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Abstract— Traffic congestion is an issue in every major
city. Among many approaches the game theory has presented

feasible solutions. In this paper, a noncooperative approach
which gives rise to a noncooperative game is studied, we
propose to model signalized intersections as finite controlled
Markov chains and a solution to optimize the congestion into
an avenue. Each intersection is seen as noncooperative game
where each player try to minimize its queue, so ǫ−Nash’s
equilibrium and Stackelberbg equilibrium are the solutions.
This paper is focused on the traffic light control problem for
urban traffic, using Game Theory and Extraproximal Method
for its realization. The examples show the effectiveness of the
suggested approach.

I. INTRODUCTION

Among many approaches dealing with the urban intersec-

tions problem, some of them consider isolated intersections

and other consider groups of intersections. The former case

is considered in [1], [2], [3], [4] and [5] the latter case is

talked in [6], [7] [8], [9] and [10].

[1], [2], [4], [3] aim to determine the phases that minimize

the total delay or maximize the intersection capacity. [5]

optimizes the time splits at an intersection using a global

minimization of binary variables on a large horizon.

The synchronization of the lights on several intersections

of a street is done using MAXBAND proposed in [6], [7]

or TRANSYT developed in [8], [9] and [10]. The adaptive

version of TRANSYT: SCOOT, see [11], [12], [10] and [9]

is used worldwide. A more detailed recent review of control

traffic techniques can be found in [13]. The game theory was

used by [14] and [15].

The traffic ligths in Mexico city are controlled using a

cooperative scheme. However, noncooperation drivers, and

a noncooperative behavior between drivers and signals is

frequently observed. Mexico City’s net is constituted by 3076

intersections with traffic lights of which there are 314

conflicting cruises. The main cause of the saturation is the

imbalance between the demand and the supply of services

in the metropolitan area. A detailed description of Mexico

City is presented in [16].

A landmark in noncooperative games is the equilibrium

introduced in [17]. Rosen in a seminal paper [18], intro-

duces the numerical methods to find the noncooperative

constrained Nash equilibrium. The proposed construction

does not require the “Strictly Diagonal Convexity Condition”

as in [18], and use the work of Godoy [19] that deals
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with a multi-participant dynamic (averaged) non cooperative

finite game with constraints where each player has a finite

number of actions and a finite number of states; the complete

information on the corresponding payoff and constraints is

assumed to be available. This paper consider the complete

information case and follows the lead of [20], [21]. Here

the extraproximal method is applied with an additional

regularizing term that permits its convergence to one of Nash

equilibrium points. Each player has a finite number of actions

and a finite number of states. The complete information on

the corresponding payoff and transition matrices is assumed

to be available.

This work is structured as follows, first we present con-

cepts associated with the proposed model, next we define the

game problem, and propose a method to obtain a solution or

ǫ−Nash equilibrium point. After this, the result for an inter-

section with several players is presented with a comparison

to a adaptive control.

II. MARKOV CHAIN MODEL

The simplest intersection is formed by the crossing of two

one-way streets. The vehicle flow is controlled by a two color

light u ∈ 1 ≥ 2
R ≥ 0, where u(1) represents the red light

and u(2) is the green light. At time t, see figure (1), the

total number of cars in the street is xt, the number of cars

entering it is ξt, and the number of cars exiting is νt; the

street has a maximum capacity of n|x+. The dynamics of

the vehicle flow at one street is described by the following

equations
ut = u(1) : red light

x+ : ξ + x +
t t > x

xt+1 =

{

ξ + x : ξ + x ≤ x+
t t t t

ut = u(2) : green light

xt+1 =
x+ : ξ + x − ν > x+

t t t

ξt + xt νt : 0 ξt + xt νt x+

{

− ≤ − ≤
so a street can be seen as a finite capacity FIFO buffer or

queue. We assume that the input flow is a Poisson Process

with parameter λξ . Each control strategy defines a transition

matrix Πut

ji for the controlled Markov chain:
For the red light:

u(1)
Πji = P {xt+1 = i | xt = j ∧ ut = u(1)}

+x −j −λ s
u(1)

Π +ji = δi,x

(

1 −
s

)

+
s!

i−j e−λλs

∑ e λ

=0
+ (1)

x −j e−λλs

+ χ(s 0)
s=0 s!

