design conditions is that, all the nominal and post-damage

systems have a uniform known modified interactor matrix

and the leading principal minors of their high frequency gain

matrices should be nonzero with unchanging signs. Such a

condition can be satisfied for some cases as studied in [9],

for which a standard MRAC design is applicable.

In this paper, we study the aircraft damage cases when

such a design condition may not be satisfied. Under certain

damage conditions, the leading principal minors of the high

frequency gain matrix may change signs after a damage and

such changes are generally uncertain. To handle such cases,

a multivariable MRAC scheme needs to be designed with

relaxed requirement on the sign knowledge of the high fre-

quency gain matrix. For multivariable MRAC, the LDS, LDU

or SDU decomposition of the high frequency gain matrix

can be used to relax the knowledge of such a matrix [4],

[12]. When the sign knowledge cannot be incorporated in the

design of adaptive laws, the Nussbaum gain method is usu-

ally employed. In [3], a Nussbaum gain based multivariable

MRAC design is proposed based on LDU decomposition

of the high frequency gain matrix. In this paper, a similar

approach will be utilized to develop an LDS decomposition

based MRAC scheme incorporated with Nussbaum gains, to

relax the assumption on the sign information of the high

frequency gain matrix. As our new contributions, we give

a complete design and stability analysis for the Nussbaum

gain based multivariable MRAC scheme, and apply it to

adaptive flight control of aircraft with damages. It may be

interesting to note that an LDS decomposition based MRAC

design employs a simpler controller structure than that of an

LDU decomposition based design, while the latter has less

parameters to update. This MRAC scheme redesigned with

Nussbaum gains will be applied to the linearized aircraft

model with successive asymmetric wing damages.

The paper is organized as follows. In Section II, we briefly

introduce the model of aircraft with damages and the research

motivation. In Section III, we formulate the problem of

MRAC of damaged aircraft. Key design conditions will be

specified, and a numerical case study will be presented. In

Section IV, we illustrate the design of the Nussbaum gain

based multivariable MRAC scheme for control of aircraft

with damages. The adaptive control design ensures the

closed-loop stability and asymptotic output tracking under

damage conditions, which is shown using a piecewise con-

tinuous Lyapunov function.

II. Motivation

For the effective control of damaged aircraft, a model that

describes the aircraft dynamics under asymmetric damages

is essential. In this section, we will first introduce such a

model, then illustrate the damage effects on the system high

frequency gain matrix, which motivate our research work.
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A. Modeling of Aircraft with Damages

In [2], a detailed study on the motion of the damaged

asymmetric aircraft is addressed. The nonlinear model of

aircraft with asymmetric damages can be expressed as

M̄ẋ = f(x, U), (1)

where x is state vector, U is the control vector, and

f(x, U) = [f1(x, U), f2(x, U), . . . , f9(x, U)]T consists of

the force and moment equations of the aircraft model and

the kinematic equations [1], and

M̄ =

[

M̄11 M̄12

M̄21 M̄22

]

. (2)

The matrix M̄ would be decoupled block-wise when there

is no damages, i.e., M̄12 and M̄21 are zero. When damages

occur, the aircraft center of gravity will shift (with its

coordinates in the body frame denoted as ∆x, ∆y, and ∆z),

and the inertia products Ixy and Iyz will change from zero in

standard aircraft modeling to nonzero due to the asymmetric

mass distribution after damages. After damages, some of the

above nonzero terms will appear in M̄12 and M̄21 making it a

coupled matrix, which shows that the longitudinal and lateral

dynamics become coupled under such conditions. The above

terms also appear in M̄11 and M̄22 when damages occur.

The linearization of the aircraft model under asymmetric

damages is preformed following the same procedure of small

perturbation linearization used in [8]. The equilibrium is

chosen to be a rectilinear wing-level flight condition, which

can include straight horizontal, ascending, or descending

flight. The state and control vectors are chosen as

x= [u w q θ v r p φ ψ ]
T

(3)

U = [ δe δtl δtr δa δr ]
T

(4)

where the notation “δ” has been dropped from δx and δU

for simplicity of presentation. Here u, v, and w represent the

velocity perturbations along body axes, p, q and r are the

angular velocity perturbations, θ, φ and ψ are the pitch, roll

and yaw angle perturbations, and δe, δa, δr are the deflection

perturbations of the elevator, aileron and rudder. δtl and δtr
are the left and right throttle perturbations.

