
Investigating the genomic basis of metabolic robustness through in silico

flux analysis

Marcin Imielinski, Niels Klitgord, Calin Belta

Abstract— We employ a novel implementation of flux balance
analysis to investigate the role of genome structure in the
maintenance of metabolic robustness. We propose the hypoth-
esis that the genomic organization of a bacterium buffers
its metabolome against random gene deletion. To test this
hypothesis, we use a novel implementation of producibility
analysis to determine the metabolomic impact of gene deletions
in the E. coli iJR904 genome-scale metabolic model. From
these results, we determine metabolomic fragility, which we
compute as the average number of metabolites knocked out
across all gene deletions of a given size in a given nutrient
media. We apply this analysis for three deletion window sizes
(4000, 8000, 16000bp) across the length of the E. coli genome.
We compare these results to those obtained from several null
distributions of permuted genomes to assess the impact of
E. coli genome organization on its metabolic robustness. Our
results strongly suggest that the arrangement of genes on the
E. coli genome buffers metabolite producibility against random
gene deletion. Our results have interesting implications for the
understanding of metabolic network evolution. Future work
includes examining our hypothesis for a wider range of deletion
sizes and nutrient environments and extending our results to
the metabolic networks of other species.

I. INTRODUCTION

The metabolic network is the biochemical machinery with

which a cell transforms a limited set of nutrients in its

environment into the multitude of molecules required for

growth and survival. It consists of hundred to thousands

of small molecule species intricately linked by an even

larger set of biochemical reactions. The expansive and highly

connected nature of this important cellular system greatly

limits the degree of insight that may be gained from the

isolated study of a single component or module. The first

step towards systems-level understanding of metabolism is

the construction of a model that captures what is known

regarding an organism’s small molecule biochemistry and

its underlying genetics. The advent of sequencing technology

combined with general improvements in the organization of

biological information [7], [10] has allowed the building of

such genome-scale metabolic models for numerous microbial

organisms, including E. coli, S. cereviseae, H. pylori, and S.

aureus [13], [14], [4], [5], [11], [12], [8].

Genome-scale metabolic modeling enables the in silico

study of the relationships of biological components and

systems-level functions. It also allows for the examination of

global features of biological systems that may not be evident
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through the study of isolated genes or pathways. One such

systems-level feature is that of robustness, which represents

biological systems ability to function in a wide range of

environments and in the context of component failure. One

particular important aspect of metabolic network robustness

is its ability to buffer essential functions of the organism

against random gene deletion.

Flux balance analysis provides a powerful tool to examine

metabolic network robustness at the genome-scale [10]. A

variant of flux balance analysis, called producibility analy-

sis, employs linear programming to identify the metabolite

knockouts that are predicted to result from a gene knockout,

given the genome-scale model and a nutrient media [6]. This

set of metabolite knockouts resulting from a gene deletion

provides a global measure of that gene deletion’s effect on

network function, which we term as the metabolomic impact.

Producibility analysis in E. coli shows its biosynthetic

function to be highly robust to single gene deletion in rich

media. Alternatively stated, most single-gene deletions in

this strain and nutrient media have no metabolomic impact

[6]. This robustness is thought to arise at three levels:

gene, protein, and pathway. Robustness at the gene level

is attributed to gene duplication. Robustness at the protein

level results from multiple enzymes performing identical

functions. Pathway-based robustness occurs when multiple

pathways in the metabolic network achieve the same objec-

tive.

In this study, we propose a new layer of mechanisms

underlying E. coli metabolic robustness at the genome-scale.

Namely, we postulate that the position of genes in the

genome has evolved to buffer the organism against random

deletions. To test this hypothesis, we apply a novel and

efficient implementation of producibility analysis to evaluate

the biosynthetic robustness of the E. coli metabolic network

to random genomic deletion. By comparing these results to

those obtained from ”permuted genomes”, we demonstrate

that the position of genes in E. coli significantly protects

metabolites against gene deletion. This result has interesting

implications for the understanding of metabolic network

evolution.