≥
(

s=0 s!

)

∑ ∑
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Fig. 1. Flow variables.

For green light:
u(2)

Πji = P {xt+1 = i | xt = j ∧ ut = u(2)}
+ +

x −λ
u(2)

(

∑ e λ(x −j+k)

Πji = δi,x+ 1 − Pν =k +
+ t

k=0 (x j + k)!

)

+

−
+

x
[

e−λλ(i−j+k) x +k−j e−λλs

+ Pν
k

∑

=k χ(s 0)
=0 (i − j + k)! t

(

s=

∑

k−j s!
≥

)]

(2)

Associating with the two control strategies P (u1
i ) =

d1
i , P (u2

i ) = d2
i we have:

2
(1) (2)

Πij(d) := π 1
ij · di + πij · d2 = πk k

i ijdi
k=1 (3)

(1) (2)
Πij(d) := π d1

ij i + πji (1

∑

d1
i )· · −

with:

d1
i ≥ 0, d2

i ≥ 0 d1 2
i + di = 1

d = dk
i i=0,... di = (d1

i , d
2
i )

k=1,2
∈ S2

∥ ∥

∥ ∥

where πkl

il,jl
is the transition probability for player l to go

from state j to state i with the control action k and d1
i is the

red light strategy at i − th state.

III. THE GAME DESCRIPTION

The simplest game considers a two one-way-street inter-

section. So the conflict appears when each player wants to

minimize its queue, see figure (2). The extended probability

vector will be used in the payoff function with the constraints

on the behavior in the model. The use of counter-coalition

variables is considered here in order to obtain the equivalent

LPP (Linear Programming Problem) and its solution, i.e., the

Nash equilibrium point, see [17],[18]. For this intersection

Fig. 2. Flow dynamics of the intersection.

we have the following matrices:

First player

Π11 u(1)
i1,j1

= Πji
21 u(2)

Πi1,j1
= Πji

Second player
12 u(1)

Πi2,j2
= Πji

Π22 u(2)
i2,j2

= Πji

Following [22], the individual aim of each player can be

formulated as follows:
n

V1(d) =
∑

i1Pi1(di1 , di2)
i1=1

→ min
k

d 1 2∈S
i1

n (4)
V2(d) = i2Pi2(di1 , di2) → min

k
i =1 d 2

∈S2
2 i2

∑

where for stationary strategies dkk

i (n) = dkk

i and ergodic

Markov chains, see [23] the follow
k

ing identit
k

ies hold

n n 2 2

Pi1(di1 , di2) =
∑ ∑ ∑ ∑

πk1 dk1

i1j1 i1
pi1d

k2

i pi22
i1=1 i2=1 k1=1 k2=1

n n (5)

Pi2(di1 , di2) =
i1=1 i2

2

=1 k

2

πk2 k2 k2

i2j2
di 2

pi1
pi1di 2

1=1 k2=1

∑ ∑ ∑ ∑

A. Model in C-variables

The above problem can be reformulated as linear pro-

gramming problem by replacing the variables used. Set the

variables ck1 and ck2

i i as follow:
1 2

ck1 2

i = dk1 k
i p ck2

i11 1 i2
= di pi2 (6)