The linearized aircraft model can be obtained as

M̄ẋ = Āx+ B̄U

=

[

A
(1)
4×4 A

(2)
4×5

A
(3)
5×4 A

(4)
5×5

]

x+

[

B
(1)
4×3 B

(2)
4×2

B
(3)
5×3 B

(4)
5×2

]

U, (5)

where A(2) and B(2) are zero, and

A
(1)

=







∂f1

∂u

∂f1

∂w

∂f1

∂q
−g cos θo

∂f2

∂u

∂f2

∂w

∂f2

∂q
−g sin θo

∂f3

∂u

∂f3

∂w

∂f3

∂q

∂f3

∂θ

0 0 1 0







, A
(3)

=









0 0 0 0
∂f6

∂u

∂f6

∂w

∂f6

∂q

∂f6

∂θ

0 0
∂f7

∂q

∂f7

∂θ
0 0 0 0

0 0 0 0









,

A
(4)

=











∂f5

∂v

∂f5

∂r

∂f5

∂p
g cos θo 0

∂f6

∂v

∂f6

∂r

∂f6

∂p

∂f6

∂φ
0

∂f7

∂v

∂f7

∂r

∂f7

∂p

∂f7

∂φ
0

0 tan θo 1 0 0

0
1

cos θo
0 0 0











, B
(1)

=







∂f1

∂δe

∂f1

∂δtl

∂f1

∂δtr
∂f2

∂δe
0 0

∂f3

∂δe

∂f3

∂δtl

∂f3

∂δtr

0 0 0







,

B
(3)

=









0 0 0

0
∂f6

∂δtl

∂f6

∂δtr

0
∂f7

∂δtl

∂f7

∂δtr

0 0 0

0 0 0









, B
(4)

=











∂f5

∂δa

∂f5

∂δr
∂f6

∂δa

∂f6

∂δr
∂f7

∂δa

∂f7

∂δr

0 0

0 0











. (6)

The derivatives in Ā and B̄ are subject to uncertain

changes due to the unknown changes to aircraft mass,

aerodynamic forces and moments due to wing damages.

So the linearized aircraft model can be re-expressed as

ẋ = M̄−1Āx+ M̄−1B̄U, (7)

with M̄−1Ā
△
= A and M̄−1B̄

△
= B. For the interest of

conciseness, the explicit expressions of the derivatives in A

and B are not shown in the paper.

B. Damage Effects

Since certain elements in Ā, B̄, and M̄ have uncertain

and abrupt changes when damages occur, it can be seen

that system matrices A and B will have uncertain changes

due to the variations of aircraft mass, mass distribution,

and aerodynamic characteristics after damages. Different to

standard decoupled aircraft model, the linearized aircraft

model under damages is a coupled one, with coupling terms

changing from zero to nonzero when damages occur.

When system matrices A and B have uncertain changes

due to damages, the high frequency gain matrix of aircraft

system may also have uncertain structural variations with the

signs of its principal minors changed. This is verified by a

numerical example presented in Section III.B. When such

damage conditions occur, an adaptive control design which

does not require the sign information of the high frequency

gain matrix is needed, which will be developed in the next

sections.

III. Problem Formulation

In this section, we shall formulate the problem of mul-

tivariable adaptive control of aircraft with damages. The

design conditions for a multivariable MRAC design based

on Nussbaum gain will be specified. A numerical case study

will be presented to show that in certain damage situation,

the relaxation of the assumption on the sign knowledge of

the high frequency gain is necessary.