II. METHODS

A. Genome scale metabolic models

Notation For n, i ∈ N, we use In to denote the n × n

identity matrix, and en,i ∈ R
n to denote the i-th element

of the Euclidean basis in R
n. Given m,n ∈ N, we use the

notation M = {1, . . . ,m} and N = {1, . . . , n}. For a set

C, we use |C| to denote its cardinality. If A ∈ R
m×n and
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Fig. 1. Distributions of metabolic genes knocked out applying the three deletion window sizes in the original E. coli genome. (a) 4000 bp deletion size
(b) 8000 bp deletion size (c) 16000 bp deletion size.
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Fig. 2. Metabolomic impact histograms for the three deletion window sizes in the original E. coli genome. (a) 4000 bp deletion size (b) 8000 bp deletion
size (c) 16000 bp deletion size.

U ⊆ M , then AU denotes the submatrix of A containing

the rows with indices in the set U . Therefore, if x ∈ R
n,

i ∈ N , and U ⊂ N , then xi and xU ∈ R
|U | denote its

ith component and the vector formed by taking components

with indices in set U , respectively. The inequality x ≥ 0 is

interpreted componentwise, i.e., xi ≥ 0, i = 1, . . . , n, while

the inequality x > 0 is interpreted as x ≥ 0, x6=0.

We represent a mass-balanced metabolic network of n

chemical reactions involving m metabolites in a stoichiom-

etry matrix S ∈ R
m×n. We assume that matrix S also

incorporates stoichiometric information about all exchange

reactions (uptake and secretion) and about the maintenance

and growth reactions. Each entry Sij specifies the stoi-

chiometric coefficient for metabolite i in reaction j, which

is negative for substrates and positive for products. We

represent the flux distribution through the reactions of the

network by v ∈ R
n, where a component vj corresponds

to the flux of reaction complex passing through reaction j.

We assume that all reactions are irreversible, i.e., v ≥ 0.

Note that this assumption is not restrictive since, at the price

of (significantly) increasing the number of reactions, each

reversible reaction can be replaced by two irreversible ones.

The concentrations of species in the system at time t are

denoted by x(t) ∈ R
m
+ . Under these assumptions, the rate of

change in time of species concentrations is given by:

ẋ = Sv, v ≥ 0. (1)

Metabolic reactions occur at a fast rate with respect to

cell regulatory and environmental changes. When modelling

at the slower time scale it is reasonable to apply the quasi-

steady state assumption, under which we have:

Sv = 0, v ≥ 0. (2)

B. Producibility analysis

A metabolite j ∈ M is called producible by the metabolic

network (1) if the network can sustain its synthesis under

the steady state and thermodynamic constraints in equa-

tion (2). To test producibility of metabolite j, we add a

“fictitious” chemical reaction that uses metabolite j, and

then test whether the network can produce strictly positive

flux through this chemical reaction, while observing the

steady state and thermodynamic constraints. Formally, this

corresponds to an augmentation of the stoichiometry matrix

S with em,j on the right, and the flux vector v with w ∈ R,

w ≥ 0 at the bottom. In other words, w corresponds to the

flux through the additional chemical reaction. To characterize

the production capabilities of a metabolic network globally,

we can add one test chemical reaction for each metabolite,

and correspondingly augment the stoichiometry matrix S

with Im on the right and v with a w ∈ R
n, w ≥ 0

at the bottom. We will denote the augmented matrix by

S̄ ∈ R
m×(n+m) and the augmented vector by v̄ ∈ R

n+m.

In this framework, producibility of metabolite j ∈ M can

be decided by solving the following linear program (LP):

max
v̄∈Rn+m

v̄j+n s.t S̄v̄ = 0, v̄ ≥ 0, v̄j+n ≤ α, (3)

where α > 0 is an arbitrary constant that keeps the problem

47th IEEE CDC, Cancun, Mexico, Dec. 9-11, 2008 TuB05.6

794



bounded. If the optimal value of (3) is zero, then metabolite j

is not producible. Otherwise, metabolite j is producible∗. To

test the producibility of a metabolite under metabolic gene

knockouts, one can simply add the equality constraints v̄J =
0 to (3), where J is the set of reactions knocked out by the

gene knockouts.