2

The allowed strategies will be limited by the constraints

• each vector ck means a stationary mix-strategy and

belongs to simplex S(nk) defined by

ck ∈ Rn·k | ck1

i1
0, ck2

i2
0

S(nk)



n 2

≥
n 2

≥
:=


(7)
ck1 , ck2

i1
= 1 i2

= 1



i1=1 k1=1 i2=1 k2=1



∑ ∑

• The join



t strategy variable c sa

∑

tisfie

∑

s the ergodic



ity con-

straints and belongs to the convex, closed and bounded

set Qerg ⊂ R2 defined as
Qerg := Q1

erg × Q2
erg

Qn := Q1,1 × Q1,2 n,1 n,2
erg erg erg × · · · × Qerg × Qerg



T
 ci1 := (c 2


1, ..., cn) ∈ R |






 2 n
∑

2

ck1 πk1

i =
1 i1,j ck1

1 i1



 (8)




 k1=1 i1

∑

=1 k

∑

1=1







Qn,k
erg :=



















 T
ci2 := (c1, ..., c ) R2


n

2 n 2

∈ |
ck2 = k2πk2

i2 i2,j2
ci2

k2=1 i2=1 k2=1

















∑







For ergodic Markov chains (see [23]) one has

∑ ∑ 









2 2

p =
∑

ck1 1
i1 i > 0 dk1 k

i = ci / ck1

1 1 1 i1
k1=1 k1=1

2 2 (9)

pi2 = ck2 k2

i2
> 0 di2

= ck2

∑

i2
/ ck2

i2
k2=1 k2=1

∑ ∑
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B. Nash Equilibrium

The regularized payoff function V(k) (c) for each player

depends on players strategies that is,

n n
∑ ∑ ∑

2
1) δ 2

δ (c) =
∑

2
(

V i1c
k1ck2

i2
+ ck1

i1
i1=1 i2=1 k1=1 k2=1 2

n n 2 2 (10)
(2)

V (c) = i ck1ck 2
2

δ
+

∥

δ 2 i1 i2

∥

ck2

∥

∥

i1=1 i2=1 k1=1 k2=1 2

∑ ∑ ∑ ∑

Using the stationary mixed strategies

∥

∥ ∥

∥

∑

2 2

dk1 = ck1/ ck1 , k2 k2 k2

i1 i1 i1
di2

= ci2
/ ci2

k =1 k =11 2

each player wants to minimize his penalties

∑

(in this case, the

number of waiting cars) within the associated constraints.

Sure, both aims are in conflict which can be resolved by the

Nash-equilibrium concept.

The Nash equilibrium point c∗ in the case of two players is

given by the matrix c that satisfies:

V cl,∗ 2
, ck δ

+ ck

ck,∗ ∈ Arg min k

ck S(nk)

{

2
∈ (11)| cl

(

,∗, ck ∈

)

Qk
erg

∥

∥

× Q

∥

k

}

l = 1, 2 k = 1, 2 l = k

∥

( )

The uniqueness of the Nash equilibrium point is guaranteed

by the strict concavity condition (see [18], [24]).

C. Joint Loss Function

Following the approach in [18] and [25], let us introduce

the δ-regularized joint Loss function ρδ (c∗, c) defined by

N

ρ c, c∗) := k ∗
δ ( Vδ (c, c )

k=1 )
c⊺

(12
:= cl, ck S Qerg

c∗,⊺ := cl,∗, ck,

∑

∗

∈ ×
S Qerg

(

(

)

∈ ×
for any c ∈ S × Qerg.

)

The fixed point c∗ ∈ S × Qerg is a Nash equilibrium

(see [17]) in a N -person Markov chain game (11) if only if

satisfies the equation

c∗ Arg min ρδ (c, c∗) (13)
c∈S×Q

∈
erg

An equilibrium point c∗ in (13) can be characterized by the

inequality

ρδ (c, c∗) ρδ (c∗, c∗) , δ > 0 (14)≥

Theorem 1 ([25]): A strategy c∗ ∈ S × Qerg is a Nash

equilibrium point (in the sense 11) in N -person finite Markov

chain game (10) if and only if

min ρ (c, c∗δ ) = ρδ (c∗, c∗) , δ > 0 (15)
c∈S×Qerg

D. Extraproximal Procedure for Solving Equilibrium Point

An ”extraproximal method”, applied to resolving convex

static two-person games, is designed and analyzed in [20]

and [21]. Here we will apply it to find a Nash equilibrium

c∗ ∈ S × Qerg, defined by (13), in Markov chain finite

games (8)-(10). The idea of this method, as it may be applied

6

to this problem, consists of the following ”iterative rules”

implementation:

1) The first half-step (prediction):

c̄k
n = arg min

ck S

{

1 ∥ k − k
∥2 (k)

(

k ˆ
c cn + αVδ c , ck

2 n

∈ × Qerg; k = 1, 2; n = 1, . . .

)

}

∥ ∥

(16)

2) The second (basic) half-step:
{

1 ∥ − 2 (k) ˆ
ck
n+1 = arg min ∥ck ck

2 n + αV

ck ∈ S × Qerg; k = 1

∥

(

ck, c̄k
δ n

)

}

∥

, 2; n = 1, . . .
(17)

where
(k) ˆ

V ck, c̄k = V k c̄1,k k k k k̂
δ n δ , c and Vδ c , cn =

V k
(

c1 ck
n, n ,

(

with th

)

e step size

(

α from

)

a certain fi

(

)

xed inte

)

rval

0 < α < α0 and a small enough δ > 0.

Theorem 2 ([20]): Assume that there exists a solution

to problem (13). Then, the sequence cn generated by

the extraproximal method (16)-(17) with the step size
1

α, chosen from the condition
−

0 < α <
√

2C0
(

C0 = max {Ck} , k = 1, N
)

, converges monotonically in

the euclidean norm to a game equilibrium (one

(

of poss

)

ible

solutions), i.e.,

ck
n → ck,∗ as n → ∞

IV. EXPERIMENT RESULTS

We consider the same average flows for both players.

Incoming and outgoing flows (λ1
ξ = λ2

ξ , λ1
νt

= λ1
νt

).

This mean that the transition matric
t

es are id
t

entical for both

players. Since the buffer capacity is x+ = n, we have two n
square matrices. Although we can guess the result, solving

the linear programming problem for the payoff function (10),

the cycle time split that results is

d1
i1

= 0.5 and d2
i1

= 0.5
d1

i2
= 0.5 and d2

i2
= 0.5

This is the Nash equilibrium point for two identical players,

i.e., with equal transition matrices. It assigns the same

time to each participant. This result serves as reference

for intersections with unequal players, i.e., with different

input/output flows.

For the case when x+ = 8, λξt
= 7, λνt

= 4 for one

player and λξt
= 6, λνt

= 7 for the other one, the solution

of the LPP is:

d1 = 0.1571 and d2
i1 i1

= 0.8429
d1 2

i2
= 0.8429 and di2

= 0.1571

This result could be expected since the first section has a

greater load (having a greater input stream and a smaller

output flow) with respect to the second section that has a

smaller load of automobiles.
V. MORE GENERAL INTERSECTIONS

Other kind of intersections can be treated the same way.

We now can consider a blade –a three street intersection–,

see figure (3).
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Fig. 3. Flow dynamics of the three player intersection.

The result for identical players in a blade intersection is:

d1
i1

= 0.6666 and d2
i1

= 0.3333
d1

i2
= 0.6666 and d2

i2
= 0.3333

d1
i3

= 0.6666 and d2
i3

= 0.3333

Notice that we don’t give data of the flows averages (input

and output), because the result will be always the same. For

different players is necessary to set the data: let x+ = 7,

λ1 = 4, λ1 = 5; λ2
ξt νt ξt

= 7, λ2
νt

= 5; λ3 3
ξ = 6, λνt

= 6. The

Nash equilibrium for each player of th
t

is game is found to

be

d1
i1

= 0.9077 and d2
i1

= 0.0923
d1 2

i2
= 0.2140 and di2

= 0.7860
d1

i3
= 0.8783 and d2

i3
= 0.1217

This result could also be expected since the first player is

under saturated (λ1
ξt

< λ1
νt

) therefore its strategy for green

light d2
i1

is the smallest, the second second player strategy d2
i2

is greater than third player strategy d2
i3

because this player

(second) is oversaturated (λ2 > λ2
ξ νt

), and finally the third

player strategy is greater than
t

first player strategy due to its

flows are the same (λ3
ξ = λ3

νt
).