A. System Description

We consider a linear system of the form

ẋ(t) = Ax(t) +Bu(t), y(t) = Cx(t) (8)

where A ∈ Rn×n, B ∈ Rn×m, and C ∈ Rm×n are unknown

parameter matrices, x(t) ∈ Rn, u(t) ∈ Rm and y(t) ∈ Rm

are the state, input and output vectors. To represent an aircraft

model, we let A and B be expressed as

A = A0 + ∆A, B = B0 + ∆B (9)

where A0 and B0 are the nominal parameter matrices for

the aircraft dynamics without damages, and ∆A and ∆B
contain the unknown coupling terms and derivative changes

caused by damages to the aircraft.

47th IEEE CDC, Cancun, Mexico, Dec. 9-11, 2008 WeB03.6

2601



The objective is to design a control vector signal u(t) such

that the plant output y(t) tracks a given reference output

ym(t) = Wm(s)[r](t) ∈ Rm (10)

for a stable m × m transfer matrix Wm(s) and a bounded

reference signal r(t) ∈ Rm, despite the uncertain damages.

For control design, we make the following assumptions:

(A0): the parameter matrices A, B and C are piecewise

constant, with a finite number of unknown and constant

jumps (Ai, Bi, Ci), i = 1, 2, . . . ,N .

For each value (Ai, Bi, Ci) of (A,B,C), we define the

transfer matrix Gi(s) = Ci(sI −Ai)
−1Bi and assume:

(A1): All zeros of Gi(s) are stable. (A2): An upper bound

ν̄ on the observability index of Gi(s) is known. (A3): Gi(s)
is strictly proper with full rank and has a known modified

interactor matrix ξm(s) such that lims→∞ ξm(s)Gi(s) =
Kpi, the high frequency gain matrix of Gi(s), is finite and

non-singular. (A4): Wm(s) = ξ−1
m (s). (A5): All leading

principal minors of the matrix Kpi are nonzero.

Assumption (A1)–(A4) are some basic assumptions for

multivariable MRAC design. For MRAC, the plants need to

be minimum phase systems. This condition could be satisfied

for some aircraft systems. The need of the uniform ξm(s) of

Gi(s) is to show how a multivariable MRAC scheme can

be used to handle the system piecewise-constant parameter

variations which can occur in aircraft systems with damages.

Differing from that in [9], Assumption (A5) is largely relaxed

and does not require that the signs of all leading principal

minors of Kpi to be known and remain the same.

B. Discussion on Assumption (A5)

To illustrate the necessity of the relaxation of the assump-

tion on the sign knowledge, we conduct a numerical study on

a linearized model of a large transport aircraft. To simplify

the analysis, we use a further simplified aircraft model

introduced in [9]. Such a model is obtained by assuming that

the center of gravity shift is small and the angular velocities

are within a neighborhood of zero. The engine settings are

assumed to be identical, so only one δt command is present.

For the aircraft without damages, A(2), A(3), B(2), and B(3)

are zero matrices, and the other system matrices are

A
(1)

=





−0.0058 0.0523 −28.8870 −32.1450
−0.0003 −0.6796 776.4800 −1.1959
0.0021 −0.0048 −0.7694 0

0 0 1 0



 ,

A
(4)

=









−0.1290 −774.9200 28.3280 32.1450 0

0.0040 −0.1757 −0.0409 −0.0001 0

−0.0120 0.9409 −1.4419 −0.00001 0

0 0.0372 1 0 0

0 1.0007 0 0 0









,

B
(1)

=





3.6982 × 10
−4

−7.1163 × 10
−8

6.2477 × 10
−6

0



 , B
(4)

=









0.4669
−0.0382
0.01998

0

0









. (11)

The control inputs are engine throttle δt and rudder δr. The

system outputs are pitch angle θ and yaw angle ψ.

This plant is a minimum phase system with an ob-

servability index of 5. The interactor matrix ξm(s) can

be chosen as ξm(s) = diag{s2 + s + 1, s2 + s + 1}
yielding a nonsingular high frequency gain matrix Kp1 =
diag{6.2477 × 10−6,−0.03822}, whose leading principal

minors are 6.2477×10−6 and −2.3876×10−7 respectively.

The seemingly small values are due to the physics of the

aircraft model, and should not be considered as trivial.