In order to asses the robustness of metabolism, we are

interested in studying the producibility of each metabolite in

a metabolic network under various metabolic gene knock-

outs. With the framework we presented so far, this would

imply solving a number of LP equal to the number of gene

perturbations multiplied the number of metabolites. Since the

size of each LP is in the order of thousands, and the number

of gene perturbations is in the order of millions, such an

approach would be infeasible computationally. In this paper,

we propose the reduce the amount of computation by using

both problem (3) and its dual, whose solutions are available

simultaneously if an interior-point-type optimization method

(such as the one implemented in SeDuMi [1]) is used. In the

following we show that, in most of the cases, it is enough to

solve one LP to decide the producibility of all metabolites.

First, whenever we find a solution v̄ of (3), we search it

for all components for which v̄n+i > 0. If such a component

is found, then we label metabolite i as producible. Second,

the dual of (3) is given by:

min
g∈Rm,s∈R

αs s.t. S̄T g + sen+m,j+n ≥ en+m,j+n, s ≥ 0,

(4)

where s is a “slack” variable. It is easy to see that the primal

problem (3) can only produce two optimal values of its

objective: 0 and α. Therefore, the optimal value of the dual

problem (4) can only be 0 or α, which implies that every dual

solution g ∈ R
m satisfies S̄T g ≥ 0. In our previous work [6],

by employing a simple variation of the Farkas’ Lemma, we

showed that g satisfying (S̄T g)n+i > 0, S̄T g ≥ 0 certifies

the infeasibility of the set {S̄v̄ = 0, v̄ ≥ 0, v̄n+i > 0}.

Therefore, by a simple inspection of the solution g of the

dual problem (4), we can classify all metabolites i for which

(S̄T g)n+i > 0 as “non-producible”.

C. E. coli Genome-Scale Metabolic Model

In this study, we employ the E. coli iJR904 genome scale

model [12], which has 761 metabolites involved in 931

reversible and irreversible chemical reactions. We model rich

media by supplementing the network with 143 extracellular

nutrient fluxes, 5 intracellular nutrient fluxes representing

supply of cofactors and carrier proteins from outside of small

molecular metabolism, and 761 species sink fluxes for each

species in the system. This yields a stoichiometry matrix S

(Equation 2) of dimension 761 × 2085.

Reactions in S represent the inflow, outflow, and intercon-

version of small-molecule chemical species in an E. coli cell

∗Note that producibility characterizes the capacity of a metabolic network
to produce a metabolite, and does not guarantee that the metabolite is
actually produced by the network. However, if a metabolite in not supplied
as a nutrient, and is not producible, then it is guaranteed to be absent from
the cell.

grown in a rich nutrient media. Each species ”sink” reaction

represents its growth mediated dilution and macromolecular

consumption. Of the 761 species, 49 correspond to ”biomass

components” that are considered to be essential substrates for

survival and growth in the original Reed et al specification

[12].

The E. coli genome-scale metabolic model contains a de-

tailed mapping of gene, protein, and reaction (GPR) relations

that facilitate the mapping of gene knockouts to reaction

knockouts. Furthermore, each E. coli metabolic gene has a

precise start and end site in the genome according to the E.

coli genome build [2]. Finally, E. coli genes are organized

into transcriptional units called operons that comprise mul-

tiple genes that are controlled by a single promoter.

D. Metabolomic impact and fragility

We define the metabolomic impact of a genomic deletion

as the number of metabolites it renders non-producible. We

compute metabolomic impact through a multi-step process:

First, we determine the operons contained in the deletion

region, given its base pair location and extent. Then for

each operon, we determine the genes that lie downstream

to the deletion and label these as knocked out. For that

given gene deletion combination, we use GPR associations

to calculate the set of reaction knockouts. Finally, given the

set of reaction knockouts, we apply producibility analysis to

determine that gene deletion’s metabolomic impact.