Until now our streets
t

have only one direction; so in order

to get a more realist model we consider opposing flows as

participant pairs; it means that we consider the players

on the same street as only one player, see figure (4). The

Fig. 4. Flow dynamics of the four flow intersection (two participants)

following constraints are required in order to avoid collisions

d1
i1

= d2 1 2
i2

di2
= di1

di1
+ di1

= 1 di2
+ di2

= 11 2 1 2

The English Turn its a special case and the control of

the traffic lights in this type of crossing looks glance as a

complex task in fact for these is not the case. For these

turn the passage of vehicles are based on the location of

these: in a turn they advance from north to the south and

vice versa, in the following turn they advance from east to

west and vice versa. The structure of this type of intersection

appears in figure (5). The arrows mark the position of the

Fig. 5. Flow dynamics of the English turn.

vehicles within each segment of cars in the intersection, and

the players behavior is based on the previously described

fact. We considered the segments that go of north to the south

and the south to north for the construction of the transition

matrices of our first player and the segments that go from

east to west and the west to east for the second participant.
VI. COMPARISON

We compare our method against the following time-

varying adaptive strategy, since there is not way to compare

the proposed solution versus a similar algorithm, the follow-

ing strategy is useful, because characterizes the behavior of

the traffic lights in iterative form.

dkk
2 2

i = i, dkk = i;
1 (x + 1)x i2

i1 i1 (xi2 + 1)xi2

i = 0, 1, 2 . . . , n

We consider sixty iterations or cycles, this mean that our

strategy will be computed every cycle time (cycle time =

green light time + red light time), a buffer size of twenty-

six cars x+ = 26 for each player (the maximum capacity

of the two segments of the street); and random input/output

flows (λl
ξt

, λl
νt

) were generated by Poisson distribution with

λ1 = 20, λ1
ξt νt

= 21 for first player and λ2 = 19, λ2
ξt νt

= 20
for the second; all considerations are based on participant

pairs.

Figure (6) shows the green light strategy value for each

player, which is the red light strategy for the other player and

the figure (7) compares the total queue average for the inter-

section; between game theory control and adaptive control,

we can obtain an improvement of 26.45% in performance

when using game theory strategy. The result is variable and

depends on flow averages; several experiments varing the

47th IEEE CDC, Cancun, Mexico, Dec. 9-11, 2008 WeA09.5

2171



Fig. 6. Game Theory Control.

Fig. 7. Queue evolution for the Intersection

(input and output) flows gave better results for saturated

intersections and gave the same performance for unsaturated

intersections.
VII. CONCLUSION

This paper presents an approach to the urban traffic

problem based on game theory and a Markov chain model.

This technique is compared with an adaptive control, the

results obtained are applied to control the lights cycle time.

At each iteration a game is solved by extraproximal

method to find a ǫ−Nash equilibrium point. The ergodicity

condition is fulfilled; this means that we do not require

past information to manage the actual queue length. An im-

provement over the adaptive control is not always obtained,

nevertheless in the worst case, our control technique will

work as the adaptive control. This occurs when we have low

traffic because the throughput is higher.

In this work, the approach was applied to simple isolated

intersections, but was extended to more complex cases like

“English” turns. The comparison will be improved using

other methods of traffic lights control. The behavior of

other types of networks, like computer or communication

networks, could be analyzed using this technique. Future

work includes to develop a general framework to deal with

the intersections on a street or on a streets network.
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