When unknown damages occurs, the derivatives in (5)

have unknown changes and nonzero coupling terms also

appear. To characterize such damage effects, we vary the

derivatives in the above numerical model up to 40% of

their nominal values. The first, second, and fourth rows of

A(2) are all chosen as zero, and the third row is chosen as

[0.01,−0.02, 0.01,−0.02, 0]. The first, fourth, and fifth rows

of A(3) are zero, and its second and third rows are chosen

as [−0.02,−0.02, 0.01,−0.04] and [−0.01, 0.01, 0.03, 0.04]
respectively. We also choose B(2) = [0, 0, 0.001, 0]

T
and

B(3) = [0,−0.01, 0.001, 0, 0]T . For this system with deriva-

tive changes, we can verify that it is still a minimum

phase system with an observability index of 5. The previous

modified interactor matrix is valid for this system with a

nonsingular high frequency gain matrix

Kp2 =

[

8.7468× 10−6 0.001
−0.010007 −0.0535

]

(12)

whose leading principal minors are 8.7467 × 10−6 and

9.5390 × 10−6 respectively. It can be seen that the second

leading principal minors of Kp1 and Kp2 (i.e., their deter-

minants) have different signs.

Next we shall have a further discussion on the signs of

leading principal minors for this numerical model. For this

damaged aircraft system, it can be verified that all the transfer

functions in G(s) have a relative degree of 2. Based on linear

system theory, we can determine the high frequency gain

matrix of this system as Kp2 = CAB + αn−1CB, where

αn−1 is the coefficient of sn−1 in det(sI −A). Noting that

CB = 0 for this system, we have

Kp2 = CAB =

[

8.7468× 10−6 B
(2)
3

1.0007B
(3)
2 −0.03823

]

, (13)

where B
(2)
3 is the third element of B(2), and B

(3)
2 is the

second element of B(3). More specifically, B
(2)
3 represents

the influence of rudder to pitch rate and B
(3)
2 is the effect

of engine thrust to yaw rate. Such coupling terms are due to

the shift of the center of gravity under asymmetric damages.

Next, as an example, we fix the coupling values in A(2),

A(3), and B
(2)
3 , and determine the condition on B

(3)
2 (i.e.,

effect of engine thrust to yaw rate) for the determinant of

Kp2 to change its sign.

Note that the determinant of Kp1 is negative for the

nominal system, and the determinant of Kp2 would be

positive if the following inequality is satisfied:

B
(2)
3 B

(3)
2 < −3.3413× 10−7. (14)

From (14), we can obtain that for the chosen B
(2)
3 = 0.001,

the determinant of Kp2 would be positive as long as B
(3)
2 <
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−0.0003341. Taking into consideration that the system must

have stable zeros for an MRAC design, we can see by

numerical tests that the damaged system is minimum phase

with a positive determinant of Kp2 when B
(3)
2 < −0.001804.

The physical meaning is that for this chosen numerical

example, the determinant of the high frequency gain matrix

would change its sign when the effect of the engine thrust

to the yaw rate is large enough to the negative direction of

z body-axis, that is, the shift of the center of gravity to the

negative direction of y body-axis is large enough after an

asymmetric damage.

The above numerical example shows that the signs of the

leading principal minors of the high frequency gain matrix

may change under certain damage conditions.

IV. Multivariable MRAC Design and Analysis

In this section, we demonstrate the design of an LDS

decomposition based multivariable model reference adap-

tive control scheme for aircraft with damages, with the

incorporation of Nussbaum gains. With such a design, a

priori knowledge of the high frequency gain matrix can be

relaxed. The closed-loop stability and asymptotic tracking

properties are demonstrated in the stability analysis using a

discontinuous Lyapunov function.

A. Plant-Model Matching Controllers

For model reference adaptive control design, we first

define a nominal model reference controller which achieves

the desired control objective when the system parameters A,

B and C are known. Parameters of this controller, which are

unknown, will be used in constructing an error model needed

for adaptation of an adaptive controller.