We define the metabolomic fragility of a genome to a given

size deletion as the mean metabolomic impact across all

deletions of a given base pair size. We compute metabolomic

fragility with a ”sliding window” approach. Namely, we

map all possible genomic deletion of a given size to the

reactions that they are predicted to knockout. We then apply

producibility analysis of each unique reaction knockout set

to assess its metabolomic impact on the network. Taking

the mean of metabolomic impact over all possible deletion

windows yields a measure of ”metabolomic fragility” of that

genome to that given deletion size. In addition to the latter,

we also compute ”biomass fragility”, which we derive as

the mean number of biomass metabolites knocked out per

deletion. In this study we apply such to assess metabolomic

fragility to 4000, 8000, and 16000 bp genomic deletions.

E. Genomic permutations

To evaluate our main hypothesis, we compare the

metabolomic fragility of the E. coli genome against that of

randomized genomes obtained under a variety of permutation

schemes. For each permutation schemes, we generate 1000

randomized genomes, from which we generate ”null dis-

tributions” of metabolomic fragility. Each null distributions

allows us to statistically infer the importance of a particular

aspect of genomic organization for metabolic robustness.

In permutation scheme 1, we shuffle the assignment of

metabolic genes and their positions, while maintaining the

original position distribution of genes in the E. coli genome.

This shuffling dissociates the grouping of genes into operons,
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Fig. 3. Null distributions of metabolomic fragility for the three permutation schemes: gene-position shuffling (Perm 1), gene position randomization (Perm
2), and operon position randomization (Perm 3). Panels a-c show results for the following deletion sizes: (a) 4000 bp deletion size (b) 8000 bp deletion
size (c) 16000 bp deletion size. The horizontal dotted line in each figure represents the metabolomic fragility of the original E. coli genome with respect
to the given deletion size. Each distribution shown is generated from 1000 permuted genomes.

allowing us to evaluate the importance of operon composition

for metabolomic fragility.

In permutation scheme 2, we assign metabolic genes

random positions in the genome. This produces an approx-

imately uniform distribution of metabolic genes across the

genome, and disrupts gene-operon groupings. Computing

metabolomic fragility across these permuted genomes allows

us to infer the importance of positional gene clustering for

metabolomic fragility.

In permutation scheme 3, we shuffle operon position

while maintaining gene to operon mapping. This produces

an approximately uniform distribution of operons across

the genome, while allowing non-uniform positional gene

clustering. In this permutation scheme, we determine the

importance of operon clustering for metabolomic fragility.

III. RESULTS AND DISCUSSION

A. E. coli metabolomic fragility in rich media

We computed the metabolomic fragility of the E. coli

genome for 3 deletion window sizes (4000bp, 8000bp,

16000bp) in rich media. We chose these three sizes as they

span the range of biologically realistic deletion events. As

shown in Figure 1, these three genomic deletion sizes pro-

duce qualitatively different distributions of gene knockouts,

allowing us to richly probe E. coli metabolic robustness.

Computation of metabolomic impact across all k bp win-

dows in the genome yielded the frequency plot shown in

(Figure 2). We refer to this plot as a ”metabolomic impact

histogram”, which represents a probability distribution of

metabolomic impact assuming that random gene-deletion

events are uniformly distributed in the genome. As intu-

itively expected, E. coli metabolomic fragility increased with

genomic deletion size. On average, 4000, 8000, and 16000

bp deletions knocked out 2.60, 4.45, and 8.05 of 539 total

producible metabolites, respectively. Analysis of biomass

fragility found 4000, 8000, and 16000 bp deletions to knock

out 0.20, 0.27, and 0.61 of 49 total biomass metabolites,

respectively. Though biomass metabolites did not appear to

be more likely to be knocked out by 4000 bp deletions, they

were relatively more fragile to larger (8000bp and 16000bp)

deletions.

B. Gene-operon grouping promotes metabolomic robustness

We compared the metabolomic fragility of the E. coli

genome to a permuted null distribution obtained by shuf-

fling position-gene assignment. By maintaining the original

genomic distribution of genes but effectively altering gene-

operon groupings, we aimed to ascertain whether the distri-

bution of genes into operons helps buffer the metabolome

against gene deletion. As shown in Table I, the metabolomic

fragility of every random genome obtained through position-

gene assignment shuffling was greater than the metabolomic

fragility of the original E. coli genome. These results were

statistically significant (p < 0.001), allowing us to reject the

null hypothesis that gene-operon organization does not influ-

ence metabolomic fragility. A trace of the null distribution

obtained from gene-position shuffling is shown in Figure 3.

To examine the nature of the buffering effect of

gene-operon organization in more detail, we computed a

”mean metabolomic impact histogram” across all permuted

genomes. These results showed random gene deletions in

the original E. coli genome to be significantly more likely

to have a metabolomic impact of 0, relative the average

permuted genome. Alternatively stated, this implies that

gene-operon shuffling brings together distantly separated and

mutually buffering gene combinations into close proximity.

Such ”buffering” gene combinations can correspond to gene

duplicates, isoenzymes, and parallel pathways.

C. Gene position distribution heterogenously impacts E. coli

metabolome fragility

By shuffling gene-operon assignment, we maintain the

overall positional distribution of genes across the genome.

This gene-position distribution is highly non-uniform, re-

sulting primarily from the clustering of genes into operons.

We applied a permutation approach to examine how this

parameter influences metabolomic fragility.

In this analysis, we constructed permuted genomes in

which we assigned E. coli genes random positions. Compar-

ing the metabolomic fragility of the original E. coli genome
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Permutation Scheme 1

Deletion size Metabolic Fragility (Original Genome) Metabolomic Fragility (Permutation Mean +/- SD) Percentile

4000 bp 2.6027 3.466 (+/- 0.180) 0.0 %

8000 bp 4.45 5.674 (+/- 0.209) 0.0 %

16000 bp 8.05 9.490 (+/- 0.333) 0.0 %

TABLE I

PERMUTATION RESULTS FOR GENE-POSITION SHUFFLING FOR THE THREE DELETION SIZES TESTED. THIS PERMUTATION SCHEME EFFECTIVELY

SHUFFLES GENE-OPERON ASSIGNMENT WHILE MAINTAINING GENE POSITION DISTRIBUTION

Permutation Scheme 2

Deletion size Metabolic Fragility (Original Genome) Metabolomic Fragility (Permutation Mean +/- SD) Percentile

4000 bp 2.6027 2.448 (+/- 0.015) 97.2 %

8000 bp 4.45 4.697 (+/- 0.045) 0.01 %

16000 bp 8.05 9.123 (+/- 0.126) 0.0 %

TABLE II

PERMUTATION RESULTS FOR GENE-POSITION RANDOMIZATION FOR THE THREE DELETION SIZES TESTED. THIS PERMUTATION SCHEME RESULTS IN

ROUGHLY UNIFORM DISTRIBUTION OF GENE POSITIONS ACROSS THE GENOME.

to the null distribution computed from these genomes, we

observed that genomic position was protective against longer

deletions (8000bp, 16000bp) but not protective for shorter

deletions (4000bp) . For 4000bp deletions, the metabolomic

fragility of the original genome (2.60) was significantly

above the 95% confidence interval of metabolomic fragility

across permuted genomes (2.448 +/- .015). However for

8000bp and 16000bp deletions, we observed that gene posi-

tion had a statistically significant (p < .001) protective effect

on the metabolome (Table II). A trace of the null distribution

obtained from gene position randomization is shown in

Figure 3. Analysis of mean metabolomic impact histograms

showed that 4000 bp deletions were significantly more likely

to have 0 metabolomic impact in the E. coli genome with

randomized gene positions. Meanwhile, for both 8000 and

16000 bp deletion sizes, we observed significant enrichment

in the frequency of deletions with 0 metabolomic impact in

the original E. coli genome.

These results show that uniform distribution of genes in

the genome brings functionally buffering groups of genes

into close proximity, however the size of the deletion has to

be sufficient to span the mean length separating neighboring

genes. The qualitative difference of effect seen between 4000

and 8000 bp gene likely arises due to the uncoupling of both

gene position and gene-operon grouping in this permutation

scheme. Since gene-operon relationships are abolished with

this shuffling, a deletion event only affects the genes that

lie in that region, without knocking out nearby downstream

genes. For each deletion size, the average number of genes

knocked out by a gene deletion in this scheme is thus smaller

than for the original E. coli genome. At small deletion

sizes, this greatly decreases the average metabolomic impact

of a deletion event. However, given a sufficient deletion

size, ”quality” overcomes ”quantity”, resulting in complex

gene knockouts that interact epistatically to disable multiple

parallel pathways in the E. coli network.