Since the system parameters (A,B,C) may take any of

(Ai, Bi, Ci), i = 1, 2, . . . ,N , there is a set of such nominal

controllers, and each of them has the structure

u∗(t)= Θ∗T
1 ω1(t)+Θ∗T

2 ω2(t)+Θ∗
20y(t)+Θ∗

3(t)r(t) (15)

where ω1(t) = F (s)[u](t), ω2 = F (s)[y](t), F (s) =
AF (s)
Λ(s) , AF (s) = [I, sI, . . . , sν̄−2I]T , Λ(s) is a monic stable

polynomial of degree ν̄ − 1, with the upper bound ν̄ on

the observability indices of Gi(s). The nominal parameters

Θ∗
1 = [Θ∗

11, . . . ,Θ
∗
1ν̄−1]

T , Θ∗
2 = [Θ∗

21, . . . ,Θ
∗
2ν̄−1]

T , Θ∗
20,

Θ∗
3, Θ∗

ij ∈ Rm×m, i = 1, 2, j = 1, . . . , ν̄ − 1, are for plant-

model matching, and are derived next.

We first introduce the following notation:

Gi(s)=Ci(sI−Ai)
−1Bi=Zi(s)P

−1
i (s) (16)

for some m ×m right coprime polynomial matrices Zi(s)
and Pi(s) with Pi(s) being column proper, i = 1, 2, . . . ,N .

With the specification of Λ(s), ξm(s), Pi(s), Zi(s), there

exist Θ∗
1, Θ∗

2, Θ∗
20, Θ∗

3 = K−1
pi such that

Θ∗T
1 AF (s)Pi(s) + (Θ∗T

2 AF (s) + Λ(s)Θ∗
20)Zi(s)

= Λ(s)(Pi(s) − Θ∗
3ξm(s)Zi(s)). (17)

Since Λ(s) and Zi(s) are stable, we have the plant-model

transfer matrix matching equation

I − Θ∗T
1 F (s) − Θ∗T

2 F (s)Gi(s) − Θ∗
20Gi(s)

= Θ∗
3W

−1
m (s)Gi(s) (18)

from which the plant-model matching parameters Θ∗
1, Θ∗

2,

and Θ∗
20 can be determined with Θ∗

3 = K−1
pi . For each

(Ai, Bi, Ci), i = 1, 2, . . . ,N , we can determine a set of

constant parameters Θ∗
j , j = 1, 2, 20, 3, so that the plant-

model matching parameters Θ∗
j are piecewise constant.

B. Adaptive Control Scheme

To design the adaptive control scheme, we first introduce

the LDS decomposition of the high frequency gain matrix.

Then we develop a model reference adaptive control design

based on the Nussbaum gain method, which further relaxes

the requirement on the knowledge of the signs of the leading

principal minors of the high frequency gain matrix. The de-

sired stability and tracking properties will be demonstrated.

LDS decomposition of Kp [4], [12]. Let ∆j , j =
1, 2, . . . ,m, denote the leading principal minors of the high

frequency gain matrixKp ∈ Rm×m and assume that ∆j 6= 0,

j = 1, 2, . . . ,m. The gain matrix Kp then has a non-unique

decomposition

Kp = LsDsS, (19)

where S ∈ Rm×m is a symmetric and positive definite

matrix, Ls is an m×m unit lower triangular matrix, and

Ds = diag{d1, d2, . . . , dm}

= diag{sign[∆1] , sign

[

∆2

∆1

]

, . . . , sign

[

∆m

∆m−1

]

}. (20)

It is important to note that different Kpi can have different

Ds with different signs for their elements.

Adaptive controller. When plant parameters are uncer-

tain, the controller parameters Θ∗
1, Θ∗

2, Θ∗
20, Θ∗

3 are also

unknown. The adaptive version of (15) is

u(t)=ΘT
1 (t)ω1(t)+ΘT

2 (t)ω2(t)+Θ20(t)y(t)+Θ3(t)r(t) (21)

where Θ1(t), Θ2(t), Θ20(t), and Θ3(t) are estimates of Θ∗
1,

Θ∗
2, Θ∗

20, and Θ∗
3, and will be adaptively updated.

Error dynamics. From the plant-model transfer matrix

matching equation (18), for any u(t), we have

u(t)−Θ∗T
1 ω1(t)−Θ∗T

2 ω2(t)−Θ∗
20y(t)=Θ∗

3W
−1
m (s)[y](t), (22)

from which, together with the reference model (10) and

Assumption (A4), we obtain

Kp

(

u(t)−Θ∗T
1 ω1(t)−Θ∗T

2 ω2(t)−Θ∗
20y(t)−Θ∗

3r(t)
)

=ξm(s)[y − ym](t). (23)

With the LDS decomposition in (19), we express (23) as

DsS
(

u(t)−Θ∗T
1 ω1(t)−Θ∗T

2 ω2(t)−Θ∗
20y(t)−Θ∗

3r(t)
)

=L−1
s ξm(s)[y − ym](t). (24)

From (24) and the adaptive controller (21), we can have

ξm(s)[y−ym](t)+Θ∗
0ξm(s)[y−ym](t)=DsSΘ̃T(t)ω(t), (25)
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where Ds is in (20), S = ST > 0 in (19), Θ̃(t) = Θ(t)−Θ∗

with Θ(t) being the estimate of Θ∗ = [Θ∗T
1 ,Θ∗T

2 ,Θ∗
20,Θ

∗
3]
T ,

ω(t) = [ωT1 (t), ωT2 (t), yT (t), rT (t)]T , and Θ∗
0 = L−1

s − I .

Choose f(s) as a stable and monic polynomial whose degree

is equal to the maximum degree of the modified interactor

matrix ξm(s), introduce the filter h(s) = 1
f(s) , and define

the filtered tracking error

ē(t) = ξm(s)h(s)[e](t) = [ē1(t), . . . , ēm(t)]T (26)

with e(t) = y(t) − ym(t). Operating both sides of (25) by

h(s)Im leads to

ē(t) = −Θ∗
0ē(t) + Ψ∗h(s)[Θ̃Tω](t), (27)

with Ψ∗ △
= DsS, which is nonsingular and symmetric.

We also define

ξ(t) = ΘT (t)ζ(t) − h(s)[ΘTω](t), (28)

ζ(t) = h(s)[ω](t), (29)

from which we have

h(s)[Θ̃Tω](t) = h(s)[(Θ − Θ∗)Tω](t)

= h(s)[ΘTω](t) − Θ∗Th(s)[ω](t)

= ΘT (t)ζ(t) − ξ(t) − Θ∗T ζ(t). (30)

Thus (27) can be re-written as

ē(t) = −Θ∗
0ē(t) + Ψ∗(ΘT (t)ζ(t) − ξ(t) − Θ∗T ζ(t))

= Ψ∗(−Θ∗
mē(t)−Θ∗T ζ(t)+ΘT (t)ζ(t)−ξ(t)), (31)

with Θ∗
m

△
= Ψ∗−1Θ∗

0. Note that the last column of Θ∗
0

is always zero, so is that of Θ∗
m. Thus we define Θ∗

s ∈
Rm×(m−1) that contains the first m−1 columns of Θ∗

m, and

ēs(t) = [ē1(t), . . . , ēm−1(t)]
T ∈ Rm−1, (32)

from which we have

ē(t)=Ψ∗(−Θ∗
s ēs(t)−Θ∗T ζ(t)+ΘT (t)ζ(t)−ξ(t)). (33)

Based on (33), we define

ê(t) = NΨ(t)(−Θsēs(t)−ΘT ζ(t)+ΘT (t)ζ(t)−ξ(t)) (34)

where N = diag{N1(z1), N2(z2), . . . , Nm(zm)} with the

functions Ni(zi), i = 1, 2, . . . ,m, being the Nussbaum gains

accounting for the unknown signs of the leading principal mi-

nors of Kp. The definitions of Ni(zi) and zi, i = 1, 2, . . . ,m,

will be introduced next. Θs ∈ Rm×(m−1) is the estimate of

Θ∗
s . Note that Ψ is not the estimate of Ψ∗ = DsS, but the

estimate of S.