D. Operon position distribution protects the metabolome

against large deletions

We compared E. coli metabolomic fragility against a

distribution of genomes with random operon position. In this

permutation scheme, we maintained gene-operon assignment

and relative positions of genes within operons. For 4000bp

and 8000bp deletions, the metabolomic fragility of the

original genome was contained within the 95% confidence

interval of the null distribution, suggesting no significant re-

lationship between operon position and metabolomic fragility

(Figures 2 and Figure 3). However for 16000 bp deletions,

metabolomic fragility of the E. coli genome was less than

95% of permuted genomes (Table III).

These results suggest that operon position distribution

in the E. coli genome separates mutually buffering gene

combinations from each other. However, this effect manifests

at larger deletion sizes than for gene-position shuffling. This

size-dependence occurs most likely because operons are

fewer in number and thus a larger distances separates neigh-

boring operons after position randomization. Though this

effect appears only at larger deletion sizes, our results clearly

suggest the that operon position has functional systems-level

consequences for metabolism.

E. Implications for metabolic network evolution

Our results strongly suggest an association between se-

quence organization of the E. coli genome and the robust-

ness of its metabolism. This effect is specifically arises

from the grouping of genes into operons and the positional

distribution of operons and genes across the genome. The

resulting genomic structure physically separates epistatically

interacting gene combinations that contribute to parallel and

robust biosynthetic functions. When these gene combinations

are placed into physical proximity through gene shuffling

in our simulation, these robust functions become targets for

genomic deletion.

We interpret the observed robustness properties to suggest

that genomic proximity in E. coli mirrors metabolic network
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Permutation Scheme 3

Deletion size Metabolic Fragility (Original Genome) Metabolomic Fragility (Permutation Mean +/- SD) Percentile

4000 bp 2.6027 2.655 (+/- 0.3355) 21.7 %

8000 bp 4.45 4.573 (+/- 0.3758) 7.8 %

16000 bp 8.05 8.305 (+/- 0.1876) 3.7 %

TABLE III

PERMUTATION RESULTS FOR GENE-POSITION RANDOMIZATION FOR THE THREE DELETION SIZES TESTED. THIS PERMUTATION SCHEME RESULTS IN

ROUGHLY UNIFORM DISTRIBUTION OF OPERON POSITIONS ACROSS THE GENOME.

proximity. Proximity in the metabolic network, in classical

biochemical terms, implies nearness in the context of a

multi-step linear or branched ”pathway”. In genome-scale

metabolic network parlance, we would restate this claim to

suggest that genes sharing elementary modes will lie close to

each other on the genome. Though the latter is accepted as

fact for operons, which very often consist of multiple genes

encoding steps in a pathway (e.g. biotin synthesis), it has not

been explored for larger scale genomic structures.

If such larger-scale relationships exist, they may be evo-

lutionary consequences of bacterial horizontal gene transfer.

In horizontal gene transfer, modules of functionally related

genes were swapped between bacteria through transforma-

tion, conjugation, and bacteriophage-mediated transduction.

This mechanism is used to explain positional clustering of

functionally related genes into operons, but may also underly

larger functional clustering in the genome. Interestingly,

there has been evidence shown to suggest existence of gene

context conservation between bacterial species on an ”uber-

operonic” scale [9], [3]. Functional correlation between

genes in these larger conserved regions may provide support

for the role of such large scale horizontal gene transfer in

metabolic network evolution.

IV. CONCLUSION

We have employed a novel and efficient implementation of

producibility analysis to investigate the robustness properties

of the E. coli metabolic network to random gene deletion.

Comparing the metabolomic fragility of the E. coli genome

to several null distributions obtained from analysis of per-

muted genomes, we have found that genome-structure has

a significant impact on metabolic network robustness. From

these results, we conclude that epistatically interacting gene

combinations in the E. coli network tend to be physically far

apart in the genome. These results have interesting implica-

tions for metabolic network evolution. Future work includes

probing a larger range of deletion sizes and extending our

work to other prokaryotic and eukaryotic organisms.
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