Based on (33) and (34), we define the estimation error

ǫ(t) = [ǫ1(t), ǫ2(t), . . . , ǫm(t)]T as

ǫ(t) =
1

m2(t)
(ē(t) − ê(t)). (35)

Thus we have

ǫm2 =Ψ∗(−Θ∗
sēs(t) − Θ∗T ζ(t) + ΘT (t)ζ(t) − ξ(t))

−NΨ(−Θsēs(t) − ΘT ζ(t) + ΘT (t)ζ(t) − ξ(t))

=Ψ∗(Θ̃sēs(t) + Θ̃T ζ(t)) −NΨξs(t) + Ψ∗ξs(t) (36)

where

Θ̃s(t) = Θs(t) − Θ∗
s, (37)

ξs(t) = −Θsēs(t) − ξ(t), (38)

m2(t) = 1 + ēTs (t)ēs(t) + ζT (t)ζ(t) + ξTs (t)ξs(t). (39)

Adaptive laws. We choose the adaptive laws

Θ̇s(t) = N ǫ(t)ēTs (t), (40)

Θ̇T (t) = N ǫ(t)ζT (t), (41)

Ψ̇(t) = N Γψǫ(t)ξ
T
s (t), (42)

where Γψ = diag{γψ1, . . . , γψm}, with γψi positive, i =
1, . . . ,m.

Nussbaum gains. Note that the estimation error equation

in (36) is similar to the parametric model of the SISO

Nussbaum design in [5], and the Nussbaum gains Ni(zi),
i = 1, . . . in N can be generated as below:

Ni(zi) = z2
i cos zi (43)

where

zi(t) = wi(t) +
ΨiΨ

T
i

2γψi
, (44)

ẇi(t) = ǫ2im
2, wi(0) = 0, (45)

with Ψi being the ith row of Ψ.

Stability analysis. To demonstrate the stability of the

closed-loop system, we choose a piece-wise continuous Lya-

punov function. Based on Assumption (A0), there are N −1
finite jumps due to the damages, and totally N choices of

(Ai, Bi, Ci). Assuming that the asymmetric damage occurs

at time instant tj , j = 1, 2, . . . ,N − 1, we choose the

following Lyapunov-like function

V =
1

2
tr[Θ̃T

s SΘ̃s] +
1

2
tr[Θ̃SΘ̃T ] (46)

for time intervals (tj−1, tj), j = 1, . . . ,N , with t0 = 0 and

tN = ∞. Due to the changes of system parameters after the

damages (which are finite), and the finite jumps of nominal

parameters, there would be a finite jump of V for each jump

of system parameters (Ai, Bi, Ci), i.e.,

V (t+j ) − V (t−j ) <∞, j = 1, 2, . . . ,N − 1. (47)

From (36), the adaptive laws (40)–(42), we can obtain

V̇ =

m
∑

i=1

d−1
i Ni(zi)(ǫ

2
im

2+γ−1
ψi ΨiΨ̇

T
i )−

m
∑

i=1

γ−1
ψi

m
∑

j=1

ψ̇ijsij

=

m
∑

i=1

d−1
i Ni(zi)żi −

m
∑

i=1

γ−1
ψi

m
∑

j=1

ψ̇ijsij (48)

for t ∈ (tj−1, tj), where ψij and sij are the jth element of

the vectors Ψi and Si (the ith column of S).

Integrating both sides of (48), we have

V (t) = V (t+j−1) +

m
∑

i=1

d−1
i π

[j−1]
i (t)

−
m

∑

i=1

γ−1
ψi

m
∑

j=1

sij(ψij(t) − ψij(tj−1)), (49)
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where, for any t ∈ (tj−1, tj),

π
[j−1]
i (t) =

∫ zi(t)

zi(tj−1)

Ni(zi)dzi

= 2zi(t) cos zi(t) + (z2
i (t) − 2) sin zi(t)

−2zi(tj−1) cos zi(tj−1) − z2
i (tj−1) sin zi(tj−1)

+2 sin zi(tj−1), (50)

From the definition of zi and wi in (44) and (45), we

know that zi(t) ≥ 0. By observing (50) and the right hand

side of (49), we can see that when zi(t) gets large along

with t, the oscillating terms z2
i (t) sin zi(t), i = 1, . . . ,m,

would dominate. Since V (t) ≥ 0, zi(t) cannot go to infinity.

Otherwise the condition V (t) ≥ 0 may be violated. Thus

zi(t) is bounded for t ∈ (tj−1, tj).
From the definition of zi(t) in (44), we can see that

bounded zi(t) implies bounded Ψ(t) and wi(t). Thus, from

(49) we conclude that V (t) is bounded for t ∈ (tj−1, tj).
Since V (t) is not continuous at instant tj , j = 1, 2, . . . ,N−1
and has only finite jumps at those instants, we can conclude

that V (t) is bounded for t ∈ [0,∞). So we can conclude

that Θs(t) ∈ L∞ and Θ(t) ∈ L∞. The bounded and non-

negative V (t) for t ≥ 0 also implies that zi(t) is bounded

for t ≥ 0. Thus we have wi(t) ∈ L∞ and Ψ(t) ∈ L∞.

For any t ∈ (tj−1, tj), we have

wi(t) =

∫ t

tj−1

ǫ2i (ν)m
2(ν)dν. (51)

Since ǫi(t) and m(t) are continuous, for [0, t) with t > tN−1

(i.e., all damages have occurred), we also have wi(t) =
∫ t

0
ǫ2i (ν)m

2(ν)dν. Given wi(t) ≥ 0 and bounded, we have

lim
t→∞

wi(t) =

∫ ∞

0

ǫ2i (ν)m
2(ν)dν <∞, (52)

which implies that ǫi(t)m(t) ∈ L2. Since m2(t) = 1 +
ēTs ēs + ζT ζ + ξTs ξs, from (52) we obtain
∫ ∞

0

ǫ2i (ν)dν +

∫ ∞

0

ǫ2i (ν)(ē
T
s ēs + ζT ζ + ξTs ξs)dν <∞. (53)

Because the two terms on the left side of (53) are both non-

negative, we have
∫ ∞

0 ǫ2i (ν)dν <∞, leading to ǫi(t) ∈ L2.

From (36), and the facts that ēs

m
∈ L∞, ζ

m
∈ L∞ and

ξs

m
∈ L∞, we have ǫi(t)m(t) ∈ L∞ ∩ L2.

From (40) to (42), ǫi(t)m(t) ∈ L∞ ∩L2, ēs

m
∈ L∞, ζ

m
∈

L∞ and ξs

m
∈ L∞, we can obtain Θ̇s(t) ∈ L2 ∩L∞, Θ̇(t) ∈

L2 ∩ L∞ and Ψ̇(t) ∈ L2 ∩ L∞.

Based on these desired properties, we have

Theorem 1: The MRAC scheme consisting of (21), (40),

(41) and (42), ensures closed-loop signal boundedness and

asymptotic output tracking limt→∞(y(t) − ym(t)) = 0, for

the system (8) satisfying Assumptions (A0)–(A5).

The proof of this theorem can be obtained similarly to

that in [12], based on the well-defined feedback structure

for the closed-loop system with a small loop gain. Such

a feedback structure is developed from the feedback con-

troller with bounded parameters and the controlled plant

with stable zeros. The smallness of its loop gain is ensured

by the L2 properties of the adaptive laws. The asymptotic

tracking property follows from the complete parametrization

of the error equation (36), the L2 properties, and the signal

boundedness of the closed-loop system.

V. Conclusions

In this paper we demonstrated the design of a multivari-

able model reference adaptive controller for aircraft with

damages, without the knowledge of the signs of the leading

principal minors of the high frequency gain matrix. We

introduced the modeling of aircraft dynamics in the presence

of damages, which captures the key characteristics of the

aircraft dynamics under asymmetric damages with the loss of

mass symmetry. An LDS decomposition based multivariable

MRAC scheme is developed with the incorporation of Nuss-

baum gains. For the piecewise linear systems under MRAC,

a discontinuous Lyapunov function is utilized to show that

desired stability and tracking properties are ensured, despite

the jumping system parameter variations. This work shows

that multivariable MRAC designs are potentially useful for

control of aircraft systems with larger classes of damages

and uncertainties. A detailed simulation study of MRAC of

aircraft systems with damages is to be conducted.
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